JPS63260032A - Removal of organic film - Google Patents

Removal of organic film

Info

Publication number
JPS63260032A
JPS63260032A JP22159686A JP22159686A JPS63260032A JP S63260032 A JPS63260032 A JP S63260032A JP 22159686 A JP22159686 A JP 22159686A JP 22159686 A JP22159686 A JP 22159686A JP S63260032 A JPS63260032 A JP S63260032A
Authority
JP
Japan
Prior art keywords
chamber
plasma
organic film
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22159686A
Other languages
Japanese (ja)
Other versions
JP2624243B2 (en
Inventor
Isamu Hijikata
土方 勇
Akira Uehara
植原 晃
Muneo Nakayama
中山 宗雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP61221596A priority Critical patent/JP2624243B2/en
Publication of JPS63260032A publication Critical patent/JPS63260032A/en
Application granted granted Critical
Publication of JP2624243B2 publication Critical patent/JP2624243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To shorten the treatment time while lessening damage to a base substance by separating the inside of a treatment chamber with an inner electrode into a chamber for producing the plasma and a reaction treatment chamber and by using a specific mixed gas as the gas to be introduced into the chamber for producing the plasma. CONSTITUTION:As to a treatment chamber 1, the upper part of a cylindrical main frame 2 is made of aluminum or synthetic silica and is blocked by a plate of silica glass 3. A thin plate-like outer electrode 5 connecting to a high frequency oscillator 4 is fixed to an upper face of the above silica glass 3 and a stage 6 where a substrate is placed is hermetically fitted to the base of the cylindrical main frame 2 and further a thin plate-like inner electrode 7 where many small holes 7a are formed is prepared at the inside of the cylindrical main frame 2. The inside of its frame 2 is separated into two parts by the inner electrode 7: the upper part is a chamber S1 for producing the plasma and the lower part is a reaction treatment chamber S2. A treatment gas consists of oxygen and mixed gases comprising octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, and dodecafluorocyclopentane and they are in the vol. ratio: 1-30% and yet it is preferable for them to be in the vol. ratio: 2-10%.

Description

【発明の詳細な説明】 (産業上の利用分野) 発明はプラズマ発生室と反応処理室とを分離した処理チ
ャンバーを用いて、基体表面に存在する有機膜を除去す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing an organic film present on the surface of a substrate using a processing chamber in which a plasma generation chamber and a reaction processing chamber are separated.

(従来の技術) 基体表面に形成した有機膜を除去することは半導体集積
回路の製造工程など種々の分野で行われている。
(Prior Art) Removal of organic films formed on the surface of a substrate is performed in various fields such as the manufacturing process of semiconductor integrated circuits.

例えば半導体集積回路の製造工程においては。For example, in the manufacturing process of semiconductor integrated circuits.

微細パターンを形成するためにホトレジスト或いは有機
絶縁膜などの有m膜を基体表面に形成し、これら有機膜
をそれぞれの役目を達成したならば除去するようにして
いる。
In order to form fine patterns, organic films such as photoresist or organic insulating films are formed on the surface of the substrate, and these organic films are removed when their respective roles have been accomplished.

そして斯る有機膜の除去方法としては、強酸或いは有機
溶剤によっη溶解除去していたが、使用できる薬剤が限
定されるとともに1作業環境や廃棄処理の問題があるた
め、現在ではプラズマを利用したドライ化が主流を占め
ている。
The method used to remove such organic films was to dissolve them using strong acids or organic solvents, but due to limitations on the chemicals that can be used and problems with the working environment and disposal, plasma is currently being used. drying is the mainstream.

このプラズマを利用した方法としては、特開昭52−1
13164号公報に開示されるように。
As a method using this plasma, JP-A-52-1
As disclosed in Publication No. 13164.

