JPS6326356A - Formation of film - Google Patents

Formation of film

Info

Publication number
JPS6326356A
JPS6326356A JP16946386A JP16946386A JPS6326356A JP S6326356 A JPS6326356 A JP S6326356A JP 16946386 A JP16946386 A JP 16946386A JP 16946386 A JP16946386 A JP 16946386A JP S6326356 A JPS6326356 A JP S6326356A
Authority
JP
Japan
Prior art keywords
substrate
metal
ionized
film
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16946386A
Other languages
Japanese (ja)
Inventor
Munenori Kato
加藤 宗則
Hitoshi Kunugi
斉 功刀
Yoshihisa Ikoma
生駒 良久
Masato Matsui
松井 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP16946386A priority Critical patent/JPS6326356A/en
Publication of JPS6326356A publication Critical patent/JPS6326356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the density and adhesion of a film formed on a substrate and to prolong the service life of the resulting tool by placing a prescribed electrically conductive member between an electrode for electric discharge and the substrate and by sticking an ionized metal and an ionized gas to the substrate to form a film of a compound of them. CONSTITUTION:An electrically conductive member 8 having voids through which ions can pass and kept at positive potential is placed between an electrode 5 for electric discharge and a substrate 3 in a reaction furnace 1. Electric discharge is caused between the electrode 5 and a metal 6 in a crucible 4 to generate plasma of a reactive gas introduced into the furnace 1. The metal 6 evaporated by irradiation with electron beams 7 is passed through the plasma and stuck to the substrate 3 together with the reactive gas ionized by the discharge. A film of a compound produced by the reaction of ions of the metal with ions of the reactive gas is formed on the surface of the substrate 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、放電用電極の放電によって反応性ガスのプ
ラズマを形成させ、そのプラズマ中に、電子ビームで蒸
発させた金属を通過させることによってイオン化した金
属と反応ガスイオンとを基体表面に付着させて、これら
のイオン相互の反応によって生成した化合物の被膜でそ
の基体表面を被覆する、所謂活性化反応蒸着法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention involves forming a reactive gas plasma by discharging a discharge electrode, and passing a metal vaporized by an electron beam through the plasma. The present invention relates to a so-called activated reaction vapor deposition method in which ionized metal and reactive gas ions are attached to the surface of a substrate, and the surface of the substrate is coated with a film of a compound produced by the mutual reaction of these ions.

〔従来の技術〕[Conventional technology]

