JPH06310801A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH06310801A
JPH06310801A JP9942193A JP9942193A JPH06310801A JP H06310801 A JPH06310801 A JP H06310801A JP 9942193 A JP9942193 A JP 9942193A JP 9942193 A JP9942193 A JP 9942193A JP H06310801 A JPH06310801 A JP H06310801A
Authority
JP
Japan
Prior art keywords
mode
waveguide
semiconductor laser
diffraction grating
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9942193A
Other languages
Japanese (ja)
Inventor
Takaaki Hirata
隆昭 平田
Masayuki Suehiro
雅幸 末広
Shinji Iio
晋司 飯尾
Machio Dobashi
万知夫 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9942193A priority Critical patent/JPH06310801A/en
Publication of JPH06310801A publication Critical patent/JPH06310801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To increase the amount of optical feedback in a mode selected from among five transverse modes than that in the other modes and to make it possible to oscillate a semiconductor laser only in the selected mode by a method wherein a diffraction grating is provided only on a part, in which the intensity of light in the selected mode becomes the largest one, of an optical waveguide. CONSTITUTION:A lateral refractive index waveguide 31 and a diffraction grating 32 for optical feedback are formed by etching a guide layer 13. When the width of the optical waveguide 31, the equivalent refractive index of the waveguide 31 and a difference between the lateral refractive indexes of the waveguide 31 are respectively assumed 10mum, 3.3 and 0.005, five transverse modes ranging from 0 order to a fourth order result in existing in this waveguide. In the case where a semiconductor laser is selectively oscillated in the O-order mode, a light intensity distribution in the O-order mode becomes the largest in the center part of the waveguide. As a result, the grating 32 has only to be formed in the center part of the waveguide. Thereby, the laser can be oscillated only in a mode selected from among the modes and a single-mode semiconductor laser using a wider multimode optical waveguide can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザに関し、
特に高出力単一モード半導体レーザに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser,
In particular, it relates to a high power single mode semiconductor laser.

【0002】[0002]

【従来の技術】半導体レーザを高出力化する場合、次の
2つの問題が生じる。 素子端面の光密度の上昇により端面破壊が起こる。 素子内部の光密度と電流密度の上昇により素子寿命が
短くなる。
2. Description of the Related Art The following two problems arise when increasing the output of a semiconductor laser. The end face destruction occurs due to the increase in the light density of the end face of the device. The life of the device is shortened due to the increase of light density and current density inside the device.

【0003】これらの問題を解決するために、発光領域
を広くし、光密度と電流密度を低減すればよく、実際に
光導波路幅の広い高出力半導体レーザが作製されてい
る。
In order to solve these problems, it is sufficient to widen the light emitting region and reduce the light density and the current density, and a high power semiconductor laser having a wide optical waveguide width is actually manufactured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、導波路
幅を広げると、光導波路は多モードとなるため、特に高
出力動作時に半導体レーザは多モード発振となり、単一
モード発振が要求される場合の問題となる。
However, when the waveguide width is widened, the optical waveguide becomes multimode, so that the semiconductor laser oscillates in multimode especially during high-power operation, and when single mode oscillation is required. It becomes a problem.

【0005】本発明は、上記従来技術の課題を踏まえて
成されたものであり、発振に必要な利得を各モードで変
えることにより、導波路幅を広げた多モード光導波路を
用いた半導体レーザにおいても、単一モード発振するよ
うにして、高出力な単一モード半導体レーザを提供する
ことを目的としたものである。
The present invention has been made in view of the above problems of the prior art, and a semiconductor laser using a multimode optical waveguide in which the waveguide width is widened by changing the gain required for oscillation in each mode. Also in the above, it is an object to provide a high output single mode semiconductor laser by performing single mode oscillation.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、横方向に屈折率を変化させた多モー
ドの光導波路を持ち、かつ回折格子による光帰還を利用
した半導体レーザにおいて、選択したモードの光強度が
最大となる部分にのみ前記回折格子を設けることによ
り、前記選択したモードの光帰還量を他のモードより大
きくし、前記選択したモードでのみ発振するようにした
ことを特徴とする。
The structure of the present invention for solving the above-mentioned problems is a semiconductor laser having a multimode optical waveguide whose refractive index is changed in the lateral direction and utilizing optical feedback by a diffraction grating. In the above, by providing the diffraction grating only in a portion where the light intensity of the selected mode is maximum, the amount of optical feedback of the selected mode is made larger than that of the other modes, and oscillation is performed only in the selected mode. It is characterized by

【0007】[0007]

【作用】本発明によれば、導波路幅の広い多モードの光
導波路を用いた半導体レーザにおいても、選択したモー
ドの光強度が最大となる部分にのみ回折格子を設けるこ
とにより、選択したモードでのみ発振させることができ
る。
According to the present invention, even in a semiconductor laser using a multimode optical waveguide having a wide waveguide width, by providing a diffraction grating only in a portion where the light intensity of the selected mode is maximum, Can only be oscillated by.