表面に有機膜を形成した基体(シリコンウェハー)をチ
ャンバー内にセットし、このチャンバー内に減圧条件下
でフレオン(CF4)と酸素ガスとの混合ガスを導入し
、この混合ガスをプラズマ化し、この活性種(ラジカル
)によって有機膜の主鎖を切断して気化(CO2、Co
、 H2O) して除去するようにしたものである。
A substrate (silicon wafer) with an organic film formed on its surface is set in a chamber, and a mixed gas of Freon (CF4) and oxygen gas is introduced into the chamber under reduced pressure conditions, and this mixed gas is turned into plasma. Active species (radicals) cut the main chain of the organic film and vaporize it (CO2, Co
, H2O).

この方法によると、有機膜の除去は有効に行えるのであ
るが、プラズマ中に存在するイオンや荷電粒子によって
基体自体に損傷を与え、また基体の温度上昇を招いて不
良品を生じる問題がある。
According to this method, the organic film can be effectively removed, but there are problems in that the ions and charged particles present in the plasma damage the substrate itself, and also cause the temperature of the substrate to rise, resulting in defective products.

そこで、プラズマ処理チャンバー内をプラズマ発生室と
反応処理室とに分離し、プラズマ発生室内で生じたイオ
ンや荷電粒子による基体への衝撃を少なくするようにし
たものが特公昭54−32740号公報として提案され
ている。
Therefore, Japanese Patent Publication No. 54-32740 proposed a method in which the inside of the plasma processing chamber was separated into a plasma generation chamber and a reaction treatment chamber to reduce the impact on the substrate due to ions and charged particles generated in the plasma generation chamber. Proposed.

(発明が解決しようとする問題点) 上述した分離型の処理チャンバーを使用する場合、プラ
ズマ発生室で生じた酸素ラジカル等の活性種が、反応処
理室内にセットした基体表面に到達するまでにその活性
度が弱くなり、その結果、有機膜の除去に時間がかかり
、量産性に劣るという問題がある。
(Problems to be Solved by the Invention) When using the above-mentioned separated processing chamber, active species such as oxygen radicals generated in the plasma generation chamber do not reach the surface of the substrate set in the reaction processing chamber. There is a problem in that the activity is weakened, and as a result, it takes time to remove the organic film, resulting in poor mass productivity.

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、内部電極によって処
理チャンバー内をプラズマ発生室と反応処理室とに分離
するとともに、プラズマ発生室に導入するガスを、オク
タフルオロプロパン、オクタフルオロシクロブタン、デ
カフルオロブタン、デカフルオロシクロペンタン及びド
デカフルオロシクロペンタンの少なくとも一つと酸素と
の混合ガスとすることで、基体へのダメージを少なくし
つつ処理時間を短縮し得るようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention separates the inside of the processing chamber into a plasma generation chamber and a reaction processing chamber by an internal electrode, and also controls the gas introduced into the plasma generation chamber. By using a mixed gas of at least one of octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, and dodecafluorocyclopentane and oxygen, processing time can be shortened while minimizing damage to the substrate. I made it.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明に係る有機膜除去方法を実施する処理チ
ャンバーの断面図であり、処理チャンバー(1)はアル
ミニウム或いは合成石英等からなる筒状本体(2)の上
部を板状をなす石英ガラス(3)にて閉塞し、この石英
ガラス(3)の上面に高周波発振器(4)につながる薄
板状外部電極(5)を固着し、また筒状本体(2)の底
部には基体(W)の載置台(8)を気密に嵌合し、更に
筒状本体(2)内部には多数の小孔(7a)・・・を形
成した薄板状内部電極(7)を設け、この内部電極(7
)にて筒状本体(2)内を上部のプラズマ発生室(S+
)と下部の反応処理室(S2)とに分離している。そし
てプラズマ発生室(Sl)を形成する本体側壁には反応
ガス導入口(8)を1反応処理室(S2)を形成する本
体底部には反応ガス排出口(8)をそれぞれ穿設してい
る。更に、プラズマ発生室(Sl)及び反応処理室(S
2)は本体(2)に設けた監視窓(to)、(11)に
て内部を監視し得るようになっている。
FIG. 1 is a cross-sectional view of a processing chamber in which the method for removing an organic film according to the present invention is carried out. The silica glass (3) is closed with a thin plate-like external electrode (5) connected to the high-frequency oscillator (4) on the top surface of the quartz glass (3), and the bottom of the cylindrical body (2) is covered with a base (W ) is airtightly fitted into the mounting table (8), and furthermore, a thin plate-shaped internal electrode (7) with a large number of small holes (7a) formed inside the cylindrical body (2) is provided, and this internal electrode (7
), the inside of the cylindrical body (2) is connected to the upper plasma generation chamber (S+
) and a lower reaction processing chamber (S2). A reactive gas inlet (8) is provided in the side wall of the main body forming the plasma generation chamber (S1), and a reactive gas outlet (8) is provided in the bottom of the main body forming the reaction processing chamber (S2). . Furthermore, a plasma generation chamber (Sl) and a reaction processing chamber (S
2) is designed so that the inside can be monitored through a monitoring window (TO) and (11) provided on the main body (2).