従来、例えば、切削工具、耐摩耗工具なとの超硬工具を
製造するに当って基体表面に炭化チタン、窒化チタン、
炭窒化チタン等の硬質破膜を析出形成させるのに、上記
の活性化反応蒸着法が利用されており、それには、例え
ば窒fヒチクン被膜の析出形成を例によって説明すると
、第2図に概略説明図で示されているように、反応炉】
内に窒素ガス2を導入して反応炉1内の雰囲気圧力を]
O−2〜1− o−’l Torrに絹持するとともに
、反応炉1内に対向配置した基体3と水冷銅ルツボ4と
の間に配置された放電用電極5に数十ボルトの直流電圧
を印加して、前記ルツボ4内に保持された金属チタン6
と放電用電極5との間に放電を起して、窒素ガス2のプ
ラズマを前記放電用電極5とルツボ4との間に形成させ
る一方、前記全類チタン6に電子ビーム7を照射してこ
れを溶解蒸発させ、この蒸発したチタンを前記プラズマ
に通過させてイオン化した後、0〜】500ボルトのマ
イナス電位に保った前記基体3に伺着させるとともに、
前記放電によってイオン(ヒした窒素も前記基体3に付
着させ、これらのチタンイオンと窒素イオンとの反応に
よって生成した窒fヒチタン被膜を基体3の表面に析出
形成させている。
Conventionally, when manufacturing carbide tools such as cutting tools and wear-resistant tools, titanium carbide, titanium nitride,
The activation reaction vapor deposition method described above is used to deposit and form a hard fractured film of titanium carbonitride, etc. For example, to explain the formation of a nitride film by way of example, the method shown schematically in Fig. 2 is as follows. As shown in the illustration, the reactor]
Introduce nitrogen gas 2 into the reactor 1 to increase the atmospheric pressure inside the reactor 1]
A DC voltage of several tens of volts was applied to the discharge electrode 5 placed between the base 3 and the water-cooled copper crucible 4, which were placed facing each other in the reactor 1. is applied to the metal titanium 6 held in the crucible 4.
and the discharge electrode 5 to generate a plasma of nitrogen gas 2 between the discharge electrode 5 and the crucible 4, while irradiating the all-class titanium 6 with an electron beam 7. This is melted and evaporated, and the evaporated titanium is passed through the plasma to be ionized, and then deposited on the substrate 3 maintained at a negative potential of 0 to 500 volts, and
Ions (nitrogen atomized) are also attached to the substrate 3 by the discharge, and a nitrogen-rich titanium film produced by the reaction between these titanium ions and nitrogen ions is deposited and formed on the surface of the substrate 3.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような被膜形成方法においては、電子ビームの照射
によって溶解蒸発した金属が反応ガスのプラズマ中を通
過する際に、それがすべてイオン化したものばかりとは
ならないで、その中には、活性化した金属粒子や未だ原
子状態のままの粒子も生じ、これらのイオン化していな
い金属粒子も基体に蒸着して、これらの粒子の混った化
合物被膜が基体表面に形成するが、このような被膜は基
体に対する密着性に劣り、かつ膜質が密でないという欠
点を有し、したがって、例えば前記のような硬質被膜で
被覆された超硬工具においては耐摩耗性が劣り、工具寿
命が短いという問題があった。
In this film formation method, when the metal melted and vaporized by electron beam irradiation passes through the plasma of the reaction gas, not all of it is ionized, but some of it is activated. Metal particles and particles that are still in an atomic state are also generated, and these non-ionized metal particles are also deposited on the substrate, and a compound film containing these particles is formed on the substrate surface. It has the drawbacks of poor adhesion to the substrate and poor film quality, and therefore, for example, carbide tools coated with the above-mentioned hard coating have poor wear resistance and short tool life. Ta.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者等は、このような問題を解決するため
に種々研究を重ねた結果、 (1)放電用電極と基体との間に、イオンの通過を許容
する多数の貫通した空隙を有する導電性部材、例えばス
テンレス鋼製金網をプラス電位に保った状態で介在させ
ると、電子ビームで蒸発した金属のうち、活性fヒした
金属粒子および原子状態のままの金属粒子が前記導電性
部材に選択的に付着して、専らイオン化した金属だけが
基体に付着すること。
Therefore, as a result of various studies to solve these problems, the inventors of the present invention found that (1) the discharge electrode and the substrate have a large number of penetrating gaps that allow the passage of ions; When a conductive member, such as a stainless steel wire mesh, is interposed while maintaining a positive potential, activated metal particles and metal particles in an atomic state among the metals evaporated by the electron beam are transferred to the conductive member. Selective adhesion, with only ionized metals adhering to the substrate.