【0008】[0008]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の半導体レーザの一実施例であり、単一量子
井戸分布帰還型レーザを例にした半導体層構造を示す斜
視断面構成図である。図1において、半導体層構造は、
上側から、 11:p型GaAsキャップ層[0.3μm] 12:p型Al0.6 Ga0.4 Asクラッド層[1.5μ
m] 13:p型Al0.3 Ga0.7 Asガイド層[30nm] 14:p型Al0.6 Ga0.4 Asキャリアブロック層
[20nm] 15:アンドープAlX Ga1-X As(X=0.6−
0.3)GRIN(gradedindex)層[150nm] 16:アンドープGaAs量子井戸層[10nm] 17:アンドープAlX Ga1-X As(X=0.3−
0.6)GRIN層[150nm] 18:n型Al0.6 Ga0.4 Asクラッド層[1.5μ
m] 19:n型GaAsバッファー層[0.5μm] 20:n型GaAs基板 である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a perspective sectional configuration view showing a semiconductor layer structure, which is an example of a semiconductor laser of the present invention and is a single quantum well distributed feedback laser. In FIG. 1, the semiconductor layer structure is
From the upper side, 11: p-type GaAs cap layer [0.3 μm] 12: p-type Al 0.6 Ga 0.4 As clad layer [1.5 μ
m] 13: p-type Al 0.3 Ga 0.7 As guide layer [30 nm] 14: p-type Al 0.6 Ga 0.4 As carrier block layer [20 nm] 15: undoped Al X Ga 1-X As (X = 0.6-
0.3) GRIN (graded index) layer [150 nm] 16: undoped GaAs quantum well layer [10 nm] 17: undoped Al X Ga 1-X As (X = 0.3-)
0.6) GRIN layer [150 nm] 18: n-type Al 0.6 Ga 0.4 As clad layer [1.5 μ
m] 19: n-type GaAs buffer layer [0.5 μm] 20: n-type GaAs substrate.

【0009】また、図1において、21:SiO2 と2
2:リッジ構造は電流注入領域を制限するために設けら
れている。
Further, in FIG. 1, 21: SiO 2 and 2
2: The ridge structure is provided to limit the current injection region.

【0010】次に、図2は図1のガイド層13のエッチ
ング形状を示している。図2において、横方向の屈折率
導波路31と光帰還用の回折格子32は、ガイド層13
をエッチングすることにより形成される。
Next, FIG. 2 shows an etching shape of the guide layer 13 of FIG. In FIG. 2, the refractive index waveguide 31 in the lateral direction and the diffraction grating 32 for optical feedback are shown in FIG.
Is formed by etching.

【0011】このような構成において、光導波路31の
幅を10μm、等価屈折率を3.3、横方向屈折率差を
0.005とすると、この導波路には、0次から4次ま
での5つの横モードが存在することになる。これらのモ
ードの光強度分布を図3に示す。0次モードを選択的に
発振させる場合、図3(イ)に示す0次モードの光強度
分布が導波路中央部で最大となることから、図2に示す
ように、導波路中央部に回折格子を形成すればよい。こ
こで、中央部に形成する回折格子の幅を4μmとした場
合の各モードの回折格子の結合係数の比を表1に示す。
In such a structure, assuming that the width of the optical waveguide 31 is 10 μm, the equivalent refractive index is 3.3, and the lateral refractive index difference is 0.005, this waveguide has 0th to 4th order. There will be five transverse modes. The light intensity distribution of these modes is shown in FIG. When the 0th-order mode is selectively oscillated, the light intensity distribution of the 0th-order mode shown in FIG. 3 (a) becomes maximum in the central part of the waveguide, so that as shown in FIG. A lattice may be formed. Here, Table 1 shows the ratio of the coupling coefficient of the diffraction grating of each mode when the width of the diffraction grating formed in the central portion is 4 μm.

【0012】 [0012]

【0013】表1に示すように、図2の構造により、0
次モードの結合係数を最大とすることができる。これに
より、0次モードの光帰還量が他のモードより大きくな
り、0次モードの発振閾値利得が下がり、0次モードで
単一モード発振することになる。
As shown in Table 1, the structure of FIG.
The coupling coefficient of the next mode can be maximized. As a result, the amount of optical feedback in the 0th-order mode becomes larger than that in the other modes, the oscillation threshold gain in the 0th-order mode decreases, and single-mode oscillation occurs in the 0th-order mode.