ここで、本実施例にあっては、外部電極(5)。Here, in this embodiment, the external electrode (5).

内部電極(7)及び載置台(8)上面とが平行となるよ
うにし、プラズマアッシング処理或いはプラズマクリー
ニング処理が均一になされるようにしている。
The internal electrode (7) and the upper surface of the mounting table (8) are arranged to be parallel to each other, so that the plasma ashing process or the plasma cleaning process can be performed uniformly.

以上の如き処理チャンバー(1)を用いた有機膜のアッ
シングの実験例を具体的な数値をもって示す。
An experimental example of organic film ashing using the processing chamber (1) as described above will be shown with specific numerical values.

[実験例1] 先ず、1.2 g膳厚のポジ型ホトレジス)(OFPR
−800:東京応化工業■製)を表面に形成した5イン
チサイズのシリコンウェハー(W)を載置台(6)上に
セットし、反応ガス導入口(8)からオクタフルオロプ
ロパンを5容量%、酸素を残部とした混合ガスを導入し
、処理チャンバー内を160、OPaに減圧した後、電
極(5)、(7)間に250Wの高周波を印加しプラズ
マ発生室(S+)内にプラズマを発生させた。
[Experimental Example 1] First, a positive photoresist (OFPR) with a thickness of 1.2 g was used.
-800: manufactured by Tokyo Ohka Kogyo ■) on the surface was set on the mounting table (6), and 5% by volume of octafluoropropane was added from the reaction gas inlet (8). After introducing a mixed gas with oxygen as the balance and reducing the pressure in the processing chamber to 160.0 Pa, a high frequency of 250 W is applied between the electrodes (5) and (7) to generate plasma in the plasma generation chamber (S+). I let it happen.

その結果、プラズマ発生から1分間でウェハー(W)表
面の有機膜(ホトレジスト)は完全に除去された。また
この除去に伴うウェハー自体のエツチング(ダメージ)
は全くなかった。
As a result, the organic film (photoresist) on the surface of the wafer (W) was completely removed within 1 minute from the generation of plasma. Also, etching (damage) to the wafer itself due to this removal.
There wasn't any.

[実験例2] [実験例1]におけるオクタフルオロプロパンの代わり
にオクタフルオロシクロブタン、デカフルオロブタン、
デカフルオロシクロペンタン及びドデカフルオロシクロ
ペンタンのそれぞれを用い、他の条件は[実験例1]と
同一としてアッシング処理を行った。
[Experimental Example 2] Instead of octafluoropropane in [Experimental Example 1], octafluorocyclobutane, decafluorobutane,
Ashing treatment was performed using each of decafluorocyclopentane and dodecafluorocyclopentane, and under the same conditions as [Experimental Example 1].