(2)実質上イメンfヒした粒子だけで形成された化合
物被膜(以下、蒸着膜ともいう)は、一般に基体に対す
る密着性にすぐれ、かつ膜質が密となり、そのため、例
えば、このような性質を有する硬質被膜で被覆された超
硬工具においては、耐摩耗性が向上すること、 を見出した。
(2) A compound film (hereinafter also referred to as a vapor deposited film) that is formed only from particles that have been substantially heated up generally has excellent adhesion to a substrate and is dense in film quality. We have found that wear resistance is improved in carbide tools coated with a hard coating having the following properties.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基づいて発明されたもので、活
性fヒ反応蒸着法において、基体表面に析出形成される
蒸着膜の密着性と密度を高めることを目的とし、 反応炉内に対向配置した基体とるつぼとの間に配置され
た放電用電極と、前記るつぼ内に保持された金属との間
に放電を起して、前記反応炉内に導入された反応ガスの
プラズマを形成させる一方、前記金属に電子ビームを照
射してこの金属を溶解蒸発させ、この蒸発した金櫃を前
記プラズマ中に通過させてイオン化したのち前記基体に
付着させるとともに、前記放電によってイオン化した反
応ガスも前記基体に伺着させて、これらの金属イオンと
反応ガスイオンとの反応によって生成した化合物の破膜
を前記基体表面に形成させる方法において、前記イオン
の通過を許容する多数の貫通した空隙を有し、かつプラ
ス電位に保たれた導電性部材を前記放電用電極と基体と
の間に介在させ、この導電性部材に、イオン(ヒしてい
ない蒸発金属を付着させて、これを反応系外へ導くこと
を特徴とするものである。
This invention was invented based on the above knowledge, and aims to improve the adhesion and density of a vapor deposited film deposited on the surface of a substrate in the active f-hybrid reaction vapor deposition method. generating a discharge between a discharge electrode disposed between the base body and the crucible and the metal held in the crucible to form a plasma of the reaction gas introduced into the reactor; , the metal is irradiated with an electron beam to melt and evaporate the metal, and the evaporated metal is passed through the plasma to be ionized and then deposited on the substrate, and the reactive gas ionized by the discharge is also ionized on the substrate. In the method of forming a broken membrane of a compound produced by the reaction of these metal ions and reactive gas ions on the surface of the substrate, the method comprises: having a large number of penetrating voids that allow the passage of the ions; A conductive member maintained at a positive potential is interposed between the discharge electrode and the substrate, and ions (non-heated evaporated metal) are attached to the conductive member, and the ions are guided out of the reaction system. It is characterized by this.

〔発明の詳細な説明〕[Detailed description of the invention]

この発明の方法は、第1図に示されるように、放電用電
極5と基体3との間に、イオン化した粒子が通過できる
多数の貫通した空隙を有し、かつプラス電位に保たれた
導電性部材8を介在させたところに特徴を有し、このよ
うな導電性部材8は、電子ビーム7の照射を受けて蒸発
し、ついでプラズマ中を通過した金属のうち、活性化し
た粒子と6一 まだ原子状態のままの粒子とを選択的に付着さ・ジノ反
応系外に導くので、イオン化した粒子のうち、大きい運
動エネルギーをもつものだけが導電性部材8の空隙を通
過して基体3の表面に付着する。
As shown in FIG. 1, the method of this invention has a large number of penetrating gaps between the discharge electrode 5 and the base 3 through which ionized particles can pass, and a conductive conductor maintained at a positive potential. The conductive member 8 is characterized by the interposition of a conductive member 8, which is evaporated by the irradiation of the electron beam 7, and is then combined with the activated particles of the metal that passed through the plasma. Since the particles that are still in the atomic state are selectively attached and guided out of the dino reaction system, only those with large kinetic energy among the ionized particles pass through the gap in the conductive member 8 and form the substrate 3. adheres to the surface of

この導電性部材どしては、イオンが通過できる多数の貫
通した空隙を有し、かつ導電性材料からつくられたもの
ならばとのような部材でも利用できるが、通常ヌテンレ
ヌ鋼や軟鋼製の金網または格子が好ましく使用され、そ
してこの導電性部材は1個と限らず複数個使用すること
もできる。
This conductive member can be any material that has a large number of holes through which ions can pass and is made of a conductive material, but it is usually made of steel or mild steel. A wire mesh or grid is preferably used, and not only one but more than one electrically conductive member can be used.