【0014】次に、0次モード以外を選択する場合も同
様に、各モードの光強度分布が最大となる部分に回折格
子を形成する。例えば、1次モードを選択する場合、図
3(ロ)に示す1次モードの光強度分布が最大となる2
つの部分に回折格子を形成すればよい。各回折格子幅を
2μm(2箇所あるので全回折格子幅は4μmとなる)
とした場合の各モードの回折格子の結合係数の比を表2
に示す。
Next, when a mode other than the 0th-order mode is selected, similarly, a diffraction grating is formed in a portion where the light intensity distribution of each mode is maximum. For example, when the primary mode is selected, the light intensity distribution in the primary mode shown in FIG.
A diffraction grating may be formed in one part. Each diffraction grating width is 2 μm (the total diffraction grating width is 4 μm because there are two locations)
Table 2 shows the ratio of the coupling coefficient of the diffraction grating for each mode when
Shown in.

【0015】 [0015]

【0016】表2に示すように、1次モードの結合係数
を最大とすることができる。これにより、1次モードの
光帰還量が他のモードより大きくなり、1次モードの発
振閾値利得が下がり、1次モードで単一モード発振する
ことになる。
As shown in Table 2, the coupling coefficient of the first mode can be maximized. As a result, the amount of optical feedback in the first-order mode becomes larger than that in the other modes, the oscillation threshold gain of the first-order mode decreases, and single-mode oscillation occurs in the first-order mode.

【0017】同様に、2次モード〜4次モードでも単一
モード発振可能となる。
Similarly, single mode oscillation is possible even in the second to fourth modes.

【0018】なお、上記実施例においては、分布帰還型
レーザについて説明したが、この他にも分布反射型レー
ザなどの回折格子による光帰還を用いる半導体レーザで
あれば同様にできる。
Although the distributed feedback laser has been described in the above embodiment, other semiconductor lasers using optical feedback by a diffraction grating such as a distributed reflection laser can be used.

【0019】従来より、半導体レーザを高出力化する場
合、光密度と電流密度を低減するため、光導波路幅を広
げるが、この場合、多モードの光導波路となるため、単
一モード発振が得難くなる。そこで、単一モード発振が
必要な場合には、導波路幅を広くできず、これが最大出
力を制限している。
Conventionally, in the case of increasing the output of a semiconductor laser, the optical waveguide width is widened in order to reduce the light density and the current density. In this case, however, a single mode oscillation is obtained because the optical waveguide becomes a multimode optical waveguide. It will be difficult. Therefore, when single mode oscillation is required, the waveguide width cannot be widened, which limits the maximum output.

【0020】本発明では、導波路幅の広い多モードの光
導波路を用いた半導体レーザにおいても、選択したモー
ドの光強度が最大となる部分にのみ回折格子を設けるこ
とにより、選択したモードでのみ発振させることができ
る。したがって、より広い幅の多モード光導波路を用い
た単一モード半導体レーザを実現でき、特に単一モード
半導体レーザの高出力化の効果を期待できる。
According to the present invention, even in a semiconductor laser using a multimode optical waveguide having a wide waveguide width, by providing a diffraction grating only in a portion where the light intensity of the selected mode is maximum, only in the selected mode. Can be oscillated. Therefore, a single-mode semiconductor laser using a wider multimode optical waveguide can be realized, and an effect of increasing the output of the single-mode semiconductor laser can be particularly expected.

【0021】[0021]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、導波路幅の広い多モードの光導
波路を用いた半導体レーザにおいても、選択したモード
の光強度が最大となる部分にのみ回折格子を設けること
により、選択したモードでのみ発振させることができる
半導体レーザを実現できる。
As described above in detail with reference to the embodiments, according to the present invention, even in a semiconductor laser using a multimode optical waveguide having a wide waveguide width, the light intensity of the selected mode is maximum. By providing the diffraction grating only in the portion to be formed, a semiconductor laser capable of oscillating only in the selected mode can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの一実施例であり、単一
量子井戸分布帰還型レーザを例にした半導体層構造を示
す斜視断面構成図である。
FIG. 1 is a perspective cross-sectional configuration diagram showing a semiconductor layer structure, which is an example of a semiconductor laser of the present invention and exemplifies a single quantum well distributed feedback laser.

【図2】図1のガイド層のエッチング形状を示す図であ
る。
FIG. 2 is a diagram showing an etching shape of a guide layer of FIG.

【図3】各横モードの光強度分布を示す図である。FIG. 3 is a diagram showing a light intensity distribution of each transverse mode.