その結果、各ガスによって若干の相違はあったがプラズ
マ発生から約40秒後に、ウェハー表面の有機膜は完全
に除去され、且つウェハー自体のエツチングは全くなか
った。
As a result, although there were some differences depending on the gas, the organic film on the wafer surface was completely removed approximately 40 seconds after plasma generation, and there was no etching of the wafer itself.

[実験例3] オクタフルオロプロパンを2容量%、オクタフルオロシ
クロブタンを3容量%、酸素を残部とした混合カスを処
理チャンバー内に導入し、他の条件は[実験例1]と同
一としてアッシング処理を行った。
[Experimental Example 3] A mixed sludge containing 2% by volume of octafluoropropane, 3% by volume of octafluorocyclobutane, and the remainder oxygen was introduced into the processing chamber, and the other conditions were the same as [Experimental Example 1], and ashing processing was performed. I did it.

その結果、プラズマ発生から50秒間でウェハー表面の
有機膜は完全に除去され、且つウェハー自体のエツチン
グは全く見られなかった。
As a result, the organic film on the wafer surface was completely removed within 50 seconds after plasma generation, and no etching of the wafer itself was observed.

[比較例] 酸素ガスのみを処理チャンバー内に導入し、他の条件は
[実験例1]と同一としてアッシング処理を行った。
[Comparative Example] Only oxygen gas was introduced into the processing chamber, and the other conditions were the same as [Experimental Example 1], and ashing processing was performed.

その結果、有機膜を除去するのに20分間を要した。尚
、ウェハー自体のエツチングについては殆どなかった。
As a result, it took 20 minutes to remove the organic film. Incidentally, there was almost no etching of the wafer itself.

以上の如く、本発明によると有機膜の除去を単時間で行
え、且つ基体にダメージを与えないのは、先ず処理チャ
ンバーをプラズマ発生室と反応処理室とに分離したため
、基体にダメージを与えるイオンや荷電粒子などが内部
電極に収集されるため、基体に対するダメージがなく、
且つ処理ガスを酸素とオクタフルオロプロパン、オクタ
フルオロシクロブタン、デカフルオロブタン、デカフル
オロシクロペンタン、ドデカフルオロシクロペンタンと
の混合ガスとしたことによって、処理ガスの活性効率が
高く、反応にあずかる有効成分(ラジカル)の寿命が長
くなるため、内部電極の小孔を通過して基体表面に到達
するまでの間に活性が弱まることがなく、よって有機膜
の除去時間が短くなる。ちなみに、テトラフルオロメタ
ンを少In合した反応ガスを用いた場合には、除去時間
は短くなったが、酸化シリコン、ポリシリコン、窒化シ
リコン、モリブテンシリサイドなどの基体上に、選択的
に形成されたレジストをアッシング除去するとき、レジ
ストと基体とのアッシングの選択比が小さいため、これ
らの基体をエツチングしてしまい、好ましくない。
As described above, according to the present invention, the organic film can be removed in a single hour and the substrate is not damaged because the processing chamber is first separated into a plasma generation chamber and a reaction treatment chamber, which eliminates ions that can damage the substrate. and charged particles are collected on the internal electrode, so there is no damage to the substrate.
In addition, by using a mixed gas of oxygen and octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, and dodecafluorocyclopentane as the processing gas, the activation efficiency of the processing gas is high, and the active components participating in the reaction ( Since the lifetime of the radicals becomes longer, their activity does not weaken before they pass through the small pores of the internal electrode and reach the substrate surface, and therefore the time required to remove the organic film is shortened. Incidentally, when a reaction gas containing tetrafluoromethane and a small amount of In was used, the removal time was shortened, but the removal time was shorter, but it was possible to selectively form on substrates such as silicon oxide, polysilicon, silicon nitride, and molybdenum silicide. When the resist is removed by ashing, since the ashing selectivity between the resist and the substrate is small, these substrates are undesirably etched.