このような金網や格子の空隙が余り大き過ぎると、活性
化した金属粒子および原子状態の金属粒子が十分に除去
されず、一方その空隙が細か過ぎると、十分イオン化し
た粒子でもプラス電位により反発されて、イオン化した
粒子の通過が阻害されるようになるところから、この空
隙の大きさは一般に10〜50−であるのが好ましく、
また金網や格子を構成する線状および帯状の素材はなる
べく細い方が好ましいが、機械的な強度を考慮すると、
一般にその太さまたは巾および厚さは1〜5mであるの
が好都合である。
If the voids in such a wire mesh or lattice are too large, activated metal particles and metal particles in the atomic state will not be removed sufficiently, while if the voids are too small, even sufficiently ionized particles will be repelled by the positive potential. Since the passage of ionized particles is obstructed, the size of the void is generally preferably 10 to 50.
In addition, it is preferable that the linear and band-shaped materials that make up the wire mesh or lattice be as thin as possible, but considering mechanical strength,
It is generally advantageous for the width or width and thickness to be between 1 and 5 meters.

この導電性部材によってイオンのみを抽出するには、通
常それを直流電源によって1〜30ボルトのプラス電位
に維持する。
To extract only ions by this conductive member, it is typically maintained at a positive potential of 1 to 30 volts by a DC power source.

その他の部側、例えば放電用電極としては、従来使用さ
れているモリブデン電極等の電極を利用することができ
、またこの発明を実施するに当っては、従来と同様な条
件、例えば窒化チタン被膜の蒸着を夙に挙げると、基体
電位二〇〜−1500ボルト、放電用電極電位:■数十
ボルト、炉内圧カニ 10−2〜10−4Torr、炉
内温度: 300−800°Cを採用するのが好都合で
ある。
For other parts, for example, as discharge electrodes, conventionally used electrodes such as molybdenum electrodes can be used, and in carrying out this invention, the same conditions as conventional ones, such as titanium nitride coating For vapor deposition, a substrate potential of 20 to -1500 volts, a discharge electrode potential of several tens of volts, a furnace pressure of 10-2 to 10-4 Torr, and a furnace temperature of 300 to 800°C are used. It is convenient.

この発明を、例えば、表面が硬質被膜で被覆された超硬
工具を製a <るのに利用する場合は、その基体として
WCC超超硬合金ような超硬合金を使用し、金属として
Ti 、Zr、Hf 、V、Ta、Si等の金属、そし
て反応ガスとして窒素、アセチレン、メタン、プロパン
、アンモニア、酸素、−酸fヒ炭素などを使用すること
によって窒イヒチタン、炭(ヒチタン、炭窒化チタン、
炭窒酸化チタン、炭イヒジルコニウム等の硬質被膜1層
または複数層を、随意に金属成分を介して、基体表面に
析出形成させることができる。
For example, when this invention is used to manufacture a cemented carbide tool whose surface is coated with a hard coating, a cemented carbide such as WCC cemented carbide is used as the base material, and Ti, Ti, By using metals such as Zr, Hf, V, Ta, Si, etc., and nitrogen, acetylene, methane, propane, ammonia, oxygen, -acid fcarbon, etc. as reaction gases, titanium nitride, charcoal (titanium, titanium carbonitride) can be produced. ,
One or more hard coatings of titanium carbonitride oxide, zirconium carbonate, etc. can be deposited on the surface of the substrate, optionally via a metal component.

〔実施例〕〔Example〕

ついで、この発明を、硬質被膜で被覆された切削工具の
製造を例にあげて、比較例と対比しながら説明する。
Next, the present invention will be explained by taking as an example the production of a cutting tool coated with a hard coating and comparing it with a comparative example.

