JPS63262466A - Production of electrophotographic sensitive body - Google Patents

Production of electrophotographic sensitive body

Info

Publication number
JPS63262466A
JPS63262466A JP9542087A JP9542087A JPS63262466A JP S63262466 A JPS63262466 A JP S63262466A JP 9542087 A JP9542087 A JP 9542087A JP 9542087 A JP9542087 A JP 9542087A JP S63262466 A JPS63262466 A JP S63262466A
Authority
JP
Japan
Prior art keywords
plasma
support
chamber
electrophotographic photoreceptor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9542087A
Other languages
Japanese (ja)
Inventor
Yasuo Takuma
康夫 詫間
Akira Shimada
昭 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9542087A priority Critical patent/JPS63262466A/en
Publication of JPS63262466A publication Critical patent/JPS63262466A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body by arranging plural plasma generation chambers and moving a cylindrical support in the axial direction so as to form a film having uniform characteristics and a uniform thickness on the support in a shortened time. CONSTITUTION:A prescribed gas is introduced into a plasma generation chamber 1 from the inlet 2 and microwaves are introduced from a microwave oscillator 3. A magnetic field causing electron cyclotron resonance is applied to the chamber 1 from magnets 4. Ions accelerated by the magnetic field are introduced into a film formation chamber 6 through the window 5 and reacted with a prescribed gas introduced from the the inlet 7 to form an amorphous silicon layer on the surface of a cylindrical support 8. At this time, plural such plasma generation chambers 1 are arranged. For example, the wall of the film formation chamber 5 confronting the upper part of the plasma generation chamber 1 is provided with other plasma generation chamber 1. The support 8 is rotated in the circumferential direction and moved back and forth in the axial direction by a rotating lift 9. Thus, plasma is jetted on an extended region of the support 8 and a sensitive body having a film formed on the entire surface of the support 8 with high accuracy in thickness is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真方式のプリンタ、複写機に好適な電子
写真感光体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electrophotographic photoreceptor suitable for electrophotographic printers and copying machines.

〔従来の技術〕[Conventional technology]

従来アモルファスシリコンを主体とする電子写真感光体
の製造方法は特開昭61−232466号に記載のよう
に、真空容器内に設置した単一のプラズマ形成室に所定
のガスを導入し、前記ガスにマイクロ波を印加してプラ
ズマ化し、プラズマに電界或いは磁界を印加して膜形成
室に導き、膜形成室に配置された支持体上にアモルファ
スシリコンを主体とする層を堆積させる方法である。
Conventionally, a method for manufacturing an electrophotographic photoreceptor mainly made of amorphous silicon is as described in Japanese Patent Laid-Open No. 61-232466, in which a predetermined gas is introduced into a single plasma forming chamber installed in a vacuum container, and the gas is In this method, a microwave is applied to transform the plasma into plasma, an electric field or a magnetic field is applied to the plasma, the plasma is guided to a film formation chamber, and a layer mainly composed of amorphous silicon is deposited on a support placed in the film formation chamber.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、アモルファスシリコンが支持体以外に
堆積してできるフレークの発生がなく、低温成膜が行え
るため、成膜工程の短縮化という長所を有するが、電子
写真感光体用の支持体全体を、シリコン化合物を含むプ
ラズマ状ガスで完全に覆う方法ではなく、上記支持体の
一方向から上記プラズマ状ガスを吹きつける方法であり
、プラズマにさらされない支持体部分には堆積が行われ
ないため、支持体の全搬をプラズマにさらす工夫を施す
必要があり、工程数の増加による成膜時間の増加の問題
があった。更に上記プラズマは電界或いは磁界により収
束して支持体上に導かれるため、1子写真感光体のよう
な大面積な支持体上に堆積させるには、プラズマ形成室
或いはプラズマ形成室と膜形成室を結ぶ導入口を支持体
に合せて大きくする必要がある。また上記プラズマの収
束度を下げ、発散させて支持体上に吹きつけると、支持
体上に到達したプラズマの先端において、その中心部と
外周部とでは、支持体上に到達するまでの距離或いは衝
突前の運動方向等の差から、堆積膜自身の性質或いは堆
積膜厚が異なり1例えば膜厚では中心部が厚く外周に向
うほど薄く堆積するという問題があった。
The above-mentioned conventional technology has the advantage of shortening the film-forming process because it does not generate flakes caused by amorphous silicon depositing on a surface other than the support and can be formed at a low temperature. This is not a method of completely covering the support with a plasma-like gas containing a silicon compound, but a method of spraying the plasma-like gas from one direction on the support, and no deposition occurs on the parts of the support that are not exposed to the plasma. However, it was necessary to take measures to expose the entire support to the plasma, and there was a problem of an increase in film formation time due to an increase in the number of steps. Furthermore, since the plasma is focused by an electric field or a magnetic field and guided onto the support, in order to deposit it on a large-area support such as a single-child photoreceptor, a plasma formation chamber or a plasma formation chamber and a film formation chamber are required. It is necessary to enlarge the inlet to match the support. In addition, when the convergence of the plasma is lowered and the plasma is dispersed and blown onto the support, at the tip of the plasma that has reached the support, the distance between the center and the outer periphery of the plasma may vary depending on the distance before reaching the support. Due to the difference in the direction of motion before the collision, the properties of the deposited film itself or the thickness of the deposited film differ.1 For example, there is a problem in that the film is thicker at the center and becomes thinner toward the outer periphery.