第2図乃至第6図はオクタフルオロプロパン、オクタフ
ルオロシクロブタン、デカフルオロブタン、デカフルオ
ロシクロペンタン及びドデカフルオロシクロペンタンと
酸素の混合割合及び混合ガス圧力とアッシング速度又は
選択比(レジストと酸化シリコンとを、同じ条件でプラ
ズマ処理したときに、アッシング速度とエツチング速度
の比)との関係を示すグラフであり、このグラフからオ
クタフルオロプロパン、オクタフルオロシクロブタン、
デカフルオロブタン、デカフルオロシクロペンタン及び
ドデカフルオロシクロベンクンのいずれも酸素ガスに混
合することで、従来に比ベアッシング時間の短縮が図れ
、基体との選択比が高くなる(ダメージが小さくなる)
ことが分かった。そして、上記オクタフルオロプロパン
、オクタフルオロシクロブタン、デカフルオロブタン、
デカフルオロシクロペンタン及びドデカフルオロシクロ
ペンタンと酸素の混合割合としては混合ガスに対する容
量割合で前者が1%未満であるとアッシング時間は従来
と殆ど変らず、また30%を越えると基体との選択比が
悪くなり、基体をエツチングしてしまう可能性が生じる
ため混合ガス中のオクタフルオロプロパン、オクタフル
オロシクロブタン、デカフルオロブタン、デカフルオロ
シクロペンタンまたはドデカフルオロシクロペンタンの
容量割合としては1〜30%、好ましくは2〜10%と
するのが最適といえる。
Figures 2 to 6 show the mixing ratio of octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, and dodecafluorocyclopentane with oxygen, the mixed gas pressure, and the ashing rate or selectivity (resist and silicon oxide). This is a graph showing the relationship between ashing rate and etching rate (ratio of ashing rate and etching rate) when plasma-treated under the same conditions.From this graph, octafluoropropane, octafluorocyclobutane,
By mixing decafluorobutane, decafluorocyclopentane, and dodecafluorocyclobencune with oxygen gas, it is possible to shorten the relative bearing time and increase the selectivity with the substrate (reducing damage).
That's what I found out. And the above octafluoropropane, octafluorocyclobutane, decafluorobutane,
Regarding the mixing ratio of decafluorocyclopentane and dodecafluorocyclopentane with oxygen, if the former is less than 1% by volume of the mixed gas, the ashing time will be almost unchanged from the conventional one, and if it exceeds 30%, the selectivity with the substrate will decrease. The volume ratio of octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane or dodecafluorocyclopentane in the mixed gas is 1 to 30%. Preferably, it is optimal to set it to 2 to 10%.

また、混合ガスの圧力としては0.1〜100 Tor
rの範囲とするのが好ましく、最適範囲としては0.5
〜3.0 Torrとする・ 更に実施例にあっては基体としてポリシリコンを用いた
が、この他に酸化シリコン、アルミニウム、窒化シリコ
ン、モリブデンシリサイド、タングステンシリサイド、
タンタルなどについても同様の結果が得られた。また、
実施例にあってはアッシング処理についてのみ説明した
が、本発明方法は、例えば基体表面の有機膜を有機溶剤
等を用いて除去した後の残液を除去する所謂クリーニン
グ処理としても応用し得ることは勿論である。
In addition, the pressure of the mixed gas is 0.1 to 100 Torr.
It is preferable to set it in the range of r, and the optimal range is 0.5
~3.0 Torr. Further, in the examples, polysilicon was used as the substrate, but in addition to this, silicon oxide, aluminum, silicon nitride, molybdenum silicide, tungsten silicide,
Similar results were obtained for tantalum. Also,
In the examples, only the ashing process was explained, but the method of the present invention can also be applied as a so-called cleaning process to remove the residual liquid after removing the organic film on the surface of the substrate using an organic solvent or the like, for example. Of course.