実施例1 第1図に示される装置において、外径:1300端を有
する円筒状反応炉1、容畦:100A’を有する水冷銅
ルツボ4、寸法: 20 mm X 150 wn X
3咽を有する放電用電極5、および網目寸法:15mm
X15+nmと針金径:2喘を有し、かつ寸法:150
+mnX150mmのステンレス製金網8を備えた蒸着
装置を利用し、また基体として5KH51製のSNP 
432型チツプを使用し、さらに反応条件として炉内温
度:500℃、炉内圧力=5×1O−4Torr、窒素
雰囲気および基体電位: Q 500ボルト、放電用電
極電位:■50ボルト、金網電位:■25ボルトを採用
して、前記チップ表面に=9− 厚さ:2/Jmの窒化チタン抜嘆を蒸着させ、また比較
のため、金網8を備えていないことだけが異なる第2図
の装置を使用し、上記と同様な方法および反応条件下で
、上記と同じチップに同じ厚さの窒化チタン被膜を蒸着
させることによって、それぞれ本発明被覆チップ1およ
び比較被覆チップ1を製造した。
Example 1 In the apparatus shown in FIG. 1, a cylindrical reactor 1 having an outer diameter of 1300 mm, a water-cooled copper crucible 4 having a ridge of 100 A', and dimensions: 20 mm x 150 wn x
Discharge electrode 5 with three throats and mesh size: 15mm
X15+nm, wire diameter: 2 mm, and dimension: 150
A vapor deposition apparatus equipped with a stainless steel wire mesh 8 of +mn×150 mm was used, and SNP made of 5KH51 was used as a substrate
A 432 type chip was used, and the reaction conditions were: furnace temperature: 500°C, furnace pressure = 5 x 1O-4 Torr, nitrogen atmosphere and substrate potential: Q 500 volts, discharge electrode potential: ■ 50 volts, wire mesh potential: ■ Adopts 25 volts and deposits titanium nitride with a thickness of 9-2/Jm on the surface of the chip, and for comparison, the device shown in FIG. 2 is different only in that it does not include the wire mesh 8. Inventive coated chip 1 and comparative coated chip 1 were prepared, respectively, by depositing the same thickness of titanium nitride coating on the same chips as described above using a method and reaction conditions similar to those described above.

ついで、これらの被覆チップの耐摩耗性を調べるために
Next, to examine the wear resistance of these coated chips.

被削材:SN0M8(JIS)(硬さ: HRC250
)の丸棒、 切削速度: 60 m / m?、 切込み:185扉、 送り二0.1祁/rev、、 の条件での連続切削試験を実施し、逃げ面の摩耗幅がい
ずれも0.3 ranに達するまでの切削時間、すなわ
ち寿命を測定したところ、下記の結果が得られた。
Work material: SN0M8 (JIS) (hardness: HRC250
) round bar, cutting speed: 60 m/m? A continuous cutting test was conducted under the following conditions: depth of cut: 185 doors, feed rate: 0.1 k/rev, , and the cutting time until the flank wear width reached 0.3 ran, that is, the life was measured. As a result, the following results were obtained.

寿  命(mm ) 正面逃げ面 外周逃げ面 一1〇− 本発明被覆チップ124.0   500比較被覆チツ
プ1   30   100実施例2 反応ガスを窒素とアセチレンとの混合ガスとし、そして
基体としてJISM20相当の超硬合金でつくられたJ
IS  5NP432形状のチップを使用し、反応条件
として炉内圧fJ : 5 X 10=4Torr、炉
内温度:600°C1基板電位=0500■、放電用電
極電位二〇50Vおよび金網電位:■20■を採用した
以外は実施例1と同様な方法によって、いずれも厚さ=
2pmの炭窒rヒチタン被膜を有する本発明被覆チップ
2および比較被覆チップ2をそれぞれ製造した。
Life (mm) Front flank Outer flank - 10 - Invention coated chip 124.0 500 Comparative coated chip 1 30 100 Example 2 The reactant gas was a mixed gas of nitrogen and acetylene, and the substrate was a JISM 20 equivalent. J made of cemented carbide
A chip in the form of IS 5NP432 was used, and the reaction conditions were: furnace pressure fJ: 5 x 10 = 4 Torr, furnace temperature: 600°C, substrate potential = 0500■, discharge electrode potential 2050V, and wire mesh potential: 20■. Thickness =
Inventive coated chips 2 and comparative coated chips 2 were each produced having a 2 pm carbonitride titanium coating.