本発明の目的は、成膜時間を短縮し、均一な膜特性並び
に膜厚を有する電子写真感光体の製造方法を提供するこ
とにある。
An object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor that shortens film formation time and has uniform film characteristics and film thickness.

〔問題点を解決するための手段〕[Means for solving problems]

プラズマ形成室と膜形成室を分離して設けた真空容器内
で、シリコン化合物とその他のガス或いはシリコン化合
物を含まないガスをプラズマ形成室に導入し、そのガス
にマイクロ波を印加して、プラズマ状のガスとし、その
プラズマ状ガスを所定の方向へ加速して移動させる磁界
或いは電界或いはこれらの合成を印加し、プラズマ状ガ
スを膜形成室に導き、更に膜形成室に、プラズマ形成室
に導入したものと同じ或いは異なったガスを、少なくと
も両室の一方にシリコン化合物を含むように導入して反
応させ、膜形成室内に設置し、円周方向に回転させた電
子写真感光体形成用の支持体上にアモルファスシリコン
を主成分とする層を形成する。この方法において、複数
のプラズマ形成室を膜形成室外壁において上記の支持体
に対して円筒方向或いは円周方向或いはその合成方向に
縦列するように配置し、それらが支持体上にプラズマを
噴射できる領域の一部が少なくとも重なるようにする。
In a vacuum container that separates the plasma formation chamber and film formation chamber, silicon compounds and other gases or gases that do not contain silicon compounds are introduced into the plasma formation chamber, and microwaves are applied to the gases to generate plasma. A magnetic field, an electric field, or a combination thereof is applied to accelerate and move the plasma-like gas in a predetermined direction, and the plasma-like gas is guided into a film forming chamber, and further into the film forming chamber and into the plasma forming chamber. A gas for forming an electrophotographic photoreceptor is installed in a film forming chamber and rotated in a circumferential direction by introducing the same or different gas as that introduced so as to contain a silicon compound into at least one of both chambers and causing a reaction. A layer containing amorphous silicon as a main component is formed on a support. In this method, a plurality of plasma forming chambers are arranged on the outer wall of the film forming chamber in tandem in a cylindrical direction, a circumferential direction, or a composite direction thereof with respect to the above-mentioned support, and they can inject plasma onto the support. Make sure that at least some of the regions overlap.

それは、支持体が回転、或いは移動或いはそれらの合成
によって起こるものであってもよい、具体的には支持体
の円筒中心を中心軸とするらせん状の配置が好ましく、
らせんの数は1本でもそれ以上でもよい。更に上の方法
において、電子写真感光体用の支持体を、その円周に対
して垂直な方向或いは水平な方向に往復移動させる装!
!&m付ける。また上の方法におけるプラズマ状ガスを
移動させる磁界或いは電界域いはそれらの合成は、個々
のプラズマ形成室の周囲に取付けられた装置により印加
する他に、膜形成室とを結ぶ導入口の出口付近或いは支
持体付近に設置された装置或は支持体円筒のさらに内側
に設けた装置のいずれかにより印加するか、若しくはそ
の複合により印加する。この際、個々の装置の電界或い
は磁界或いはそれらの合成の相互作用を利用して印加す
る方法と、これらが干渉しあうことのないような装置を
設けるか或いはそのような配置とするか或いはこれらの
複合を施すかする方法がある。
This may be caused by rotation or movement of the support, or a combination thereof; specifically, a spiral arrangement with the cylindrical center of the support as the central axis is preferred;
The number of spirals may be one or more. Furthermore, in the above method, the support for the electrophotographic photoreceptor is reciprocated in a direction perpendicular or horizontal to its circumference!
! Add &m. In addition, in the above method, the magnetic field or electric field for moving the plasma gas, or their combination, is applied by a device installed around each plasma forming chamber, or by applying it at the exit of the inlet connecting the film forming chamber. The voltage is applied either by a device installed near or near the support, or by a device installed further inside the support cylinder, or by a combination thereof. In this case, it is necessary to consider the method of applying electric fields or magnetic fields of individual devices or their combined interactions, and the provision or arrangement of devices that prevent these fields from interfering with each other. There is a method of applying a combination of

更に膜形成室に導入する所定のガスがシリコン化合物を
含むガスである場合、効率よく支持体に付着させる為に
、複数のプラズマ形成室から膜形成室へプラズマ状ガス
を導く出口付近に、プラズマ形成室と同様な配置を持つ
ガス導入口を設ける。
Furthermore, if the specified gas to be introduced into the film forming chamber is a gas containing a silicon compound, in order to efficiently attach the gas to the support, a plasma gas is placed near the exit that leads the plasma-like gas from the plurality of plasma forming chambers to the film forming chamber. A gas inlet having the same arrangement as the formation chamber is provided.

例えばプラズマ形成室がらせん配置されている場合、少
なくともそれと同一のらせん配置となるようにガス導入
口を設置する。
For example, when the plasma formation chamber is arranged in a spiral, the gas inlet is installed so as to have at least the same spiral arrangement.

〔作用〕[Effect]

プラズマ形成室を複数個設け、それらが支持体上にプラ
ズマを噴射できる領域の一部或いは全部が重なるように
配置することにより、プラズマの持つ方向性によってで
きる形成膜の不均一性を相殺する。また支持体を回転成
いは移動させることにより、プラズマ形成室を細かく分
離して複数化したのと同様な効果を生み、これらとプラ
ズマ形成室の複数個化を同時に行うことにより、更なる
膜の均一化が行える。
By providing a plurality of plasma forming chambers and arranging them so that a part or all of the area where plasma can be ejected onto the support body overlaps, non-uniformity of the formed film caused by the directionality of the plasma can be offset. In addition, by rotating or moving the support, an effect similar to that obtained by dividing the plasma formation chamber into multiple parts can be produced, and by simultaneously creating multiple plasma formation chambers, further film formation can be achieved. can be made uniform.

更に一方向からのプラズマ噴射ではなく、プラズマ形成
室の複数化による膜形成室の全ての方向からの噴射を同
時に行うことにより、成膜時間の短縮化が行える。
Furthermore, the film forming time can be shortened by simultaneously ejecting plasma from all directions in the film forming chamber by providing a plurality of plasma forming chambers, instead of ejecting plasma from one direction.

プラズマに印加する電界或いは磁界或いはそれらの合成
を、プラズマ形成室の周囲に取付けた装置に加え、プラ
ズマ導入口付近或いは支持体付近に設置した装置或いは
支持体の内側に設けた装置或いはそれらの複合により印
加することは、上記印加物を更に加速成いは収束させ、
プラズマの支持体への到達速度を高めると同時にプラズ
マを均一に到達させる。従って成膜速度は上昇し、膜の
均一性もよくなる。
The electric field or magnetic field applied to the plasma, or their combination, can be applied to a device installed around the plasma formation chamber, a device installed near the plasma introduction port or near the support, a device installed inside the support, or a combination thereof. Applying the voltage further accelerates or converges the applied object,
To increase the speed at which plasma reaches a support and at the same time uniformly reach the plasma. Therefore, the film formation rate increases and the uniformity of the film also improves.

更にガス導入口とプラズマ形成室の配置を同様にするこ
とは、ガスの利用効率を高めると同時に成膜速度を上昇
させる。
Further, by arranging the gas inlet and the plasma forming chamber in the same manner, the efficiency of gas utilization is increased and at the same time, the film formation rate is increased.

(実施例〕 実施例1 以下1本発明の一実施例を第1図により説明する。(Example〕 Example 1 An embodiment of the present invention will be described below with reference to FIG.

真空排気したプラズマ形成室1に水素ガス、アルゴンガ
スを導入口2から導入し、そのプラズマ形成室に2.4
5 GHzのマイクロ波をマイクロ波発振器3から導入
する。プラズマ形成室1に。
Hydrogen gas and argon gas are introduced from the inlet 2 into the evacuated plasma formation chamber 1, and 2.4
5 GHz microwave is introduced from the microwave oscillator 3. In plasma formation chamber 1.

磁石4により、電子のサイクロトロン共鳴を生じる87
5ガウスの磁界を印加する。磁界により加速されたイオ
ンは、プラズマ形成室1に設けられた窓5を通じて膜形
成室6に導かれ、導入ロアの先端より放出されるシラン
ガスとジボランガスと水素ガスを分解して、アルミニウ
ムの円筒状支持体8の表面へ導き、ボロン添加した水素
化アモルファスシリコン層を形成させる。更に、構成要
素1から5までおよび7を持つプラズマ形成室1を、先
のプラズマ形成室1の上部と、対向する膜形成室6の壁
面に設け、支持体を回転昇降器9により。
Magnet 4 causes electron cyclotron resonance 87
A magnetic field of 5 Gauss is applied. The ions accelerated by the magnetic field are guided to the film forming chamber 6 through a window 5 provided in the plasma forming chamber 1, and decompose the silane gas, diborane gas, and hydrogen gas released from the tip of the introduction lower, and form an aluminum cylindrical shape. It is guided to the surface of the support 8 to form a boron-doped hydrogenated amorphous silicon layer. Further, a plasma forming chamber 1 having components 1 to 5 and 7 is provided on the upper part of the plasma forming chamber 1 and on the wall of the film forming chamber 6 facing thereto, and a support is provided by a rotary elevator 9.

支持体の円周方向と円筒方向への回転移動を行った結果
1個々のプラズマ形成室1からのプラズマが支持体8に
噴射される領域は、支持体表面の全域に広が゛す、膜厚
誤差10%以下の精度を持つ水素化シリコン膜が形成さ
れる。上記の方法において導入ロアから導入するガスに
エチレンガスを混合して、支持体8に炭化シリコンを0
.2μm形成した後、上記の水素化アモルファスシリコ
ンを20μm積層し、更に炭化シリコンを0.2μm積
層して膜厚の均一な良好な電子写真感光体を得る。
As a result of the rotational movement of the support in the circumferential direction and the cylindrical direction, the area where the plasma from each plasma formation chamber 1 is injected onto the support 8 spreads over the entire surface of the support. A silicon hydride film with a thickness error of 10% or less is formed. In the above method, ethylene gas is mixed with the gas introduced from the introduction lower, and silicon carbide is completely coated on the support 8.
.. After forming a layer of 2 μm, the above-mentioned hydrogenated amorphous silicon is laminated to a thickness of 20 μm, and silicon carbide is further laminated to a thickness of 0.2 μm to obtain a good electrophotographic photoreceptor with a uniform film thickness.

実施例2 実施例1において、3つのプラズマ形成室1を円周方向
に90°移動した位置にも設け、プラズマ形成室1を2
倍にして、電子写真感光体を形成した。この際成膜時間
は約2分の1に短縮され、良好な電子写真感光体が得ら
れた。
Example 2 In Example 1, three plasma forming chambers 1 were also provided at positions shifted by 90° in the circumferential direction, and two plasma forming chambers 1 were
This was doubled to form an electrophotographic photoreceptor. At this time, the film-forming time was shortened to about half, and a good electrophotographic photoreceptor was obtained.

実施例3 実施例1において、プラズマ形成室1を円筒の膜形成室
の外周に2本のらせんを描く配置で設置し、1本のらせ
ん上には6つのプラズマ形成室が配置されるようにして
成膜を行った。この結果膜厚誤差5%以内の均一な電子
写真特性を得、市販の複写機で良好な画像が得られた。
Example 3 In Example 1, the plasma formation chamber 1 was arranged in two spirals around the outer periphery of the cylindrical film formation chamber, and six plasma formation chambers were arranged on one spiral. Film formation was performed using As a result, uniform electrophotographic properties with a film thickness error of within 5% were obtained, and good images were obtained using a commercially available copying machine.

実施例4 第2図に示すように、プラズマ形成室1.ガスの導入口
2,7.マイクロ波発振器3.磁石4゜窓5.膜形成室
6.支持体8.支持体回転昇降器9で構成される実施例
1と同様な手法で、1から5および7の構成′部品を膜
形成室6の周囲の円周上に90°の間隔で配置した電子
写真感光体の製造方法において、支持体の近くに磁石1
0を設置して、発散磁界で加速されているプラズマを支
持体側に収束させて感光体の製造を行う。この場合、磁
石10によって収束されるグラ6ズマの方向性が、プラ
ズマの中心部と端部で同様になり、形成膜の均一性が向
上し、膜厚誤差10%以内の電子写真感光体が形成され
た。
Example 4 As shown in FIG. 2, a plasma formation chamber 1. Gas inlet 2, 7. Microwave oscillator 3. Magnet 4° Window 5. Film formation chamber6. Support 8. An electrophotographic photosensitive system in which components 1 to 5 and 7 are arranged at intervals of 90° on the circumference of the film forming chamber 6 using the same method as in Example 1, which is composed of a support rotary elevator 9. In the method for manufacturing the body, a magnet 1 is placed near the support body.
0, and the plasma accelerated by the diverging magnetic field is converged on the support side to manufacture the photoreceptor. In this case, the directionality of the glare focused by the magnet 10 becomes the same at the center and the edges of the plasma, improving the uniformity of the formed film, and forming an electrophotographic photoreceptor with a film thickness error of less than 10%. Been formed.

実施例5 実施例4において、膜形成室へのガス導入ロアの形状を
、第2図に示す如く支持体の近くまで延長し、噴射穴を
10個以上、支持体8側或いはプラズマ形成室1側或い
はプラズマ形成室1および支持体8のいずれにも対面し
ない側し」設けた電子写真感光体の製造方法において、
実施例1の如く電子写真感光体を製造する。この場合、
膜形成用のガスが均等に支持体8の全域に分配される為
、実施例4におけるより更に形成膜の均一性が向上する
Example 5 In Example 4, the shape of the lower gas introduction chamber to the film forming chamber was extended to near the support as shown in FIG. In the method for manufacturing an electrophotographic photoreceptor, the electrophotographic photoreceptor is provided with a side that does not face either the plasma forming chamber 1 or the support 8.
An electrophotographic photoreceptor is manufactured as in Example 1. in this case,
Since the film-forming gas is evenly distributed over the entire area of the support 8, the uniformity of the formed film is further improved than in Example 4.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、支持体表面に噴射されるプラズマが方
向性を持つにもかかわらず、形成膜がその影響を受けな
いようにでき、膜を均一化する効果がある。
According to the present invention, although the plasma injected onto the surface of the support has directionality, the formed film can be prevented from being affected by it, and there is an effect of making the film uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例の電子写真感光
体の製造方法を示す図である。 1・・・プラズマ形成室、2,7・・・導入口、3・・
・マイクロ波発振器、4,10・・・磁石、5・・・窓
、6・・・膜形成室、8・・・支持体、9・・・支持体
回転昇降器。
FIGS. 1 and 2 are diagrams showing a method of manufacturing an electrophotographic photoreceptor according to an embodiment of the present invention. 1... Plasma formation chamber, 2, 7... Inlet, 3...
-Microwave oscillator, 4, 10... Magnet, 5... Window, 6... Film forming chamber, 8... Support, 9... Support rotary elevator.

Claims (1)

【特許請求の範囲】 1、プラズマ形成室と膜形成室を分離して設けた真空容
器内で、所定のガスをプラズマ形成室に導入し、前記ガ
スをマイクロ波によつてプラズマ化し、前記プラズマを
所定の方向に加速して移動させ得る磁界或いは電界或い
はこれらの合成を印加し、プラズマを膜形成室に導き、
更に前記膜形成室に所定のガスを導入して反応させ、前
記膜形成室内に設置した円筒状の支持体を円周方向に回
転させアモルファスシリコンを主成分とする膜を形成し
、プラズマ形成室と膜形成室に導入する所定のガスのう
ち、少なくとも一方にはシリコン化合物を含む方法にお
いて、前記プラズマ形成室を複数個設けること或いは支
持体を円筒方向に移動させ得る装置を取付けること或い
はそれらの複合を行うようにしたことを特徴とする電子
写真感光体の製造方法。 2、複数個のプラズマ形成室が、電子写真感光体形成用
の円筒状支持体の円筒方向或いは円周方向或いはこれら
の合成方向に対して縦列するように配置されることを特
徴とする特許請求の範囲第1項記載の電子写真感光体の
製造方法。 3、複数個のプラズマ形成室が電子写真感光体用の円筒
状支持体の円筒中心を中心軸とする1本或いは2本以上
のらせん状配置となることを特徴とする特許請求の範囲
第1項記載の電子写真感光体の製造方法。 4、プラズマ形成室においてプラズマ化されたガスを加
速して電子写真感光体形成用支持体付近に導く為の磁界
或いは電界或いはそれらの合成は、プラズマ形成室の周
囲からの印加と、プラズマ化ガスを膜形成室に導入する
導入口の出口或いは支持体付近或いは支持体内或いはそ
れらの複合の位置からも印加するようにしたことを特徴
とする特許請求の範囲第1項記載の電子写真感光体の製
造方法。 5、複数個のプラズマ室で形成した各々のプラズマに印
加する電界或いは磁界域いはそれらの合成において、個
々のものが干渉するのを防ぐ装置を付加すること或いは
プラズマ形成室の配置或いは電界或いは磁界を印加する
装置の配置を個々の印加が干渉しない位置とすることを
特徴とする特許請求の範囲第1項記載の電子写真感光体
の製造方法。 6、真空容器内の膜形成室にシリコン化合物を含むガス
を導入する方法において、導入口を複数設け、その配置
を複数のプラズマ形成室の配置と同様にすることを特徴
とする特許請求の範囲第1項記載の電子写真感光体の製
造方法。
[Scope of Claims] 1. In a vacuum container provided with a plasma formation chamber and a film formation chamber separated, a predetermined gas is introduced into the plasma formation chamber, the gas is turned into plasma by microwaves, and the plasma Applying a magnetic field or an electric field, or a combination thereof, that can accelerate and move the plasma in a predetermined direction, and guide the plasma into the film forming chamber,
Further, a predetermined gas is introduced into the film forming chamber to cause a reaction, and a cylindrical support installed in the film forming chamber is rotated in the circumferential direction to form a film mainly composed of amorphous silicon, and the plasma forming chamber is In the method in which at least one of the predetermined gases introduced into the film forming chamber contains a silicon compound, a plurality of plasma forming chambers are provided, a device capable of moving the support body in a cylindrical direction is installed, or A method for manufacturing an electrophotographic photoreceptor, characterized in that a composite is performed. 2. A patent claim characterized in that a plurality of plasma forming chambers are arranged in tandem with respect to the cylindrical direction or circumferential direction of a cylindrical support for forming an electrophotographic photoreceptor, or the combined direction thereof. A method for producing an electrophotographic photoreceptor according to item 1. 3. Claim 1, characterized in that the plurality of plasma forming chambers are arranged in one or more spirals with the center axis of the cylinder of the cylindrical support for an electrophotographic photoreceptor. A method for manufacturing an electrophotographic photoreceptor as described in . 4. The magnetic field or electric field or their combination for accelerating the plasma-formed gas in the plasma-forming chamber and guiding it to the vicinity of the support for forming an electrophotographic photoreceptor can be applied from the periphery of the plasma-forming chamber and the plasma-forming gas of the electrophotographic photoreceptor according to claim 1, wherein the electrophotographic photoreceptor is applied from the outlet of the inlet for introducing into the film forming chamber, from the vicinity of the support, from within the support, or from a combination thereof. Production method. 5. Adding a device to prevent interference between the electric field or magnetic field applied to each plasma formed in multiple plasma chambers or their combination, or changing the arrangement of the plasma forming chambers, the electric field, or 2. The method of manufacturing an electrophotographic photoreceptor according to claim 1, wherein the device for applying the magnetic field is arranged at a position where individual applications of the magnetic field do not interfere with each other. 6. A method for introducing a gas containing a silicon compound into a film forming chamber in a vacuum container, characterized in that a plurality of inlets are provided and the arrangement thereof is the same as that of a plurality of plasma forming chambers. 2. The method for producing an electrophotographic photoreceptor according to item 1.
JP9542087A 1987-04-20 1987-04-20 Production of electrophotographic sensitive body Pending JPS63262466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9542087A JPS63262466A (en) 1987-04-20 1987-04-20 Production of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9542087A JPS63262466A (en) 1987-04-20 1987-04-20 Production of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63262466A true JPS63262466A (en) 1988-10-28

Family

ID=14137199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9542087A Pending JPS63262466A (en) 1987-04-20 1987-04-20 Production of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63262466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645644A (en) * 1995-10-20 1997-07-08 Sumitomo Metal Industries, Ltd. Plasma processing apparatus
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645644A (en) * 1995-10-20 1997-07-08 Sumitomo Metal Industries, Ltd. Plasma processing apparatus
EP0839928A1 (en) * 1996-10-30 1998-05-06 Schott Glaswerke Remote plasma CVD method
US5985378A (en) * 1996-10-30 1999-11-16 Schott Glaswerke Remote-plasma-CVD method for coating or for treating large-surface substrates and apparatus for performing same

Similar Documents

Publication Publication Date Title
US11274369B2 (en) Thin film deposition method
US11414760B2 (en) Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US7138336B2 (en) Plasma enhanced atomic layer deposition (PEALD) equipment and method of forming a conducting thin film using the same thereof
US20060260750A1 (en) Plasma processing apparatuses and methods
CN104831255A (en) Substrate processing method and substrate processing apparatus
US11769679B2 (en) Apparatus and method for improving film thickness uniformity
KR102156795B1 (en) Deposition apparatus
JP6569520B2 (en) Deposition equipment
JP7002655B2 (en) Shape-selective deposition of dielectric film using low-frequency bias
JP7069319B2 (en) Electrodes shaped for improved plasma exposure from vertical plasma sources
KR20170026207A (en) Plasma-enhanced atomic layer deposition system with rotary reactor tube
US20190284691A1 (en) Film forming method and film forming apparatus
US4404076A (en) Film forming process utilizing discharge
JPS63262466A (en) Production of electrophotographic sensitive body
KR20130139651A (en) Manufacturing method for thin film and substrate process apparatus
JP2019529699A (en) Gas injection device for substrate processing apparatus and substrate processing apparatus
KR101396462B1 (en) Atomic layer deposition apparatus
CN217104060U (en) Optical coating uniformity adjusting baffle
KR102501682B1 (en) Atomic layer deposition apparatus
KR102629908B1 (en) Substrate processing apparatus
JPH02243766A (en) Thin film forming device
KR102084530B1 (en) Method of forming a thin film
KR20210150287A (en) Rotating substrate support
JPH0452994Y2 (en)
JP2668915B2 (en) Plasma processing equipment