JPS60128690A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS60128690A
JPS60128690A JP58236824A JP23682483A JPS60128690A JP S60128690 A JPS60128690 A JP S60128690A JP 58236824 A JP58236824 A JP 58236824A JP 23682483 A JP23682483 A JP 23682483A JP S60128690 A JPS60128690 A JP S60128690A
Authority
JP
Japan
Prior art keywords
layer
wavelength
emitting device
semiconductor light
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58236824A
Other languages
Japanese (ja)
Inventor
Hajime Imai
元 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58236824A priority Critical patent/JPS60128690A/en
Publication of JPS60128690A publication Critical patent/JPS60128690A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P

Abstract

PURPOSE:To obtain a semiconductor light-emitting device, a radiant wavelength thereof is stabilized and which has extremely high coherency, by forming a quantum well layer, in which the thickness of an active layer in the semiconductor light-emitting device is smaller than the de.Broglie wavelength of electrons, and forming an active layer as one layer or a plurality of active layers through a barrier layer. CONSTITUTION:When a semiconductor light-emitting device has a single quantum well layer, a diffraction grating is formed on the interface between an N type lnP confinement layer 12 and an InGaAsP guide layer 13. These each InGaAsP four-element layer is composed of the guide layer 13 in a luminescence wavelength such as 1.30mum, an active layer 14 in one such as 1.53mum and a contact layer 16 in one such as 1.30mum, and the guide layer 13 is brought to a value such as 20nm and the active layer 14 to a value such as 10nm in their thickness. The period of a diffraction grating on the interface between the confinement layer 12 and the guide layer 13 is brought to 480mum, and beams having 1.55mum wavelength by transition between quantum units E1 and Ehh1 are selected. When the semiconductor light-emitting device has multilayers, three layers of the InGaAsP active layers 14 are formed, InGaAsP barrier layers 15 are inserted among the layers 14, and others are executed in the same manner as said single quantum well layer.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体発光装置2%に波長の安定性とコヒーレ
ンゾイとか極めて^い半導体レーザーに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device which has wavelength stability of 2% and extremely high coherence zoi.

(1))技術の背景 光を情報信号の媒体とする光通信その他のシステムにお
いて、光信号を発生する光源として半導体発光装置が極
めてN要な役割りを果している。
(1)) Background of Technology In optical communications and other systems that use light as a medium for information signals, semiconductor light emitting devices play an extremely important role as light sources that generate optical signals.

従って半導体発光装置特にレーザーについて請求される
波長帯域の実現、安定した単一の基本零次横モード発振
、単一の縦モード発振、閾値電流の低減、電流−光出力
特性の直線性の向上、これらの特性の温度依存性の低減
など緒特性の向上について多くの努力が重ねられている
Therefore, the realization of the wavelength band required for semiconductor light emitting devices, especially lasers, stable single fundamental zero-order transverse mode oscillation, single longitudinal mode oscillation, reduction of threshold current, improvement of linearity of current-light output characteristics, Many efforts have been made to improve these properties, such as reducing the temperature dependence of these properties.

(C) 従来技術と問題点 従来性なわれている半導体発光装置の多くは。(C) Conventional technology and problems Many of the semiconductor light emitting devices are conventional.

目的とする光の波長に対応するエイ・ルギーバンドギャ
ップを有する一つの半導体層を活性層とし。
The active layer is a semiconductor layer with an A-Lugie bandgap corresponding to the target wavelength of light.