ついで、これらの被覆チップの耐摩耗性を稠べるために
、いずれも、 被削材:ニッケルクロムモリブデン鋼、JISSNCM
439 (硬さ:HB250)の丸棒、 切削速度: ] 30 rn / min、切込み:]
5祁、 送り:0.32伽/rev、、 の条件での連続切削試験を実施し、切刃の逃げ面摩耗幅
が0.3 mmに達するまでの切削時間、すなわち寿命
を測定したところ、下記の結果が得られた。
Next, in order to examine the wear resistance of these coated chips, the following materials were used: Work material: Nickel chromium molybdenum steel, JISSNCM
439 (hardness: HB250) round bar, cutting speed: ] 30 rn/min, depth of cut:]
Continuous cutting tests were carried out under the conditions of 5mm, feed: 0.32g/rev, and the cutting time until the flank wear width of the cutting edge reached 0.3mm, that is, the life, was measured. The following results were obtained.

逃げ面摩耗寿命(龍) 本発明被覆チップ2    20゜ 比較被覆チップ2       30 〔発明の効果〕 実施例において得られた結果から明らがなように、この
発明によって硬質被膜が被覆された切削チップは、従来
方法によって被覆された切削チップと戦べて寿命が格段
に長く、これは、この発明が密着性と膜の密度が著しく
高まったために耐摩耗性が著しく向上した蒸着膜を形成
できることを示している。
Flank wear life (Dragon) Invention coated tip 2 20° Comparative coated tip 2 30 [Effects of the invention] As is clear from the results obtained in the examples, the cutting tip coated with the hard coating according to the present invention It can compete with cutting chips coated by conventional methods and has a much longer lifespan, which indicates that the present invention can form a deposited film with significantly improved wear resistance due to significantly increased adhesion and film density. It shows.

以上述べた説明から明らかなように、この発明によると
、密着性にすぐれ、かっ膜質が密となった化合物被膜を
基体表面に析出形成できるから、耐久性にすぐれた蒸着
膜を形成することができ、したがって、例えば硬質被膜
で被膜された超硬工具においては、それの耐摩耗性を向
上させ2工具寿命を延長することができる。
As is clear from the above explanation, according to the present invention, a compound film with excellent adhesion and a dense film quality can be deposited and formed on the surface of a substrate, making it possible to form a deposited film with excellent durability. Therefore, for example, in a carbide tool coated with a hard coating, its wear resistance can be improved and the tool life can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ本発明方法および従来
方法を遂行するために使用される装置の概要を示す説明
図である。 図において]・・・反応炉、      
2・・・反応ガス、3 ・基体、       4・・
・ルツボ、5・・・放電用電極、    6・・・金属
、7・・・電子ビーム、    8・・・金網。
FIGS. 1 and 2 are explanatory diagrams showing an overview of the apparatus used to carry out the method of the present invention and the conventional method, respectively. In the figure]...reactor,
2... Reactive gas, 3 - Substrate, 4...
- Crucible, 5... Electrode for discharge, 6... Metal, 7... Electron beam, 8... Wire mesh.