【符号の説明】[Explanation of symbols]

13 ガイド層 31 屈折率導波路 32 回折格子 13 Guide layer 31 Refractive index waveguide 32 Diffraction grating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土橋 万知夫 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Dobashi 2-9-32 Nakamachi, Musashino-shi, Tokyo Yokogawa Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 横方向に屈折率を変化させた多モードの
光導波路を持ち、かつ回折格子による光帰還を利用した
半導体レーザにおいて、 選択したモードの光強度が最大となる部分にのみ前記回
折格子を設けることにより、前記選択したモードの光帰
還量を他のモードより大きくし、前記選択したモードで
のみ発振するようにしたことを特徴とする半導体レー
ザ。
1. In a semiconductor laser having a multimode optical waveguide whose refractive index is changed in the lateral direction and utilizing optical feedback by a diffraction grating, the diffraction is performed only in a portion where the light intensity of the selected mode is maximum. A semiconductor laser characterized in that by providing a grating, the amount of optical feedback in the selected mode is made larger than that in other modes, and oscillation is performed only in the selected mode.
JP9942193A 1993-04-26 1993-04-26 Semiconductor laser Pending JPH06310801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9942193A JPH06310801A (en) 1993-04-26 1993-04-26 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9942193A JPH06310801A (en) 1993-04-26 1993-04-26 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH06310801A true JPH06310801A (en) 1994-11-04

Family

ID=14247009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9942193A Pending JPH06310801A (en) 1993-04-26 1993-04-26 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH06310801A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158398A (en) * 2000-11-20 2002-05-31 Mitsubishi Electric Corp Distribution feedback type laser and manufacturing method thereof
JP2002324948A (en) * 2001-04-25 2002-11-08 Furukawa Electric Co Ltd:The Semiconductor laser and laser module
WO2005060058A1 (en) * 2003-12-18 2005-06-30 Nec Corporation Semiconductor laser and its manufacturing method
JP2005183964A (en) * 2003-12-17 2005-07-07 Palo Alto Research Center Inc Iii-v semiconductor laser diode
JP2006120923A (en) * 2004-10-22 2006-05-11 Fuji Photo Film Co Ltd Semiconductor laser device
JP2011135008A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Optical semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158398A (en) * 2000-11-20 2002-05-31 Mitsubishi Electric Corp Distribution feedback type laser and manufacturing method thereof
JP2002324948A (en) * 2001-04-25 2002-11-08 Furukawa Electric Co Ltd:The Semiconductor laser and laser module
JP2005183964A (en) * 2003-12-17 2005-07-07 Palo Alto Research Center Inc Iii-v semiconductor laser diode
WO2005060058A1 (en) * 2003-12-18 2005-06-30 Nec Corporation Semiconductor laser and its manufacturing method
JP2006120923A (en) * 2004-10-22 2006-05-11 Fuji Photo Film Co Ltd Semiconductor laser device
JP2011135008A (en) * 2009-12-25 2011-07-07 Fujitsu Ltd Optical semiconductor device

Similar Documents

Publication Publication Date Title
US5398256A (en) Interferometric ring lasers and optical devices
US7787511B2 (en) Array of surface-emitting laser diodes having reduced device resistance and capable of performing high output operation and method of fabricating the surface-emitting laser diode
US5088099A (en) Apparatus comprising a laser adapted for emission of single mode radiation having low transverse divergence
US5208183A (en) Method of making a semiconductor laser
US5272711A (en) High-power semiconductor laser diode
US5289484A (en) Laser diode
GB2080609A (en) Tapered stripe semiconductor laser
JP3244115B2 (en) Semiconductor laser
US5260959A (en) Narrow beam divergence laser diode
EP0690533B1 (en) Semiconductor laser having integrated waveguiding lens
US5805627A (en) Laser diode and optical communications system using such laser diode
US5185754A (en) Spectrally stable laser diode with internal reflector
JPH06310801A (en) Semiconductor laser
JPS59119783A (en) Semiconductor light emitting device
JPH0248151B2 (en)
JP2004296560A (en) Method for manufacturing semiconductor laser, and method for manufacturing integrated optical circuit
EP0332723A1 (en) High-power semiconductor diode laser
JPH0147031B2 (en)
JP2002368335A (en) Semiconductor laser element, its manufacturing method, semiconductor laser array, optical communication system, optical interconnection system, optical pickup system, and electrophotographic system
JPS5858784A (en) Distribution feedback type semiconductor laser
KR980012744A (en) Laser diode
JP2728401B2 (en) Semiconductor laser
JPS62249496A (en) Semiconductor laser device
JP2002223038A (en) Semiconductor laser device
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor