JPS6326195B2 - - Google Patents

Info

Publication number
JPS6326195B2
JPS6326195B2 JP59252205A JP25220584A JPS6326195B2 JP S6326195 B2 JPS6326195 B2 JP S6326195B2 JP 59252205 A JP59252205 A JP 59252205A JP 25220584 A JP25220584 A JP 25220584A JP S6326195 B2 JPS6326195 B2 JP S6326195B2
Authority
JP
Japan
Prior art keywords
plasma
vacuum chamber
accelerating
film
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59252205A
Other languages
Japanese (ja)
Other versions
JPS61130487A (en
Inventor
Hideo Kurokawa
Tsutomu Mitani
Taketoshi Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25220584A priority Critical patent/JPS61130487A/en
Priority to EP19850115085 priority patent/EP0183254B1/en
Priority to DE19853587881 priority patent/DE3587881T2/en
Priority to US06/803,001 priority patent/US4645977A/en
Publication of JPS61130487A publication Critical patent/JPS61130487A/en
Publication of JPS6326195B2 publication Critical patent/JPS6326195B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非常に硬質な炭素膜を高能率で形成す
るプラズマ・インジエクシヨン・CVD装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a plasma injection CVD apparatus that forms a very hard carbon film with high efficiency.

従来の技術 従来の無電極・誘導結合型プラズマCVD装置
は、例えば特開昭53−132310号公報に示されてい
るように、第8図のような構成になつている。
BACKGROUND ART A conventional electrodeless inductively coupled plasma CVD apparatus has a configuration as shown in FIG. 8, as disclosed in, for example, Japanese Unexamined Patent Publication No. 132310/1983.

即ち反応室3はニードルバルブ4を介して真空
ポンプにより吸引され、膜形成基体1(以後基体
と略)は反応室3中に設置される。モノマーガス
及びキヤリアガス(例えばN2)はニードルバル
ブで流量を調整し反応室3に導入される。反応室
3の周囲には高周波コイル2が巻回され、整合器
5を介して高周波電源6に接続されている。操作
の概略を述べるとまず反応室3中の残存空気を十
分に除去し、しかる後にモノマーガスを徐々に反
応室3内に導入しながら高周波電源6を作動さ
せ、RFパワーを高周波コイル2に印加して放電
させ、基体1上に膜を形成する。
That is, the reaction chamber 3 is suctioned by a vacuum pump through the needle valve 4, and the membrane-forming substrate 1 (hereinafter abbreviated as the substrate) is placed in the reaction chamber 3. Monomer gas and carrier gas (for example, N 2 ) are introduced into the reaction chamber 3 with flow rates adjusted using a needle valve. A high frequency coil 2 is wound around the reaction chamber 3 and connected to a high frequency power source 6 via a matching box 5. To outline the operation, first, the residual air in the reaction chamber 3 is sufficiently removed, and then, while monomer gas is gradually introduced into the reaction chamber 3, the high frequency power source 6 is activated, and RF power is applied to the high frequency coil 2. A film is formed on the substrate 1 by causing discharge.

またプラズマで発生したイオンを加速して膜を
形成する時によく用いられる内部対向電極型プラ
ズマ・CVD装置の概略を第9図に示す(「プラズ
マ化学」P42:吉本馨著)。残留ガスを除去した
真空槽11内にモノマーガス・キヤリアガスを適
切な流量で導入する。基体電極8と電極9との間
に高周波電源10によりRFパワーを印加して放
電を発生させ、膜形成基体7(以下基体と略す)
上に膜を形成する。プラズマ中のイオンを加速さ
せて膜を形成する場合は電極9と基体電極8との
間に基体電極8の方が低電位となるに電位差を設
ければよい。
Figure 9 shows an outline of an internally opposed electrode type plasma/CVD device that is often used to accelerate ions generated in plasma to form a film (Plasma Chemistry, p. 42, written by Kaoru Yoshimoto). Monomer gas and carrier gas are introduced at appropriate flow rates into the vacuum chamber 11 from which residual gas has been removed. RF power is applied between the base electrode 8 and the electrode 9 by a high frequency power source 10 to generate a discharge, and a film forming base 7 (hereinafter abbreviated as the base) is formed.
Form a film on top. When accelerating ions in plasma to form a film, a potential difference may be provided between the electrode 9 and the base electrode 8 such that the base electrode 8 has a lower potential.

発明が解決しようとする問題点 しかし、このような構成をもつ従来のプラズマ
CVD装置では次に述べる問題点がある。
Problems to be Solved by the Invention However, conventional plasmas with such a configuration
CVD equipment has the following problems.

内部対向電極型プラズマCVD装置の場合、時
間が経つにつれて電極9、基体電極8上にも膜が
形成され基体電極8、電極9が汚染される。これ
に対応して電位状態にも変化が生じ、形成膜が不
均質になるばかりか放電が不安定になる。また真
空槽11内に放電が広がるため真空槽11の内壁
にも付着物が生じ汚染されると共に、基体7が常
にプラズマにさらされるための基体7の温度が上
昇する。基体7の温度上昇は、プラズマ中のイオ
ンを加速して膜を形成する場合により顕著にな
る。以上のように内部対向電極型プラズマCVD
装置の場合、時間と共に電位状態、基体温度が変
化するため膜質を均質にコントロールすることが
むずかしいという問題点がある。
In the case of an internally opposed electrode type plasma CVD apparatus, a film is also formed on the electrode 9 and the base electrode 8 over time, and the base electrode 8 and the electrode 9 are contaminated. Correspondingly, changes occur in the potential state, and not only does the formed film become non-uniform, but also the discharge becomes unstable. Furthermore, since the discharge spreads within the vacuum chamber 11, deposits are formed on the inner wall of the vacuum chamber 11, causing contamination, and the temperature of the substrate 7 rises because the substrate 7 is constantly exposed to plasma. The rise in temperature of the substrate 7 becomes more significant when ions in plasma are accelerated to form a film. As described above, internally facing electrode type plasma CVD
In the case of the device, there is a problem in that it is difficult to control the film quality uniformly because the potential state and substrate temperature change over time.

無電極・誘導結合型プラズマCVD装置の場合、
反応室3内で発生するプラズマ状態が場所により
著しく異なり、これを均一にコントロールするこ
とは非常にむずかしい。このため反応室3内に設
置した基体1上に形成する膜質を均質にコントロ
ールすることは困難である。また内部対向型プラ
ズマCVD装置の場合と同様に、反応室3内に放
電が広がるため反応室3の内壁にも付着物が生じ
汚染されると共に、基体1が常にプラズマにさら
されるため温度上昇が生じる。即ち無電極・誘導
結合型プラズマCVD装置の場合、反応室3内で
発生するプラズマ状態の場所むらを反応室内ガス
圧、RFパワー等の外部パラメータによりコント
ロールすることが困難であることや基体温度の経
時変化が大きいため、基体1上に形成する膜質を
均一にすることがむずかしいという問題点があつ
た。
In the case of electrodeless/inductively coupled plasma CVD equipment,
The state of plasma generated within the reaction chamber 3 varies significantly depending on the location, and it is extremely difficult to uniformly control this state. Therefore, it is difficult to uniformly control the quality of the film formed on the substrate 1 placed in the reaction chamber 3. In addition, as in the case of an internally facing plasma CVD apparatus, the discharge spreads within the reaction chamber 3, causing deposits to form on the inner wall of the reaction chamber 3 and contaminating it, and since the substrate 1 is constantly exposed to plasma, the temperature rises. arise. In other words, in the case of an electrodeless/inductively coupled plasma CVD device, it is difficult to control the unevenness of the plasma state generated in the reaction chamber 3 using external parameters such as the gas pressure in the reaction chamber and RF power, and the substrate temperature There was a problem in that it was difficult to make the quality of the film formed on the substrate 1 uniform because of the large change over time.

また、内部対向型プラズマCVD装置・無電極
誘導結合型プラズマCVD装置いずれる場合も、
基体1,7全体をプラズマ中にさらすため、局部
的に膜を形成するには適していない。しかも反応
室3、真空槽11の全域に放電が拡がるため既存
の真空装置(例えば蒸着装置、スパツタリング装
置など)にその機能を働かせつつ応用設置するこ
とができない。そのため既存の生産ラインにプラ
ズマCVD処理部を加える場合には、全く新しい
装置が必要となり模大な費用が必要になる。
In addition, whether it is an internally facing plasma CVD device or an electrodeless inductively coupled plasma CVD device,
Since the entire substrates 1 and 7 are exposed to plasma, it is not suitable for forming a film locally. Furthermore, since the discharge spreads throughout the reaction chamber 3 and the vacuum chamber 11, it is impossible to apply the method to existing vacuum devices (e.g., evaporation devices, sputtering devices, etc.) while maintaining its functionality. Therefore, when adding a plasma CVD processing section to an existing production line, completely new equipment is required, which requires a huge amount of cost.

そこで本発明は、プラズマ状態の経時変化・場
所むらをおさえ均質な膜を任意の形状に形成する
ことが可能で、かつ基体温度上昇も少なく既存の
真空装置にもその機能をそこなわず設置すること
ができるプラズマ・インジエクシヨン・CVD装
置を提供するものである。
Therefore, the present invention makes it possible to form a homogeneous film in any shape by suppressing changes in the plasma state over time and unevenness in location, and also allows installation in existing vacuum equipment without impairing its functionality with minimal rise in substrate temperature. The purpose of this project is to provide a plasma injection CVD device that can perform

問題点を解決するための手段 上記問題点を解決する本発明の技術的手段は、
真空装置を2つの真空槽で構成した無電極誘導結
合型とし非磁性材料からなる第1真空槽に導入す
るガスをプラズマ化するプラズマ発生部と第2真
空槽に設置した膜形成基体にプラズマを吹付ける
ため膜形成基体と対向したプラズマ吹出部及びプ
ラズマ加速手段を備えたことであり、第1真空槽
内のプラズマ発生部で発生した安定したプラズマ
をプラズマ加速手段によりプラズマ中のイオンを
加速しつつ第2真空槽に設置された膜形成基体に
吹付けることにより、高能率で基体温度変化が少
なく高能率で均質な高硬度炭素膜等を形成するこ
とができる。
Means for Solving the Problems The technical means of the present invention for solving the above problems are as follows:
The vacuum device is an electrodeless inductively coupled type vacuum device consisting of two vacuum chambers, and includes a plasma generating section that converts gas introduced into the first vacuum chamber made of non-magnetic material into plasma, and a film forming substrate installed in the second vacuum chamber that generates plasma. It is equipped with a plasma blowing part facing the film forming substrate and a plasma acceleration means for spraying, and the stable plasma generated in the plasma generation part in the first vacuum chamber is accelerated by the plasma acceleration means to accelerate the ions in the plasma. By spraying the film onto a film-forming substrate placed in the second vacuum chamber, a highly efficient and homogeneous high-hardness carbon film or the like can be formed with high efficiency and little change in substrate temperature.

作 用 本発明は上記した構成により、基体上に安定し
たプラズマを吹付けることが可能となり高能率で
均質な高硬度炭素膜等を得ることができるだけで
なく、基体全体がプラズマにさらされないため基
体温度上昇が少なく、プラズマ吹出部の形状を変
えることで任意の範囲に膜を形成することができ
る。また、第1の真空槽内にプラズマ発生部、プ
ラズマ吹出部、プラズマ加速手段を備えることが
でき、2つの真空槽を分離可能にしておけばユニ
ツトとしての取扱いが可能となり、既存の真空装
置にもその機能を損なうことなく簡単に応用設置
することができる。
Effects The present invention has the above-described configuration, which not only makes it possible to spray stable plasma onto the substrate and obtain a highly efficient and homogeneous high-hardness carbon film, but also allows the substrate to be exposed to plasma because the entire substrate is not exposed to the plasma. There is little temperature rise, and by changing the shape of the plasma blowing part, a film can be formed in any desired range. In addition, the first vacuum chamber can be equipped with a plasma generation section, a plasma blowout section, and a plasma acceleration means, and if the two vacuum chambers can be separated, they can be handled as a unit, making it possible to use them in existing vacuum equipment. It can also be easily applied and installed without compromising its functionality.

実施例 第1図は本発明のプラズマ・インジエクシヨ
ン・CVD装置の一実施例を示す概略図である。
第1図において12は真空槽、13はプラズマ管
でで先端にプラズマ吹出部23を有している。1
4は高周波コイルで整合器15を介して高周波電
源16に接続される。17は膜形成基体(以下基
体と略す)でプラズマ吹出部に対向するよう設置
される。18はメツシユ状加速電極で一端はプラ
ズマ吹出部23からプラズマ管13内部(以後プ
ラズマ発生部と称す)に設置される。19は直流
電源でメツシユ状加速電極18と基体17又は基
体設置台24との間に電位差を設ける。20,2
1はニードルバルブ、23はピラニ真空計であ
る。
Embodiment FIG. 1 is a schematic diagram showing an embodiment of the plasma injection CVD apparatus of the present invention.
In FIG. 1, 12 is a vacuum chamber, and 13 is a plasma tube, which has a plasma blowing part 23 at its tip. 1
4 is a high frequency coil connected to a high frequency power source 16 via a matching box 15. Reference numeral 17 denotes a film forming substrate (hereinafter abbreviated as the substrate), which is installed so as to face the plasma blowing section. Reference numeral 18 denotes a mesh-shaped accelerating electrode, one end of which is installed inside the plasma tube 13 from the plasma blowing section 23 (hereinafter referred to as a plasma generating section). Reference numeral 19 is a DC power source that provides a potential difference between the mesh-like accelerating electrode 18 and the base 17 or the base mounting table 24. 20,2
1 is a needle valve, and 23 is a Pirani vacuum gauge.

以上のように構成されたこの実施例のプラズ
マ・インジエクシヨン・CVD装置について以下
その動作を説明する。プラズマ管13の片端は真
空槽12の中に設置し、その先端にはプラズマ吹
出部23が設定される。プラズマ吹出部23に
は、メツシユ状加速電極18が少なくとも一端が
プラズマ発生部内になるよう設置され、メツシユ
状加速電極18と基体17又は基体設置台24と
の間には直流電源19により電位差が与えられ
る。
The operation of the plasma injection CVD apparatus of this embodiment constructed as described above will be explained below. One end of the plasma tube 13 is installed in the vacuum chamber 12, and a plasma blowing section 23 is set at the tip thereof. A mesh-shaped accelerating electrode 18 is installed in the plasma blowing section 23 so that at least one end thereof is inside the plasma generating section, and a potential difference is applied between the mesh-shaped accelerating electrode 18 and the base 17 or the base mounting table 24 by a DC power supply 19. It will be done.

真空ポンプにより1.0×10-4Ton以上の高真空
に保持されたプラズマ管13内に、ニードルバル
ブ20,21を通してキヤリアガス、モノマーガ
スを導入する。プラズマ管13の真空槽12外の
部分に巻回した高周波コイル14に、高周波電源
16から整合器15を介してRFパワーを印加し、
プラズマ管13内にプラズマを発生させる。発生
したプラズマは、真空槽12とプラズマ管13の
圧力差に加えメツシユ状加速電極と基体17又は
基体設置台24間の電位差によりプラズマ中のイ
オンを加速する加速手段にも助長されてプラズマ
吹出部23から吹出し、基体17に吹きつけられ
て基体17上に膜を形成する。
A carrier gas and a monomer gas are introduced through needle valves 20 and 21 into the plasma tube 13, which is maintained at a high vacuum of 1.0×10 -4 Ton or more by a vacuum pump. RF power is applied from a high frequency power source 16 via a matching box 15 to a high frequency coil 14 wound around a portion of the plasma tube 13 outside the vacuum chamber 12,
Plasma is generated within the plasma tube 13. The generated plasma is accelerated by the acceleration means that accelerates the ions in the plasma due to the pressure difference between the vacuum chamber 12 and the plasma tube 13 and the potential difference between the mesh-like accelerating electrode and the base 17 or the base mounting table 24, and then reaches the plasma blowing section. 23 and is blown onto the substrate 17 to form a film on the substrate 17.

この実施例を使用し、キヤリアガスとしてAr、
モノマーガスとしてCH4を用いて種々実験を行な
つたところ、以下に述べる結果を得ることができ
た。
Using this example, Ar as the carrier gas,
Various experiments were conducted using CH 4 as the monomer gas, and the results described below were obtained.

RFパワー……0.1〜2.0KW、プラズマ管内圧力
……0.01〜10Ton、電位差VP……0〜1.5KVの範
囲でパラメータを変化させたところ、特性(例え
ば屈折率、硬度etc)が異なる膜を形成すること
ができた。
RF power...0.1 to 2.0KW, plasma tube pressure...0.01 to 10Ton, potential difference V P ...by changing the parameters in the range of 0 to 1.5KV, films with different properties (e.g. refractive index, hardness, etc.) were created. was able to form.

例えば第2図に、メツシユ状加速電極18と基
体17間の電位差VPと形成膜の硬度との関係を
示す。電位差VPが0.3KVをこえると膜の硬度が
急激に大きくなり0.5KVではビツカース硬度で約
3000(Kg/mm2)の膜が形成される。また電位差VP
が0の場合に形成された膜はビツカース硬度で50
(Kg/mm2)以下の非常に柔かい膜である。これら
の膜の屈折率及び成分分析を行なうと、電位差
VPが0で形成された柔かい膜は屈折率nが約1.6
で炭素、水素から構成されているのに対し、電位
差VPを徐々に大きくしていくと屈折率も大きく
なり、電位差VPが0.5KVで形成された硬質膜は
屈折率nが約2.4で主に炭素からなる膜である。
これから判断すると、電位差VPが0.3KV以下の
場合は形成膜が炭素、水素からなる有機物膜であ
るのに対し、電位差が0.3KV以上となりプラズマ
中のイオンが十分加速されるにつれ形成された膜
は主として炭素からなる高硬度炭素膜(いわゆる
ダイヤモンド状薄膜:DLC膜)になつていると
考えられる。DLC膜については無機材料研究所、
東京農工大等で種々の方法が検討され発表されて
いる(例えば応用物理学会昭54年春28a−C−
5、昭57年春1a−E−5等)が、いずれの場合
も膜形成時の基体温度は最初から200℃以上に設
定するか室温状態で設定した場合でも装置の構成
上、膜形成後の基体温度は200℃以上になるもの
であつた。膜形成速度は最もはやいもので300
Å/min、普通は50〜60Å/minでかなり遅い。
またプラズマ中のイオンを利用して膜を形成する
手法の場合、基体が絶縁物の時静電気が生じて膜
質が変化するため電子銃による電子照射等の手段
を新たに設ける必要があつた。前述のように本実
施例のプラズマ・インジエクシヨン・CVD装置
を用いメツシユ状加速電極18と基体17間の電
位差が0.5KVの条件でDLC膜を形成すると、基
体17の温度上昇は10分間膜形成後も約5℃で小
さく膜形成速度も2000Å/minと従来に比べて1
桁大きい。
For example, FIG. 2 shows the relationship between the potential difference V P between the mesh-like accelerating electrode 18 and the base 17 and the hardness of the formed film. When the potential difference V P exceeds 0.3KV, the hardness of the film increases rapidly, and at 0.5KV, the hardness of the film is approximately
A film of 3000 (Kg/mm 2 ) is formed. Also, the potential difference V P
The film formed when is 0 has a Bitkers hardness of 50
(Kg/mm 2 ) or less, it is a very soft membrane. Analyzing the refractive index and components of these films reveals that the potential difference
A soft film formed with V P of 0 has a refractive index n of approximately 1.6.
However, as the potential difference V P gradually increases, the refractive index also increases, and a hard film formed at a potential difference V P of 0.5 KV has a refractive index n of approximately 2.4. It is a film mainly made of carbon.
Judging from this, when the potential difference V P is less than 0.3 KV, the formed film is an organic film made of carbon and hydrogen, whereas when the potential difference is more than 0.3 KV, the film formed as the ions in the plasma are sufficiently accelerated. is considered to be a high-hardness carbon film (so-called diamond-like thin film: DLC film) consisting mainly of carbon. For DLC films, please contact the Inorganic Materials Research Institute,
Various methods have been studied and published at Tokyo University of Agriculture and Technology (for example, Japan Society of Applied Physics, Spring 1972 28a-C-
5, Spring 1982 1a-E-5, etc.), but in any case, the substrate temperature during film formation must be set at 200°C or higher from the beginning, or even if it is set at room temperature, the The substrate temperature was 200°C or higher. The fastest film formation rate is 300
Å/min, usually 50 to 60 Å/min, which is quite slow.
Further, in the case of a method of forming a film using ions in plasma, when the substrate is an insulator, static electricity is generated and the film quality changes, so it is necessary to provide a new means such as electron irradiation with an electron gun. As mentioned above, when a DLC film is formed using the plasma injection CVD apparatus of this embodiment under the condition that the potential difference between the mesh-like accelerating electrode 18 and the substrate 17 is 0.5 KV, the temperature of the substrate 17 increases after 10 minutes of film formation. The temperature is about 5℃, and the film formation rate is 2000Å/min, which is 11% faster than conventional methods.
An order of magnitude larger.

また、この実施例のプラズマ・インジエクシヨ
ン・CVD装置の場合、プラズマ管13と第2真
空槽12間の圧力差に加えメツシユ状加速電極1
8と基体17又は基体設置台24間の電位差に助
長されてプラズマ発生部で発生したプラズマはプ
ラズマ吹出部23から基体17にむかつて吹出す
る構成のため、基体17の近傍には常に電子が存
在している。このため基体17が正電位に帯電し
た場合でもすぐに電子により中和されるため電子
銃等の機構が不必要となる。
In addition, in the case of the plasma injection CVD apparatus of this embodiment, in addition to the pressure difference between the plasma tube 13 and the second vacuum chamber 12, the mesh-shaped accelerating electrode 1
8 and the base 17 or the base mounting table 24, the plasma generated in the plasma generating section is blown out from the plasma blowing section 23 towards the base 17, so electrons are always present near the base 17. are doing. Therefore, even if the base body 17 is charged to a positive potential, it is immediately neutralized by electrons, so a mechanism such as an electron gun becomes unnecessary.

以上のように、この実施例のプラズマ・インジ
エクシヨン・CVD装置を用いてキヤリアガスに
Ar、モノマーガスにCmHnを用いて高硬度炭素
膜を形成する場合に、膜形成速度が従来より1桁
大きく、基体温度が室温で膜形成が可能で膜形成
後も基体温度上昇が極めて少ないことに加え基体
17の帯電対策して新たに特別な機構を設定する
必要がないという利点があり、その実用効果は大
きい。
As described above, using the plasma injection CVD device of this example, the carrier gas is
When forming a high-hardness carbon film using Ar and CmHn as the monomer gas, the film formation rate is an order of magnitude faster than conventional methods, the film can be formed at room temperature, and the temperature of the base does not rise significantly even after film formation. In addition, there is an advantage that there is no need to newly set up a special mechanism to prevent charging of the base body 17, and its practical effects are great.

また、実験を通じて第2真空槽12内壁の汚染
はなく、プラズマ管13の内壁のみが汚染される
がプラズマ管13を横置にし、プラズマ吹出部2
3から汚物が吹出さないようにすれば問題ない。
プラズマ管13はOリング設置具で真空槽に設置
しているため着脱が容易で、プラズマ管13を設
置する場所さえあれば既存の真空装置にも簡単に
設置でき、その効果は大きい。
In addition, through the experiment, there was no contamination of the inner wall of the second vacuum chamber 12, and only the inner wall of the plasma tube 13 was contaminated, but the plasma tube 13 was placed horizontally, and the plasma blowing part 2
There is no problem as long as you prevent dirt from blowing out from 3.
Since the plasma tube 13 is installed in the vacuum chamber with an O-ring installation tool, it can be easily attached and detached, and as long as there is a place to install the plasma tube 13, it can be easily installed in an existing vacuum device, and the effect is great.

第3図に本発明のプラズマ・インジエクシヨ
ン・CVD装置の第2の実施例におけるプラズマ
吹出部付近の部分拡大図を示す。第3図において
26(1)〜(o)はメツシユ状加速電極でプラズマの流
れに対してほぼ垂直に設置される。27(1)〜(o-1)
は直流電源、28は基体でプラズマ吹出部31と
対向して設置する。
FIG. 3 shows a partially enlarged view of the vicinity of the plasma blowing part in a second embodiment of the plasma injection CVD apparatus of the present invention. In FIG. 3, 26 (1) to 26(o) are mesh-shaped accelerating electrodes installed almost perpendicular to the plasma flow. 27 (1)~(o-1)
28 is a DC power supply, and 28 is a base body, which is installed facing the plasma blowing part 31.

以上のように構成された第2の実施例のプラズ
マ・インジエクシヨン・CVD装置について以下
その動作を説明する。プラズマ管30内にプラズ
マを発生させプラズマ管30と第2真空槽32の
圧力差および加速手段によりプラズマ吹出部31
から吹出し、基体28上に膜を形成するといつた
動作・原理は第1の実施例と全く同じである。し
かしながら、プラズマ中のイオンをさらに加速さ
せて膜を形成する場合、第1の実施例では基体1
7又は基体設置台24に電位を設定するのに対
し、本実施例においては基体28、基体設置台2
9がアース電位でも第1の実施例と同質の膜を得
ることができることを特徴とする。即ちプラズマ
発生部32及びプラズマ吹出部31中に2個以上
のメツシユ状加速電極26(1)〜(o)をプラズマの流
れにほぼ垂直になる様に設置し、各対向するメツ
シユ状加速電極間に直流電源27(1)〜(o-1)により
プラズマ吹出部31に近い方のメツシユ状加速電
極が低電位になるよう電位差を設けることで、プ
ラズマ発生部32で生じたプラズマ中のイオンは
各対向するメツシユ状加速電極間で遂次加速さ
れ、最終段の最もプラズマ吹出部31に近いメツ
シユ状加速電極26(o)の電位をアース電位に設定
することで加速されたイオンがそのエネルギを損
失することなく吹出される。このため基体28、
基体設置台29の電位がアース電位であつてもイ
オンは加速された状態で基体に衝突する。もし、
最終のメツシユ状加速電極26(o)が負電位で、基
体28、基体設置台29がアース電位であれば、
加速されたイオンは最終のメツシユ状加速電極2
(o)を通過した直後逆加速され、基体28に到達
する時はかなりのエネルギ(最終のメツシユ状加
速電極26(o)の負電位値で決定される)が損失さ
れる。
The operation of the plasma injection CVD apparatus of the second embodiment configured as described above will be explained below. Plasma is generated in the plasma tube 30 and the plasma blowing section 31 is activated by the pressure difference between the plasma tube 30 and the second vacuum chamber 32 and the acceleration means
The operation and principle of blowing out air and forming a film on the substrate 28 is exactly the same as in the first embodiment. However, when forming a film by further accelerating ions in the plasma, in the first embodiment, the substrate 1
7 or the base mounting base 24, in this embodiment, the potential is set on the base 28 and the base mounting base 24.
9 is characterized in that a film having the same quality as that of the first embodiment can be obtained even at ground potential. That is, two or more mesh-shaped accelerating electrodes 26 (1) to (o) are installed in the plasma generating section 32 and the plasma blowing section 31 so as to be substantially perpendicular to the flow of plasma, and between each opposing mesh-shaped accelerating electrode Ions in the plasma generated in the plasma generation section 32 are The ions are sequentially accelerated between the opposing mesh-shaped accelerating electrodes, and by setting the potential of the mesh-shaped accelerating electrode 26 (o) in the final stage closest to the plasma blowing section 31 to the ground potential, the accelerated ions release their energy. It is blown out without any loss. For this reason, the base body 28,
Even if the potential of the substrate mounting table 29 is at ground potential, the ions collide with the substrate in an accelerated state. if,
If the final mesh-like accelerating electrode 26 (o) is at negative potential and the base 28 and base mounting base 29 are at ground potential,
The accelerated ions pass through the final mesh-like accelerating electrode 2.
Immediately after passing through 6 (o) , it is reversely accelerated, and when it reaches the base 28, a considerable amount of energy (determined by the negative potential value of the final mesh-like accelerating electrode 26 (o) ) is lost.

プラズマ中のイオンがプラズマ発生部32、プ
ラズマ吹出部31中に設置したメツシユ状加速電
極26(1)〜(o)により遂次加速される時、プラズマ
中の電子の一部はイオンに追従してプラズマ吹出
部31方向に流出する。これはメツシユ状加速電
極26(1)〜(o)に用いたメツシユの網目間距離をプ
ラズマのデバイ長より大きくすることにより、メ
ツシユ状加速電極26(1)〜(o)のごく近傍のイオン、
電子は分離されイオンはプラズマ吹出部31方向
に、電子はイオンと逆方向に加速するが、それ以
外の大部分のイオンと電子はメツシユ状加速電極
26(1)〜(o)の影響をうけず中和された状態でプラ
ズマ流として流出する。このためプラズマ吹出部
23より吹出するプラズマは加速したイオン、未
加速イオン、電子および中性種から構成され、本
発明第1実施例のプラズマ・インジエクシヨン・
CVD装置の場合と同様、基体28の近傍には電
子が存在し、基体28に帯電が生じてもこの電子
により中和され、従来例にみられるような中和の
ための手段は必要としない。
When ions in the plasma are sequentially accelerated by the mesh-shaped accelerating electrodes 26 (1) to (o) installed in the plasma generation section 32 and the plasma blowing section 31, some of the electrons in the plasma follow the ions. The plasma flows out in the direction of the plasma blowing section 31. By making the distance between the meshes of the meshes used in the mesh-like acceleration electrodes 26 (1) to (o) larger than the Debye length of the plasma, ions in the very vicinity of the mesh-like acceleration electrodes 26 (1) to (o) can be ,
The electrons are separated and the ions are accelerated in the direction of the plasma blowing section 31, and the electrons are accelerated in the opposite direction to the ions, but most of the other ions and electrons are influenced by the mesh-like accelerating electrodes 26 (1) to (o). It flows out as a plasma stream in a neutralized state. Therefore, the plasma blown out from the plasma blowing section 23 is composed of accelerated ions, unaccelerated ions, electrons, and neutral species.
As in the case of a CVD device, electrons exist near the base 28, and even if the base 28 is charged, it is neutralized by these electrons, and there is no need for a means for neutralization as seen in conventional examples. .

本発明第2の実施例であるプラズマ・インジエ
クシヨン・CVD装置を使用し、キヤリアガスに
Ar、モノマーガスにCH4を用いて高硬度炭素膜
形成の実験を行なつた結果、本発明第1の実施例
であるプラズマ・インジエクシヨン・CVD装置
を使用した場合と同程度の膜を形成することがで
きた。この時一対の対向するメツシユ状電極26
(1)〜(o)間の電位差0.5KV以上にすると電極間で

パイク状の直流放電が発生した。この直流放電は
プラズマの制御・安定性に対して好ましくなく、
均質な膜を形成するためには発生させてはならな
い。膜質に影響するイオンの加速エネルギはプラ
ズマ吹出部31に最も近いメツシユ状電極26(o)
とプラズマ吹出部から最も離れたメツシユ状電極
26(1)との電位差により決定され、膜形成に必要
な電位差が直流放電発生により制限される一対の
対向メツシユ状電極間の許容電位差より大きな場
合でも、直流放電は電極間距離が小さいほど発生
しにくいため本発明の第2実施例のように多段加
速にすれば必要な電位差を得ることができる。直
流放電が発生する電位差値は、メツシユ状電極間
のガス圧・距離及び電極形状等種々のパラメータ
により決定され、装置により大きく異なる。この
ため、膜形成に必要とする電位差と装置・膜形成
条件により最適なものを選択する必要がある。例
えばCH4、Arを用いて高硬度炭素膜を形成する
場合、最低必要な電位差が0.3KVで膜形成条件に
おける直流放電発生の許容電位差は0.5KVであつ
たため1段加速でも可能であつた。
Using the plasma injection CVD device which is the second embodiment of the present invention, the carrier gas is
As a result of conducting an experiment to form a high-hardness carbon film using Ar and CH 4 as a monomer gas, it was found that a film comparable to that obtained when using the plasma injection CVD device according to the first embodiment of the present invention was formed. I was able to do that. At this time, a pair of opposing mesh-shaped electrodes 26
When the potential difference between (1) and (o) was 0.5 KV or more, a spike-like DC discharge occurred between the electrodes. This DC discharge is unfavorable for plasma control and stability.
In order to form a homogeneous film, it must not be allowed to occur. The acceleration energy of ions that affects film quality is transferred to the mesh-shaped electrode 26 (o) closest to the plasma blowing part 31.
Even if the potential difference required for film formation is larger than the allowable potential difference between a pair of opposing mesh electrodes, which is limited by the generation of DC discharge, Since direct current discharge is less likely to occur as the distance between the electrodes becomes smaller, the necessary potential difference can be obtained by performing multi-stage acceleration as in the second embodiment of the present invention. The potential difference value at which DC discharge occurs is determined by various parameters such as the gas pressure and distance between the mesh electrodes, and the shape of the electrodes, and varies greatly depending on the device. For this reason, it is necessary to select the most suitable one depending on the potential difference required for film formation, equipment, and film formation conditions. For example, when forming a high-hardness carbon film using CH 4 or Ar, the minimum required potential difference was 0.3 KV, and the allowable potential difference for generating a DC discharge under the film forming conditions was 0.5 KV, so one-stage acceleration was possible.

以上のように本発明第2実施例のプラズマ・イ
ンジエクシヨン・CVD装置を用いて高硬度炭素
膜等を形成すれば本発明第1実施例のプラズマ・
インジエクシヨン・CVD装置の利点である『膜
形成速度が従来より1桁大きく基体温度が室温で
も膜形成が可能で膜形成後も基体温度上昇が極め
て少ない。加えて基体の帯電対策として特別な機
構を設置しなくてもよい』ということは損なわず
基体28および基体設置台29を特別な電位にせ
ずアース電位でも膜形成が可能となる。このため
既存の真空装置に設置することが更に容易となり
その効果は大きい。
As described above, if a high hardness carbon film etc. is formed using the plasma injection CVD apparatus of the second embodiment of the present invention, the plasma injection CVD apparatus of the first embodiment of the present invention
The advantage of the injection CVD device is that the film formation speed is an order of magnitude faster than conventional methods, and film formation is possible even when the substrate temperature is room temperature, and the rise in substrate temperature is extremely small even after film formation. In addition, there is no need to install a special mechanism as a countermeasure against charging of the substrate, and film formation is possible even at ground potential without having to set the substrate 28 and the substrate mounting table 29 at a special potential. Therefore, it is easier to install it in an existing vacuum device, and the effect is great.

第4図は本発明のプラズマ・インジエクシヨ
ン・CVD装置の第3の実施例におけるプラズマ
吹出部付近の部分拡大図である。構成・効果とし
ては、少なくとも一端がプラズマ発生部内になる
ようにプラズマ吹出部23に設けられたメツシユ
状電極18と基体17又は基体設置台24間に電
位差を設ける本発明第1実施例のプラズマ・イン
ジエクシヨン・CVD装置に対して、本発明第3
実施例のプラズマ・インジエクシヨン・CVD装
置では第2真空槽内に設置された基体35の近傍
にメツシユ状加速電極34を設置し、少なくとも
一端がプラズマ発生部41内になるようにプラズ
マ吹出部42に設置したメツシユ状加速電極33
との間に電位差を設けたことが異なり、それ以外
は本発明第1実施例のプラズマ・インジエクシヨ
ン・CVD装置と同じである。基体35か導電性
であれば基体に直接電位を設定することも可能
で、基体設置台36に電位を設定した場合でも基
体35表面は基体設置台36とほぼ同電位にな
る。このため2つのメツシユ状加速電極間に電位
差を設けた時、プラズマ中のイオンはそれが基体
35上に到達した時に電位差に対応して十分な加
速エネルギをもつことができる。しかしながら、
基体35が絶縁性の場合は基体35に直接電位を
与えることは不可能で、基体設置台36とプラズ
マ吹出部42に設けたメツシユ状加速電極33と
の間に基体設置台36が低電位となるように電位
差を設けプラズマ中のイオンを加速する。この時
イオンがもつ加速エネルギは電位勾配に比例する
ため基体35表面では電位差に対応する十分な加
速エネルギは得ることができない。この傾向は基
体35の厚みが厚いほど顕著で加速エネルギは小
さくなる。
FIG. 4 is a partially enlarged view of the vicinity of the plasma blowing section in the third embodiment of the plasma injection CVD apparatus of the present invention. As for the structure and effect, the plasma generator of the first embodiment of the present invention provides a potential difference between the mesh-shaped electrode 18 provided in the plasma blowing part 23 and the base 17 or the base mounting table 24 so that at least one end is inside the plasma generating part. The third aspect of the present invention for injection/CVD equipment
In the plasma injection CVD apparatus of the embodiment, a mesh-shaped accelerating electrode 34 is installed near the base 35 installed in the second vacuum chamber, and is attached to the plasma blowing part 42 so that at least one end is inside the plasma generating part 41. Installed mesh accelerating electrode 33
The difference is that a potential difference is provided between the plasma injection CVD apparatus and the plasma injection CVD apparatus of the first embodiment of the present invention. If the base 35 is conductive, it is possible to set a potential directly on the base, and even if a potential is set on the base 36, the surface of the base 35 will have approximately the same potential as the base 36. Therefore, when a potential difference is provided between the two mesh-like accelerating electrodes, the ions in the plasma can have sufficient acceleration energy when they reach the substrate 35, corresponding to the potential difference. however,
When the base 35 is insulating, it is impossible to apply a potential directly to the base 35, and the base 36 is placed between the base 36 and the mesh accelerating electrode 33 provided in the plasma blowing part 42 at a low potential. A potential difference is provided so that the ions in the plasma are accelerated. At this time, since the acceleration energy of the ions is proportional to the potential gradient, sufficient acceleration energy corresponding to the potential difference cannot be obtained on the surface of the substrate 35. This tendency is more pronounced as the base body 35 becomes thicker, and the acceleration energy becomes smaller.

そこで基体35近傍にメツシユ状加速電極34
を設定し、プラズマ吹出部42に設置したメツシ
ユ状加速電極33との間に基体35近傍のメツシ
ユ状加速電極34が低電位となるよう電位差を設
けることで、基体35の導電性・厚みにかかわら
ずプラズマ中のイオンに電位差に対応した加速エ
ネルギを与えることができ、同質で再現性の良い
膜を形成することができる。この時メツシユ状加
速電極34と基体35間の距離は小さいほど効果
は大きい。ここで基体35上のメツシユ状加速電
極34を静止させておくとメツシユのパターンを
もつ膜が基体35上に形成される。そこでメツシ
ユ状加速電極34の一端にカム・シヤフト及び真
空モーター37を設置し、メツシユ状加速電極3
4を基体35と平行に連続的に移動させることに
より形成膜のメツシユパターンを取除き均一な膜
を形成する。
Therefore, a mesh-like accelerating electrode 34 is placed near the base 35.
By setting a potential difference between the mesh-shaped accelerating electrode 33 installed in the plasma blowing part 42 and the mesh-shaped accelerating electrode 34 near the base body 35 so that the potential is low, regardless of the conductivity and thickness of the base body 35. First, acceleration energy corresponding to the potential difference can be applied to ions in the plasma, making it possible to form a homogeneous film with good reproducibility. At this time, the smaller the distance between the mesh-like accelerating electrode 34 and the base 35, the greater the effect. If the mesh-shaped accelerating electrode 34 on the base 35 is kept stationary, a film having a mesh pattern is formed on the base 35. Therefore, a cam shaft and a vacuum motor 37 are installed at one end of the mesh-like accelerating electrode 34, and the mesh-like accelerating electrode 3
4 in parallel with the substrate 35, the mesh pattern of the formed film is removed and a uniform film is formed.

以上、本発明第3の実施例のプラズマ・インジ
エクシヨン・CVD装置では、プラズマ中のイオ
ンを加速して膜を形成する時、基体35の導電
性・厚みにかかわらず同質の膜を形成することが
可能で、この時本発明第1の実施例のプラズマ・
インジエクシヨン・CVD装置において生じる利
点は全く損なわない。
As described above, in the plasma injection CVD apparatus of the third embodiment of the present invention, when forming a film by accelerating ions in plasma, it is possible to form a film of the same quality regardless of the conductivity and thickness of the substrate 35. possible, and at this time the plasma of the first embodiment of the present invention
The advantages that occur in injection CVD equipment are not compromised in any way.

第5図は本発明のプラズマ・インジエクシヨ
ン・CVD装置の第4の実施例におけるプラズマ
吹出部付近の部分拡大図である。第4図において
43は放電防止電極で、真空槽50内に位置する
プラズマ管47の表面及びプラズマ吹出部49を
被覆するよう設置し、その電位はアース電位とす
る。本発明第1実施例のプラズマ・インジエクシ
ヨン・CVD装置において(第1図参照)、石英ガ
ラス等の非磁性材からなるプラズマ管13の内部
にプラズマを発生させる時、プラズマ管13の真
空槽12外の部分に巻回した高周波コイル14に
高周波電源16から整合器15を介してRFパワ
ーを印加する。この時印加されるRFパワーの一
部が、真空槽12内に位置するプラズマ管13の
表面及びプラズマ吹出部23から真空槽12内に
もれる。真空槽12内は、ニードルバルブ20,
21で調量されプラズマ管13内に導入されたキ
ヤリアガス、モノマーガスがプラズマ吹出部23
から流出し、プラズマ管13内より圧力は低いけ
れどもキヤリアガス、モノマーガスが存在する。
形成する膜質、膜形成速度、使用ガスにより高周
波コイル14に印加するRFパワーを大きくする
ことが必要となる場合がある。この時、RFパワ
ーの増加に伴い真空槽12内にもれるRFパワー
も増加し、ついには真空槽12内でも放電が開始
する。真空槽12内で放電すると真空槽12内壁
に付着物が生じ汚染されるばかりか、プラズマ中
のイオンを加速して膜を形成する時メツシユ状加
速電極23と基体17又は基体設置台24間に電
位差を設けるが電位差を大きくするにつれパルス
状の直流放電が生じ、真空槽12内でもれ高周波
による放電が発生する時はより低電位差でパルス
状直流放電が生じる。この問題を解決したのが第
5図に示す本発明第4実施例のプラズマ・インジ
エクシヨン・CVD装置で、真空槽50内に位置
する石英ガラス等の非磁性材料からなるプラズマ
管47の表面及びプラズマ吹出部49をアース電
位の放電防止電極により被覆することで、プラズ
マ発生部48にプラズマを発生させるため印加し
たRFパワーが真空槽50内に位置するプラズマ
管47の表面及びプラズマ吹出部からもれること
を完全に防止する。この構成により真空槽50内
では放電しにくくなり、膜形成に関与するパラメ
ータの変位可能範囲が増えた(例えばキヤリアガ
スAr、モノマーガスCH4を用いプラズマ管47
内圧力0.4Tonの時最大許容電力0.6KW→2.0KW、
最大許容電位差0.7KV→15KVに増加した)。本
発明第4実施例のプラズマ・インジエクシヨン・
CVD装置の構成は、本発明第1実施例のプラズ
マ・インジエクシヨン・CVD装置だけでなく本
発明2、3実施例のプラズマ・インジエクシヨ
ン・CVD装置に対しても応用することが可能で、
その構成を第6,7図に示す。
FIG. 5 is a partially enlarged view of the vicinity of the plasma blowing part in the fourth embodiment of the plasma injection CVD apparatus of the present invention. In FIG. 4, reference numeral 43 denotes a discharge prevention electrode, which is installed so as to cover the surface of the plasma tube 47 located in the vacuum chamber 50 and the plasma blowing part 49, and its potential is set to earth potential. In the plasma injection CVD apparatus according to the first embodiment of the present invention (see FIG. 1), when plasma is generated inside the plasma tube 13 made of a non-magnetic material such as quartz glass, the outside of the vacuum chamber 12 of the plasma tube 13 is RF power is applied from a high frequency power source 16 to a high frequency coil 14 wound around the portion of the high frequency coil 14 via a matching box 15. A part of the RF power applied at this time leaks into the vacuum chamber 12 from the surface of the plasma tube 13 located within the vacuum chamber 12 and from the plasma blowing section 23 . Inside the vacuum chamber 12 are needle valves 20,
The carrier gas and monomer gas metered in step 21 and introduced into the plasma tube 13 are transferred to the plasma blowing section 23.
Carrier gas and monomer gas flow out from the plasma tube 13, and although the pressure is lower than that in the plasma tube 13, carrier gas and monomer gas are present.
Depending on the quality of the film to be formed, the film formation speed, and the gas used, it may be necessary to increase the RF power applied to the high-frequency coil 14. At this time, as the RF power increases, the RF power leaking into the vacuum chamber 12 also increases, and finally discharge starts even within the vacuum chamber 12. When electric discharge occurs in the vacuum chamber 12, deposits not only form on the inner wall of the vacuum chamber 12 and cause contamination, but also when accelerating ions in the plasma to form a film, there is a possibility that there will be deposits between the mesh-like accelerating electrode 23 and the substrate 17 or the substrate installation stand 24. A potential difference is provided, but as the potential difference is increased, a pulsed DC discharge occurs, and when a leakage high-frequency discharge occurs in the vacuum chamber 12, a pulsed DC discharge occurs with a lower potential difference. This problem was solved by the plasma injection CVD apparatus of the fourth embodiment of the present invention shown in FIG. By covering the blowing part 49 with a discharge prevention electrode of earth potential, the RF power applied to the plasma generating part 48 to generate plasma leaks from the surface of the plasma tube 47 located in the vacuum chamber 50 and the plasma blowing part. Completely prevent this. This configuration makes it difficult to generate electric discharge in the vacuum chamber 50, and increases the range of possible changes in parameters involved in film formation (for example, using carrier gas Ar and monomer gas CH 4 in plasma tube 47).
Maximum allowable power 0.6KW → 2.0KW when internal pressure is 0.4Ton,
Maximum allowable potential difference increased from 0.7KV to 15KV). Plasma injection according to the fourth embodiment of the present invention
The configuration of the CVD device can be applied not only to the plasma injection CVD device of the first embodiment of the present invention but also to the plasma injection CVD device of the second and third embodiments of the present invention.
Its configuration is shown in Figures 6 and 7.

第6図は本発明第5実施例のプラズマ・インジ
エクシヨン・CVD装置の構成を本発明第2実施
例のプラズマ・インジエクシヨン・CVD装置に
応用した時のプラズマ吹出部付近の部分拡大図で
ある。プラズマ発生部53及びプラズマ吹出部5
5中にプラズマの流れにほぼ垂直に設けられたメ
ツシユ状加速電極51(1)〜(o)において、プラズマ
吹出部55に最も近いアース電位のメツシユ状加
速電極51(o)を変形して真空槽58内に位置する
プラズマ管52の表面も被覆し放電防止電極もか
ねた構成とし、他は本発明第2実施例のプラズ
マ・インジエクシヨン・CVD装置と同じ構成で
ある。この構成により真空槽58内では放電しに
くくなり、膜形成に関与するパラメータの変位可
能範囲が増え、実用的効果は大きい。
FIG. 6 is a partially enlarged view of the vicinity of the plasma blowing section when the configuration of the plasma injection CVD apparatus according to the fifth embodiment of the present invention is applied to the plasma injection CVD apparatus according to the second embodiment of the present invention. Plasma generation section 53 and plasma blowing section 5
In the mesh-shaped accelerating electrodes 51 (1) to (o) provided almost perpendicularly to the plasma flow in the plasma flow section 5, the mesh-shaped accelerating electrode 51 (o) , which is at ground potential and is closest to the plasma blowing part 55, is deformed to create a vacuum. The surface of the plasma tube 52 located in the tank 58 is also coated and the discharge prevention electrode also serves as a structure, and the other structure is the same as that of the plasma injection CVD apparatus of the second embodiment of the present invention. This configuration makes it difficult for electric discharge to occur in the vacuum chamber 58, increases the variable range of parameters involved in film formation, and has a great practical effect.

第7図は本発明第5実施例のプラズマ・インジ
エクシヨン・CVD装置の構成を、本発明第3実
施例のプラズマ・インジエクシヨン・CVD装置
に応用した時のプラズマ吹出部付近の部分拡大図
である。少なくとも一端がプラズマ発生部60内
に位置するようプラズマ吹出部64に設けたアー
ス電位のメツシユ状加速電極を変形し、真空槽6
5内に位置するプラズマ管59の表面及びプラズ
マ吹出部64を完全に被覆して放電防止電極をも
兼ねた構成で、他は本発明第3実施例のプラズ
マ・インジエクシヨン・CVD装置と同じ構成で
ある。この構成により真空槽65内ではもれRF
パワーによつて放電が発生しにくくなり、膜形成
に関与するパラメータの変位可能範囲が増え実用
的効果は大きい。
FIG. 7 is a partially enlarged view of the vicinity of the plasma blowing section when the configuration of the plasma injection CVD apparatus according to the fifth embodiment of the present invention is applied to the plasma injection CVD apparatus according to the third embodiment of the present invention. A mesh-shaped accelerating electrode with a ground potential provided in the plasma blowing part 64 is deformed so that at least one end is located inside the plasma generating part 60, and
The surface of the plasma tube 59 located in the plasma tube 59 and the plasma blowing part 64 are completely covered and also serve as a discharge prevention electrode. be. This configuration allows leakage of RF in the vacuum chamber 65.
The power makes it difficult for electric discharge to occur, and the range in which the parameters involved in film formation can be changed increases, which has a great practical effect.

以上の様に、本発明第5実施例の構成を本発明
第1、2、3実施例のプラズマ・インジエクシヨ
ン・CVD装置に応用した場合、各実施例のプラ
ズマ・インジエクシヨン・CVD装置の利点を損
なうことがなく、膜形成条件をより広い範囲で変
化させることが可能となり、実用的効果は大き
い。
As described above, when the configuration of the fifth embodiment of the present invention is applied to the plasma injection CVD apparatus of the first, second, and third embodiments of the present invention, the advantages of the plasma injection CVD apparatus of each embodiment are lost. This makes it possible to change the film forming conditions over a wider range, which has a great practical effect.

発明の効果 本発明のプラズマ・インジエクシヨン・CVD
装置は、2つの真空槽で構成した無電極・誘導結
合型で非磁性材料からなる第1の真空槽に、導入
するガスをプラズマ化するプラズマ発生部と第2
の真空槽に設置した膜形成基体にプラズマを吹付
けるため膜形成基体と対向したプラズマ吹出部及
びプラズマ加速手段を備えたことを特徴としてお
り、第1真空槽内のプラズマ発生部で発生する安
定したプラズマを、プラズマ加速手段によりプラ
ズマ中のイオンを加速しつつ第2真空槽中に設置
した膜形成基体に吹付けるものである。この構成
をもつ本発明のプラズマ・インジエクシヨン・
CVD装置を用いキヤリアガス:Ar、モノマーガ
ス:CH4により高硬度炭素膜を形成すると、膜形
成速度が従来より1桁大きく基体温度が室温でも
膜形成が可能で膜形成後も基体温度上昇が極めて
少なくてすみ、基体の静電気対策としても特別な
機構を設置する必要がないという効果がある。ま
た膜形成基体が設置される第2の真空槽内で放電
が生じないため汚染がなく、プラズマ吹出部の形
状を変えることで任意の範囲・形状に成膜するこ
とができる。また、第1の真空槽内にプラズマ発
生部、プラズマ吹出部及びプラズマ加速手段を設
定することが可能で2つの真空槽を分離着脱がで
きるためユニツトとしての取扱いが可能となり、
既存の真空装置にもその機能を損なうことなく容
易に設置することができる。
Effects of the invention Plasma injection/CVD of the invention
The device consists of two vacuum chambers, the first vacuum chamber is electrodeless, inductively coupled, and made of non-magnetic material.
It is characterized by having a plasma blowing section facing the film forming substrate and plasma accelerating means for spraying plasma onto the film forming substrate installed in the first vacuum chamber. The resulting plasma is sprayed onto a film forming substrate placed in a second vacuum chamber while accelerating ions in the plasma by a plasma accelerating means. The plasma injection system of the present invention having this configuration
When a high-hardness carbon film is formed using a CVD device with carrier gas: Ar and monomer gas: CH 4 , the film formation rate is an order of magnitude faster than conventional methods, and film formation is possible even when the substrate temperature is room temperature, and the substrate temperature does not rise significantly even after film formation. This has the effect that there is no need to install a special mechanism as a countermeasure against static electricity on the base. Further, since no discharge occurs in the second vacuum chamber in which the film-forming substrate is installed, there is no contamination, and by changing the shape of the plasma blowing part, it is possible to form a film in any desired range or shape. In addition, it is possible to set the plasma generation section, plasma blowing section, and plasma acceleration means in the first vacuum chamber, and the two vacuum chambers can be separated and detached, so they can be handled as a unit.
It can be easily installed in existing vacuum equipment without impairing its functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例におけるプラズ
マ・インジエクシヨン・CVD装置の断面図、第
2図は第1実施例を用いて実験を行なつた時の−
結果を示す特性図、第3図は本発明の第2実施例
におけるプラズマ吹出部付近を表わす部分拡大断
面図、第4図は本発明の第3実施例におけるプラ
ズマ吹出部付近を表わす部分拡大断面図、第5図
は本発明の第4実施例におけるプラズマ吹出部付
近を表わす部分拡大断面図、第6図は本発明の第
5実施例の構成を本発明第2実施例に応用した時
のプラズマ吹出部付近を表わす部分拡大断面図、
第7図は本発明第5実施例の構成を本発明第3実
施例に応用した時のプラズマ吹出部付近を表わす
部分拡大断面図、第8図は従来のプラズマCVD
装置を示す断面図、第9図は別な従来のプラズマ
CVD装置を示す断面図である。 13……プラズマ管、14……高周波コイル、
17……基体、18……メツシユ状加速電極、1
9……直流電源、23……プラズマ吹出部、24
……基体設置台。
FIG. 1 is a cross-sectional view of a plasma injection CVD apparatus according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of an experiment using the first embodiment.
A characteristic diagram showing the results. FIG. 3 is a partially enlarged cross-sectional view showing the vicinity of the plasma blowing part in the second embodiment of the present invention. FIG. 4 is a partially enlarged cross-sectional view showing the vicinity of the plasma blowing part in the third embodiment of the present invention. 5 is a partially enlarged sectional view showing the vicinity of the plasma blowing part in the fourth embodiment of the present invention, and FIG. 6 is a partial enlarged sectional view showing the vicinity of the plasma blowing part in the fourth embodiment of the present invention, and FIG. A partially enlarged sectional view showing the vicinity of the plasma blowing part,
FIG. 7 is a partially enlarged sectional view showing the vicinity of the plasma blowing part when the configuration of the fifth embodiment of the present invention is applied to the third embodiment of the present invention, and FIG. 8 is a conventional plasma CVD.
A cross-sectional view showing the device, Figure 9 shows another conventional plasma
FIG. 2 is a cross-sectional view showing a CVD device. 13... Plasma tube, 14... High frequency coil,
17...Base, 18...Mesh-shaped accelerating electrode, 1
9...DC power supply, 23...Plasma blowing part, 24
...Base installation stand.

Claims (1)

【特許請求の範囲】 1 非磁性材料からなる第1真空槽と、この第1
真空槽の外部に巻回された高周波コイルと、前記
第1真空槽に導入するガスを高周波の誘導結合に
よりプラズマ化するプラズマ発生部と、第2真空
槽と、この第2真空槽に設置した膜形成基体に前
記第1真空槽と第2真空槽との圧力差によりプラ
ズマを吹き付けるべく前記膜形成基体と対向する
プラズマ吹出部と、プラズマ発生部中に加速電極
を設け加速電極と膜形成基体又は基体設置台との
間に前記加速電極が高電位になるように電位差を
設けたプラズマ加速手段とを有することを特徴と
するプラズマ・インジエクシヨン・CVD装置。 2 プラズマ加速手段が、プラズマ発生部中に2
個以上の加速電極をプラズマの流れに対してほぼ
垂直に設定し各対向する加速電極間にプラズマ吹
出部に近く位置する加速電極の方が低電位になる
よう電位差を設け、かつプラズマ吹出部に最も近
い加速電極をアース電位とした構成であることを
特徴とする特許請求の範囲第1項記載のプラズ
マ・インジエクシヨン・CVD装置。 3 プラズマ加速手段が、プラズマ発生部中に2
個以上の加速電極をプラズマの流れに対してほぼ
垂直に設定しかつ膜形成基体近傍の第2真空中に
もプラズマ吹出部と対向するよう加速電極を設
け、各対向する加速電極間に膜形成基体に近い加
速電極が低電位となるよう電位差を設けた構成で
あることを特徴とする特許請求の範囲第1項記載
のプラズマ・インジエクシヨン・CVD装置。 4 膜形成基体近傍の第2真空槽中に設けたプラ
ズマ吹出部に対向する加速電極が、膜形成基体と
平行に連続移動することを特徴とする特許請求の
範囲第3項記載のプラズマ・インジエクシヨン・
CVD装置。 5 プラズマ発生部、プラズマ吹出部及びプラズ
マ加速手段を備えた第1真空槽が、膜形成基体の
設置された第2真空槽内に位置する前記第1真空
槽表面をアース電位の導電性材からなる放電防止
電極で被覆された構成であることを特徴とする特
許請求の範囲第1項記載のプラズマ・インジエク
シヨン・CVD装置。
[Claims] 1. A first vacuum chamber made of a non-magnetic material;
A high-frequency coil wound around the outside of the vacuum chamber, a plasma generation unit that converts the gas introduced into the first vacuum chamber into plasma through high-frequency inductive coupling, and a second vacuum chamber installed in the second vacuum chamber. a plasma blowing section facing the film forming substrate for spraying plasma onto the film forming substrate due to a pressure difference between the first vacuum chamber and the second vacuum chamber; an accelerating electrode provided in the plasma generating section; the accelerating electrode and the film forming substrate; Alternatively, a plasma injection CVD apparatus comprising plasma acceleration means that provides a potential difference between the accelerating electrode and the substrate mounting table so that the accelerating electrode has a high potential. 2. The plasma accelerating means is in the plasma generating part.
A plurality of accelerating electrodes are set almost perpendicularly to the plasma flow, and a potential difference is provided between each of the opposing accelerating electrodes so that the accelerating electrode located closer to the plasma blowing part has a lower potential. The plasma injection CVD apparatus according to claim 1, characterized in that the nearest accelerating electrode is at ground potential. 3 Plasma acceleration means 2 in the plasma generation part
A plurality of accelerating electrodes are set almost perpendicular to the flow of plasma, and accelerating electrodes are also provided in a second vacuum near the film forming substrate so as to face the plasma blowing part, and a film is formed between each of the facing accelerating electrodes. 2. The plasma injection CVD apparatus according to claim 1, wherein a potential difference is provided so that an accelerating electrode close to the substrate has a low potential. 4. The plasma injection system according to claim 3, characterized in that an accelerating electrode facing a plasma blowing section provided in the second vacuum chamber near the film forming substrate continuously moves in parallel with the film forming substrate.・
CVD equipment. 5. A first vacuum chamber equipped with a plasma generating section, a plasma blowing section, and a plasma accelerating means removes the surface of the first vacuum chamber located in the second vacuum chamber in which the film forming substrate is installed from a conductive material at an earth potential. The plasma injection CVD apparatus according to claim 1, characterized in that the plasma injection CVD apparatus is coated with a discharge prevention electrode.
JP25220584A 1984-08-31 1984-11-29 Plasma injection cvd device Granted JPS61130487A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25220584A JPS61130487A (en) 1984-11-29 1984-11-29 Plasma injection cvd device
EP19850115085 EP0183254B1 (en) 1984-11-29 1985-11-28 Plasma CVD apparatus and method for forming a diamond-like carbon film
DE19853587881 DE3587881T2 (en) 1984-11-29 1985-11-28 Process for plasma chemical vapor deposition and process for producing a film of diamond-like carbon.
US06/803,001 US4645977A (en) 1984-08-31 1985-11-29 Plasma CVD apparatus and method for forming a diamond like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25220584A JPS61130487A (en) 1984-11-29 1984-11-29 Plasma injection cvd device

Publications (2)

Publication Number Publication Date
JPS61130487A JPS61130487A (en) 1986-06-18
JPS6326195B2 true JPS6326195B2 (en) 1988-05-28

Family

ID=17233960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25220584A Granted JPS61130487A (en) 1984-08-31 1984-11-29 Plasma injection cvd device

Country Status (1)

Country Link
JP (1) JPS61130487A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238962A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Method and apparatus for forming film
DE102013217371A1 (en) 2013-08-30 2015-03-05 Robert Bosch Gmbh fuel injector
CN112899662A (en) * 2019-12-04 2021-06-04 江苏菲沃泰纳米科技股份有限公司 DLC production apparatus and production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483376A (en) * 1977-12-16 1979-07-03 Fujitsu Ltd Plasma treatment equipment
JPS59200753A (en) * 1983-04-30 1984-11-14 Mitsubishi Electric Corp Thin film forming device
JPS59205471A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Method for forming black film on surface of article to be treated

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483376A (en) * 1977-12-16 1979-07-03 Fujitsu Ltd Plasma treatment equipment
JPS59200753A (en) * 1983-04-30 1984-11-14 Mitsubishi Electric Corp Thin film forming device
JPS59205471A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Method for forming black film on surface of article to be treated

Also Published As

Publication number Publication date
JPS61130487A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US4039416A (en) Gasless ion plating
EP3711078B1 (en) Linearized energetic radio-frequency plasma ion source
US5935391A (en) Method of manufacturing a tube having a film on its inner peripheral surface and apparatus for manufacturing the same
US6716762B1 (en) Plasma confinement by use of preferred RF return path
KR100443471B1 (en) Plasma processing method
JPS5915982B2 (en) Electric discharge chemical reaction device
US20070221833A1 (en) Plasma generating apparatus and method using neutral beam
KR20070053213A (en) Thin-film forming apparatus
USRE30401E (en) Gasless ion plating
JPH02281734A (en) Treating method of surface by plasma
JPH1012597A (en) Plasma-etching equipment and plasma etching method
JPS6326195B2 (en)
KR100457455B1 (en) Chemical Vapor Deposition Apparatus which deposition-speed control is possible
JPS61238962A (en) Method and apparatus for forming film
KR20130090037A (en) Apparatus for multi coating processing under atmospheric pressure plasma
JPH04351838A (en) Neutralization unit of ion beam device
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
KR20090008001A (en) Atmospheric pressure plasma system provided with extended power electrode
JPH04228566A (en) Conductive fiber coating method and apparatus by sputter ion plating
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
KR101016810B1 (en) Apparatus for surface treatment using plasma
JPH0644138U (en) Plasma CVD equipment
KR100469552B1 (en) System and method for surface treatment using plasma
KR101173568B1 (en) Plasma generation apparatus for making radical effectively
KR20050087405A (en) Chemical vapor deposition apparatus equipped with showerhead which generates high density plasma