(発明の効果) 以上に説明した如く本発明方法によれば、シリコンウェ
ハーなどの無機物からなる基体表面に形成された有機膜
を短時間で除去することができ、極めて量産性に優れ、
且つ基体に与えるダメージも少ないのでLSI、超LS
I等の半導体集積回路の製造プロセスに適用して極めて
有効である。
(Effects of the Invention) As explained above, according to the method of the present invention, an organic film formed on the surface of an inorganic substrate such as a silicon wafer can be removed in a short time, and is extremely suitable for mass production.
In addition, there is less damage to the base, so it is suitable for LSI and super LS.
It is extremely effective when applied to the manufacturing process of semiconductor integrated circuits such as I.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる処理チャンバーの断
面図、第2図はオクタフルオロプロパンガスの混合割合
とアッシング速度との関係を示すグラフ、第3図はオク
タフルオロプロパンの混合割合と選択比との関係を示す
グラフ、第4図はオクタフルオロシクロブタン、デカフ
ルオロブタン、デカフルオロシクロペンタン、又はドデ
カフルオロシクロペンタンと酸素の混合割合と7ツシン
グ速度との関係を示すグラフ、第5図はオクタフルオロ
シクロブタン、デカフルオロブタン、デカフルオロシク
ロペンタン、又はトテカフルオロシクロペンクンと酸素
の混合割合と選択比との関係を示すグラフ、第6図は混
合ガス圧力と7ツシング速度との関係を示すグラフであ
る。 尚5図面中(1)は処理チャンバー、(2)は筒状本体
、(5)は外部電極、(6)は載置台、(7)は内部電
極、(Sl)はプラズマ発生室、(S2)は反応処理室
、(冒)は基体である。 特許出願人  東京電子化学株式会社 代理人 弁理士  下  1) 容一部間   弁理士
   大   橋   邦   産量  弁理士  小
  山     右同  弁理士  野  1)   
 及第6図
Fig. 1 is a cross-sectional view of a processing chamber used to carry out the method of the present invention, Fig. 2 is a graph showing the relationship between the mixing ratio of octafluoropropane gas and the ashing rate, and Fig. 3 is a graph showing the mixing ratio of octafluoropropane gas and the selection. Figure 4 is a graph showing the relationship between the mixing ratio of octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, or dodecafluorocyclopentane and oxygen and the 7th shinging speed. A graph showing the relationship between the mixing ratio of octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, or totecafluorocyclopenkune and oxygen and the selectivity. Figure 6 shows the relationship between the mixed gas pressure and the 7th shinging speed. It is a graph. In the 5 drawings, (1) is a processing chamber, (2) is a cylindrical main body, (5) is an external electrode, (6) is a mounting table, (7) is an internal electrode, (Sl) is a plasma generation chamber, and (S2) is a processing chamber. ) is the reaction chamber, and (b) is the substrate. Patent Applicant Tokyo Denshi Kagaku Co., Ltd. Agent Patent Attorney 2 1) Department of Technology Patent Attorney Kuni Ohashi Production Volume Patent Attorney Udo Koyama Patent Attorney No 1)
Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)多数の小孔を形成した内部電極によってチャンバ
ー内をプラズマ発生室と反応処理室に分離し、反応処理
室には表面に有機膜を形成した基体をセットし、プラズ
マ発生室にはオクタフルオロプロパン、オクタフルオロ
シクロブタン、デカフルオロブタン、デカフルオロシク
ロペンタン及びドデカフルオロシクロペンタンの少なく
とも一つと酸素との混合ガスを供給し、この混合ガスを
プラズマ化して活性化することで基体表面の有機膜を分
解・気化せしめるようにしたことを特徴とする有機膜の
除去方法。
(1) The inside of the chamber is separated into a plasma generation chamber and a reaction processing chamber by an internal electrode formed with many small holes.A substrate with an organic film formed on the surface is set in the reaction processing chamber, and an octagonal plate is placed in the plasma generation chamber. By supplying a mixed gas of at least one of fluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, and dodecafluorocyclopentane and oxygen, and activating this mixed gas by turning it into plasma, an organic film can be formed on the surface of the substrate. A method for removing an organic film, characterized by decomposing and vaporizing the organic film.
(2)前記混合ガス中のオクタフルオロプロパン、オク
タフルオロシクロブタン、デカフルオロブタン、デカフ
ルオロシクロペンタン、又はドデカフルオロシクロペン
タンの割合は1〜30容量%であることを特徴とする特
許請求の範囲第1項記載の有機膜の除去方法。
(2) The proportion of octafluoropropane, octafluorocyclobutane, decafluorobutane, decafluorocyclopentane, or dodecafluorocyclopentane in the mixed gas is 1 to 30% by volume. The method for removing an organic film according to item 1.
JP61221596A 1986-09-19 1986-09-19 Organic film removal method Expired - Lifetime JP2624243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61221596A JP2624243B2 (en) 1986-09-19 1986-09-19 Organic film removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221596A JP2624243B2 (en) 1986-09-19 1986-09-19 Organic film removal method