これよりエネルギーバンドギャップの犬、きい1対の半
導体層で活性層を挾むことによって、活性層内lこ注入
された電子及び正孔を閉じ込めて光の放出を行なわせて
いる3、この構造の半導体発光装置においては励起され
た電子及び正孔は、第1図に示す如くそれぞれ伝導帯及
び価電子帯内で放物線状の状態密度をもって広い工坏ル
ギー範囲にわたっ”C連続的に分布する。従って遷移に
よって輻射される光のエネルギーすなわち波長の分布も
広くなる。なお、第1図において、縦軸はエネルギーバ
ンド軸は状態密度gを示し2曲線Eは電子2曲線)lh
は重い正孔9曲線Htは軽い正孔の状態密度を表わすっ 半導体レーザの多くは活性層等に垂直な1対の労開面に
よっCファプリー・ベロー形共振器が設けられ、共振系
内で最大の利得をもつ波長の近傍においC利得と損失と
がつり合っCレーザ発振が行なわれる。この状態におけ
る反躬鋭間の定在波すなわち1.CKモートのモード次
数は例えば20008度と大きく、温厩変化によるエイ
、ルギーバンドギャソブの変化などによって発振波長が
容易に変化しにれを安定に制御することができず、従っ
てそのコヒーレンジイモ悪い。
By sandwiching the active layer between a pair of semiconductor layers with a higher energy band gap, electrons and holes injected into the active layer are confined and light is emitted.3.This structure In the semiconductor light emitting device of Therefore, the distribution of the energy of light radiated by the transition, that is, the wavelength, becomes wider.In Figure 1, the vertical axis is the energy band axis, the density of state g, and the 2-curve E is the electron 2-curve) lh.
is the heavy hole 9 curve Ht represents the state density of light holes. In most semiconductor lasers, a C-Fapley bellows resonator is provided by a pair of labor planes perpendicular to the active layer, etc., and the inside of the resonant system is C laser oscillation occurs when the C gain and loss are balanced in the vicinity of the wavelength having the maximum gain. In this state, the standing wave between the reciprocal edges is 1. The mode order of the CK mote is as large as 20008 degrees, for example, and the oscillation wavelength changes easily due to changes in temperature and energy band gas, making it impossible to stably control the oscillation wavelength. bad.

半導体レーザの共振器のンイードバックを光尋波路の界
面に設けた回折格子によって選択的に行なう分布帰還形
レーザに45いては、縦七−ドの制御性は大幅に改善さ
れ発振波長の温度依存性も減少するか、電子及び正孔の
状態密度分布は前記例と異ならす温度変化によって4;
lJ得ヒーク七回折波長のズレが生じ、安定した単一波
長が得られる温度幅が狭く、かつ前記例においてはその
反射面によっC自づから横モードはTEモードとなり、
容易に基本零次横モードTEOが得られるのに対して9
分布帰還形レーザにおいてはTEモード、TM七−1・
の制御が行なわれないために、外部の光害波路との整合
などに関して問j辿がありコヒーレンンイも悪い。
In distributed feedback lasers, in which the resonator of the semiconductor laser is selectively feedback-backed using a diffraction grating provided at the interface of the optical waveguide, the controllability of the longitudinal heptad has been greatly improved, and the temperature dependence of the oscillation wavelength has been improved. Also, the state density distribution of electrons and holes decreases due to a temperature change different from the above example.
A shift in the diffraction wavelength occurs, and the temperature range at which a stable single wavelength can be obtained is narrow, and in the above example, due to the reflective surface, the transverse mode automatically becomes the TE mode,
While the fundamental zero-order transverse mode TEO is easily obtained, 9
In distributed feedback lasers, TE mode, TM7-1・
Since this control is not performed, there are problems with matching with external light pollution wave paths, and the coherence is also poor.

半冶・体レーザの活性層の原さをキャリアのドウブロー
イー波長程度以下とするなりば、キャリアの厚さ方向の
運動か量子化される。この様な構造の活性1曽は量子力
学的井戸形ボテンシャルとしてふるまい、量子井戸層と
呼はれる。公子井戸半導体レーザの活性領域は1層の量
子井戸層から(1?成される場合と、多重の量子井戸層
とバリア層から構成される場合とかある。
If the originality of the active layer of a half-metallic laser is made to be less than the Debrowie wavelength of the carriers, the motion of the carriers in the thickness direction will be quantized. The active layer in this structure behaves as a quantum mechanical well-shaped potential and is called a quantum well layer. The active region of a Kimiko well semiconductor laser may be composed of a single quantum well layer, or may be composed of multiple quantum well layers and barrier layers.