Claims (1)

【特許請求の範囲】[Claims] 反応炉内に対向配置した基体とるつぼとの間に配置され
た放電用電極と、前記るつぼ内に保持された金属との間
に放電を起して、前記反応炉内に導入された反応ガスの
プラズマを形成させる一方、前記金属に電子ビームを照
射してこの金属を溶解蒸発させ、この蒸発した金属を前
記プラズマ中に通過させてイオン化したのち前記基体に
付着させるとともに、前記放電によつてイオン化した反
応ガスも前記基体に付着させて、これらの金属イオンと
反応ガスイオンとの反応によつて生成した化合物の被膜
を前記基体表面に形成させる方法において、前記イオン
の通過を許容する多数の貫通した空隙を有し、かつプラ
ス電位に保たれた導電性部材を前記放電用電極を基体と
の間に介在させ、この導電性部材に、イオン化していな
い蒸発金属を付着させて、これを反応系外へ導くことを
特徴とする、前記被膜形成方法。
A reaction gas is introduced into the reactor by causing an electric discharge between a discharge electrode placed between a base and a crucible that are arranged to face each other in the reactor, and the metal held in the crucible. While forming a plasma, the metal is irradiated with an electron beam to melt and evaporate the metal, and the evaporated metal is passed through the plasma to be ionized and then deposited on the substrate, and the metal is ionized by the plasma, and the metal is ionized and attached to the substrate by the electric discharge. In a method in which an ionized reactive gas is also attached to the substrate and a film of a compound generated by the reaction between these metal ions and the reactive gas ions is formed on the surface of the substrate, a large number of A conductive member having a through gap and maintained at a positive potential is interposed between the discharge electrode and the base, and non-ionized evaporated metal is adhered to this conductive member. The method for forming a film, characterized in that the film is guided out of the reaction system.
JP16946386A 1986-07-18 1986-07-18 Formation of film Pending JPS6326356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16946386A JPS6326356A (en) 1986-07-18 1986-07-18 Formation of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16946386A JPS6326356A (en) 1986-07-18 1986-07-18 Formation of film

Publications (1)

Publication Number Publication Date
JPS6326356A true JPS6326356A (en) 1988-02-03

Family

ID=15887035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946386A Pending JPS6326356A (en) 1986-07-18 1986-07-18 Formation of film

Country Status (1)

Country Link
JP (1) JPS6326356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226087A (en) * 1989-02-27 1990-09-07 Nec Corp Transmitter/receiver
JPH02226085A (en) * 1989-02-27 1990-09-07 Nec Corp Apparatus for measuring distance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226087A (en) * 1989-02-27 1990-09-07 Nec Corp Transmitter/receiver
JPH02226085A (en) * 1989-02-27 1990-09-07 Nec Corp Apparatus for measuring distance

Similar Documents

Publication Publication Date Title
CN101501813B (en) Process and apparatus for the modification of surfaces
Boxman et al. Principles and applications of vacuum arc coatings
JPS6319590B2 (en)
US20060222850A1 (en) Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
US6495002B1 (en) Method and apparatus for depositing ceramic films by vacuum arc deposition
WO2008145459A1 (en) Vacuum treatment unit and vacuum treatment process
JP5933701B2 (en) Coating removal method for hard carbon layer
CZ2004280A3 (en) Method for producing a nanostructured functional coating and a coating that can be produced according to said method
JP2005305632A (en) Abrasive for precision surface treatment and its manufacturing method
JPH026830B2 (en)
WO2014142190A1 (en) Hard film, hard film covered member, and method for manufacturing hard film and hard film covered member
JP2017524543A (en) Diamond-coated cutting tool and method of manufacturing the same
JP2008223105A (en) Treatment apparatus with the use of progressive plasma, treatment method, and article to be treated
Sein et al. Chemical vapour deposition diamond coating on tungsten carbide dental cutting tools
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
JP4134315B2 (en) Carbon thin film and manufacturing method thereof
JPS6063372A (en) Manufacture of thin boron nitride film of high hardness
JPS6326356A (en) Formation of film
JPH0259862B2 (en)
CA3192752A1 (en) Doped dlc for bipolar plate (bpp)
JPS5918474B2 (en) coated cemented carbide
JPS6134173A (en) Production of high-hardness boron nitride film
JPS5918475B2 (en) coated high speed steel
JPS61104078A (en) Hard coated sintered alloy and its manufacture
JPH0250983B2 (en)