この様1こ量子化された2次元状態のキャリアの状態密
度は化2図に示す如く階段状となる。この場合の輻射趨
移に対する選択用はΔn=Q て1例えばElの電子は
l;1th、又はE I b 、の正孔と1)結合する
。従ってこの量子井戸半導体レーザから輻射される光の
波長は連続値ではなく2図中1.1 ’、 2及び2′
に示す如き工坏ルギーに対応する離散値となる。
The density of states of carriers in the two-dimensional state quantized by one in this manner becomes step-like as shown in FIG. In this case, the selection for the radiation trend is Δn=Q.For example, the electron of El is 1) combined with the hole of l;1th, or E Ib. Therefore, the wavelength of the light emitted from this quantum well semiconductor laser is not a continuous value, but 1.1', 2, and 2' in Figure 2.
The result is a discrete value corresponding to the engineering energy as shown in .

しかしながら量子井戸半導体レーザの共振器が7アブリ
ー・ベロー形である場合には、前記離散値のうちの何れ
でレーザ発振が行なわれるかを制御することは不可能で
あって2発振波長の安定性及びコヒーレンシイは前記従
来側に比較すれば改善されるか未だ充分ではない。
However, when the resonator of a quantum well semiconductor laser is of the 7Avry-Bello type, it is impossible to control which of the discrete values the laser oscillates at, and the stability of the two oscillation wavelengths cannot be controlled. And coherency is improved compared to the conventional side, but it is still not sufficient.

光通信の品質を更に向上するために1例えば現在のオン
、オフによるディジタル通信方式に光波ノコヒーレント
の要素を加えて、ホモダインヘテロターイン検波方式が
可能となることが望才れ、半導体レーザ光に安定したコ
ヒーレンゾイが要求される。
In order to further improve the quality of optical communication, for example, it is hoped that a homodyne heterotine detection method will become possible by adding an element of light wave incoherence to the current on/off digital communication method, and semiconductor laser light requires a stable coherent lens.

(dl 発明の目的 本発明は前記状況を改善して、輻射波長が安定し極めC
コヒーレンシイの高い半導体発光装置を提供することを
目的とする。
(dl Purpose of the Invention The present invention improves the above situation, stabilizes the radiation wavelength, and achieves extremely high C
An object of the present invention is to provide a semiconductor light emitting device with high coherency.

fe) 発明の構成 本発明の前記目的は、電子波のドウ・ブローイー波長以
下の厚さの半導体層を活性層とし、該活性層の近傍に、
該活性層内で発生する光を選択的に帰還する周期的構造
を備えてなる半導体発光装置により達成される。
fe) Structure of the Invention The object of the present invention is to use a semiconductor layer having a thickness equal to or less than the Doe-Browie wavelength of an electron wave as an active layer, and in the vicinity of the active layer,
This is achieved by a semiconductor light emitting device comprising a periodic structure that selectively returns light generated within the active layer.

すなわち本発明の半導体発光装置の活性層はその厚さが
電子のドウ・ブローイー波長以下とされて量子井戸層と
なっており、1層の活性層又はバリア層を介して複数の
活性層が設けられる。通常はこの活性層又は活性層群の
1面に接してエイ・ルキーバントキャップが活性層より
大きく閉じ込め層より小さいガイド層を設けてガイド層
と閉じ込め層との界面に、活性)曽内で発生ずる光を選
択的に帰還する周期的構造2通常は回折格子が設けられ
る。
That is, the active layer of the semiconductor light emitting device of the present invention has a thickness equal to or less than the Doe-Browie wavelength of electrons and is a quantum well layer, and a single active layer or a plurality of active layers are provided with a barrier layer interposed therebetween. It will be done. Normally, a guide layer is provided in contact with one surface of this active layer or a group of active layers, and the A/Rukivant cap is larger than the active layer and smaller than the confinement layer, and the interface between the guide layer and the confinement layer is provided with a guide layer that is in contact with one side of the active layer or group of active layers. A periodic structure 2, typically a diffraction grating, is provided for selectively returning the light produced.

本発明の半導体発光装置の活性層は先に述べた如く離散
した波長の光を発生ずる。この複数波長のうちの意図す
る波長の光に対して選択的な効果を有する周期的構造の
回折格子によって光をフィードバックすることlこより
、この選択された波長においてレーザ発振が行なわれる
The active layer of the semiconductor light emitting device of the present invention generates light of discrete wavelengths as described above. Laser oscillation is performed at the selected wavelength by feeding back the light using a periodic structure diffraction grating that has a selective effect on light at a desired wavelength among the plurality of wavelengths.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第3図(al及び(b)は単一の示子井戸1W−f M
する本発明の実施例を示すストライプに平行及び垂直な
断面による断面図である。
Figure 3 (al and (b) shows a single indicator well 1W-f M
FIG. 3 is a cross-sectional view of an embodiment of the present invention taken along sections parallel and perpendicular to the stripes.

図においU、11はn型インジウム・燐(InP)基板
、12はn型1nP閉じ込めj帽 13はn型インジウ
ム・カリウム・砒素・燐(lnGaAsP)カイト層、
14はInGaASP活性層、16は■)型Lnl)閉
じ込め層、17はp型111P層、18はn型InP層
、19はp型InQaAsP層、20及Q・21は電極
であり2図に示す如くn型1nP閉じ込め層12と11
1 G a AS Pガイド層13との界面に回折格子
が形成されている。
In the figure, U, 11 is an n-type indium-phosphorous (InP) substrate, 12 is an n-type 1nP confinement cap, 13 is an n-type indium-potassium-arsenic-phosphorus (lnGaAsP) kite layer,
14 is an InGaASP active layer, 16 is a ■) type Lnl) confinement layer, 17 is a p-type 111P layer, 18 is an n-type InP layer, 19 is a p-type InQaAsP layer, 20 and Q and 21 are electrodes, as shown in Figure 2. Like n-type 1nP confinement layers 12 and 11
A diffraction grating is formed at the interface with the 1 G a ASP guide layer 13 .

不実施レリにおいては前記各InGaAsP 4元層は
、そのルミネセンス波長λノが例えは、ガイド層13に
つい’C1,30(μm)、活性層14について1.5
3 (μm)、ニア ンタクト層16について1.30
Cμm)となる組成とし、またその厚さを例えば、ガイ
ド層13について2o(nm)、活性層14について1
0(71111)としている。またrlWInP閉じ込
め層12とn型InGaAsPガイド層13との界面の
回折格子は、その周期A七共振波長λとの間に有効屈折
率をn、mを正の整数として λ−−1 なる関係が成立する。ヘリウム−カドミウム(He−C
d)レーザ光(波長44]、6 (7Lm)) 0) 
2 光束千e法によって形成し、たレジストマスクを用
いて周期A−480(71+11 )の回折格子が設け
られて、前記第2図に示した量子準位E1とBhh、間
の遷移による波長λ−155〔μm)の光が選択されて
いる、。
In the case of non-implementation, each of the InGaAsP quaternary layers has a luminescence wavelength λ of, for example, 'C1.30 (μm) for the guide layer 13 and 1.5 (μm) for the active layer 14.
3 (μm), 1.30 for near tact layer 16
For example, the thickness of the guide layer 13 is 20 (nm), and the thickness of the active layer 14 is 10 (nm).
0 (71111). In addition, the diffraction grating at the interface between the rlWInP confinement layer 12 and the n-type InGaAsP guide layer 13 has a relationship between its period A and the resonant wavelength λ as follows, where n is the effective refractive index and m is a positive integer. To establish. Helium-cadmium (He-C
d) Laser light (wavelength 44], 6 (7Lm)) 0)
A diffraction grating formed by the 2-beam beam method and having a period of A-480 (71+11) was provided using a resist mask, and the wavelength λ due to the transition between the quantum levels E1 and Bhh shown in FIG. -155 [μm] light is selected.

また第4図に1)及び(b)は多重量子井戸層を有する
実施例を示す断面図である1図において、14はぞれぞ
れl: 11 G a A S P活性層であって本実
施例においてはこれが3層設りられて、その間に■nG
aAsPバリア層15が挿入されている、その他の部分
に一ついては前記実施例と同様である。
In addition, in FIG. 4, 1) and (b) are cross-sectional views showing an embodiment having a multiple quantum well layer. In the embodiment, three layers are provided, and ■ nG
The other portions in which the aAsP barrier layer 15 is inserted are the same as in the previous embodiment.

本実施例のI n Q a A S P活性層14はル
ミイ・センス波長λ9が例えば152〔μm〕、厚さが
例えばi o (7trn)、InGaAspバリア層
15はルミ不セ/ス波長λiが例えは1.dLl(μr
n〕厚さが例えば20 (71m)とされている。In
GaAS)’ガイド層13の組成、厚さ及びこれとIn
p閉じ込め層12との界面に形成−された回折格子は前
記実施例と同様であって7本実施例においても前記量子
準位間の遷移による波長λ−1,55(μm〕の光が選
択される。このようにして形成された半導体発光装置は
活性J*lこ量子井戸構造をもち活性層の利得のビーり
が離散的になっているため温度変化に対するンノ)ft
は連続的な従来の場合よりも少く、温度変化に対して安
定な領域が広い。またTEモードとTIVIモードとの
利得差があり、TEモードの利得が大きいため、安定し
たTEモモ−発振を生じる。
The InQaA SP active layer 14 of this embodiment has a lumi-sensing wavelength λ9 of, for example, 152 [μm] and a thickness of, for example, i o (7 trn), and the InGaAsp barrier layer 15 has a lumi-insensitive wavelength λi of 152 [μm]. The example is 1. dLl(μr
n] The thickness is, for example, 20 mm (71 m). In
The composition and thickness of the guide layer 13 (GaAS)' and the composition and thickness of the guide layer 13 and In
The diffraction grating formed at the interface with the p confinement layer 12 is the same as in the previous embodiment, and in this embodiment as well, light with a wavelength of λ-1.55 (μm) due to the transition between the quantum levels is selected. The semiconductor light emitting device formed in this way has an active J*l quantum well structure and the gain beam of the active layer is discrete, so that the semiconductor light emitting device formed in this way has no resistance to temperature changes.
is smaller than in the continuous conventional case, and the range of stability against temperature changes is wide. Further, there is a gain difference between the TE mode and the TIVI mode, and since the gain of the TE mode is large, stable TE momo oscillation occurs.

更に単一波長の選択性が良いことから極めてコヒーレン
トな光が得られ、へテロダイン通信用光源ホロクラム形
成用光源に最適である、 (g) 発明の詳細 な説明した如く本発明によれば、量子井戸構造によって
離散スペクトルとなる輻射光について更に波長を選択し
てレーザ発振を行なわせることによって1発振波長の安
定性とコヒーレン′/イが極めて高い半導体発光装置が
実現されて、ホモダインヘテロゲイン検波方式等が可能
となって光通信の品質を大幅に向上することができ、ま
たホ。
Furthermore, since the selectivity of a single wavelength is good, extremely coherent light can be obtained, making it ideal for a light source for heterodyne communication and a light source for forming a hologram. (g) According to the present invention, as described in detail, quantum By further selecting the wavelength of the radiant light, which has a discrete spectrum due to the well structure, and performing laser oscillation, a semiconductor light emitting device with extremely high stability of a single oscillation wavelength and coherence '/' has been realized, and the homodyne heterogain detection method has been realized. etc., making it possible to significantly improve the quality of optical communication, and also.

グラム形成用光源等を半尋体化することが可能となるな
どの大きい効果が得られる。
Great effects can be obtained, such as making it possible to form a gram-forming light source into a semicircular body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は半導体発光装置のキャリアの状態密
匿を示す図、第3図(、]1. (b)及び第4図(a
)。 (blは本発明の実施例を示す断面図である。 図において、11はn型InP基板、12はn型Inp
閉じ込め層、13はn型InGaASPガイド層、14
は■11GaASP活性層、15は1nGaASP バ
リア層、16はp型I+IP閉じ込め層。 17はp型InP層、18はn型znP層、19はpq
lnGaAsP層、20及び21は電極を示す。 晃 3 図 (a) (b) 第 4− 図 (a)(す
Figures 1 and 2 are diagrams showing the state concealment of carriers in semiconductor light emitting devices, Figure 3 (, ] 1. (b) and Figure 4 (a).
). (bl is a sectional view showing an embodiment of the present invention. In the figure, 11 is an n-type InP substrate, 12 is an n-type InP substrate, and 12 is an n-type InP substrate.
Confinement layer, 13 is n-type InGaASP guide layer, 14
11 is a GaASP active layer, 15 is a 1nGaASP barrier layer, and 16 is a p-type I+IP confinement layer. 17 is a p-type InP layer, 18 is an n-type ZnP layer, 19 is a pq
The lnGaAsP layers 20 and 21 represent electrodes. Akira 3 Fig. (a) (b) Fig. 4 - Fig. (a) (su)

Claims (1)

【特許請求の範囲】[Claims] 電子波のドウ・プローイー波長以下の厚さの半導体層を
活性層とし7.該活性層の近傍に、該活性層内で発生す
る光を選択的に帰還する周期的構造を備えてなることを
特徴とする半導体発光装置。
7. A semiconductor layer with a thickness less than the Doe-Ploey wavelength of an electron wave is used as an active layer.7. A semiconductor light emitting device comprising a periodic structure near the active layer that selectively returns light generated within the active layer.
JP58236824A 1983-12-15 1983-12-15 Semiconductor light-emitting device Pending JPS60128690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236824A JPS60128690A (en) 1983-12-15 1983-12-15 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236824A JPS60128690A (en) 1983-12-15 1983-12-15 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS60128690A true JPS60128690A (en) 1985-07-09

Family

ID=17006323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236824A Pending JPS60128690A (en) 1983-12-15 1983-12-15 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS60128690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254568A2 (en) * 1986-07-25 1988-01-27 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
EP0500962A1 (en) * 1990-09-12 1992-09-02 The Furukawa Electric Co., Ltd. Quantum-well-type semiconductor laser element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119783A (en) * 1982-12-25 1984-07-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119783A (en) * 1982-12-25 1984-07-11 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254568A2 (en) * 1986-07-25 1988-01-27 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
US4817110A (en) * 1986-07-25 1989-03-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
EP0547038A2 (en) * 1986-07-25 1993-06-16 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
EP0547044A2 (en) * 1986-07-25 1993-06-16 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
EP0547043A2 (en) * 1986-07-25 1993-06-16 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
EP0500962A1 (en) * 1990-09-12 1992-09-02 The Furukawa Electric Co., Ltd. Quantum-well-type semiconductor laser element
EP0500962A4 (en) * 1990-09-12 1993-01-27 The Furukawa Electric Co., Ltd. Quantum-well-type semiconductor laser element

Similar Documents

Publication Publication Date Title
JP3140788B2 (en) Semiconductor laser device
US7664158B2 (en) Two-dimensional photonic crystal surface-emitting laser
JPH0770791B2 (en) Semiconductor laser and manufacturing method thereof
US5274660A (en) Semiconductor device and method of making it
JP3186705B2 (en) Distributed feedback semiconductor laser
JP2001036192A (en) Distribution feedback type semiconductor laser and manufacture thereof
US4775980A (en) Distributed-feedback semiconductor laser device
KR20040054073A (en) self-mode locked multisection semiconductor laser diode
JPH06338659A (en) Laser element
CN112615253B (en) Wavelength tunable semiconductor laser
JP5310533B2 (en) Optical semiconductor device
JPS6322637B2 (en)
US5469459A (en) Laser diode element with excellent intermodulation distortion characteristic
JP3354106B2 (en) Semiconductor laser device and method of manufacturing the same
JPS60128690A (en) Semiconductor light-emitting device
JPS59119783A (en) Semiconductor light emitting device
US5327445A (en) Quantum-well type semiconductor laser device
JP4076145B2 (en) Complex coupled distributed feedback semiconductor laser
US6738404B1 (en) Method for controlling a unipolar semiconductor laser
JPS63166281A (en) Distributed feedback semiconductor laser
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
JPS63185A (en) Semiconductor laser
JPS63150981A (en) Semiconductor laser
JP3765117B2 (en) External cavity semiconductor laser