Publications (2)

Publication Number Publication Date
JPS63260032A true JPS63260032A (en) 1988-10-27
JP2624243B2 JP2624243B2 (en) 1997-06-25

Family

ID=16769234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221596A Expired - Lifetime JP2624243B2 (en) 1986-09-19 1986-09-19 Organic film removal method

Country Status (1)

Country Link
JP (1) JP2624243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127648A (en) * 1988-11-08 1990-05-16 Matsushita Electric Ind Co Ltd Production of master disk for optical disk
JPH0354571A (en) * 1989-07-21 1991-03-08 Matsushita Electric Ind Co Ltd Method for removing photosensitive resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113164A (en) * 1976-03-19 1977-09-22 Hitachi Ltd Removal of organic agent
JPS52142637A (en) * 1976-05-25 1977-11-28 Nippon Telegraph & Telephone Plasma etching device
JPS53112065A (en) * 1977-03-11 1978-09-30 Toshiba Corp Removing method of high molecular compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113164A (en) * 1976-03-19 1977-09-22 Hitachi Ltd Removal of organic agent
JPS52142637A (en) * 1976-05-25 1977-11-28 Nippon Telegraph & Telephone Plasma etching device
JPS53112065A (en) * 1977-03-11 1978-09-30 Toshiba Corp Removing method of high molecular compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127648A (en) * 1988-11-08 1990-05-16 Matsushita Electric Ind Co Ltd Production of master disk for optical disk
JPH0354571A (en) * 1989-07-21 1991-03-08 Matsushita Electric Ind Co Ltd Method for removing photosensitive resin

Also Published As

Publication number Publication date
JP2624243B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
JPH0426120A (en) Treating method for semiconductor substrate
JP3275043B2 (en) Post-treatment method of etching
JP2700316B2 (en) Organic material surface modification method
JPS6240728A (en) Dry etching device
JPS63260032A (en) Removal of organic film
EP1083219A1 (en) Cleaning fluid and cleaning method for component of semiconductor-treating apparatus
JPS61267325A (en) Removal of organic film
JPS61263126A (en) Removing method for organic film
JPS63260033A (en) Plasma reaction treatment device
JP3893939B2 (en) Resist stripping apparatus, resist stripping method, and semiconductor device manufacturing method
JPH05251399A (en) Etching method for silicon nitriding film based on leaflet type etcher
JPH0212818A (en) Washing method of plasma processing equipment
JP2004510573A (en) Electronic device cleaning method
JPS61214434A (en) Method for removing organic film
JPH10199847A (en) Method of cleaning wafer
JPH0885887A (en) Post treatment of etching
JPH0517880Y2 (en)
JPH02162730A (en) Manufacture of semiconductor device
JPS6373524A (en) Plasma processing
JPS62125627A (en) Removing method for organic film
JPH08241886A (en) Plasma processing method
JP2548177B2 (en) Dry etching method
JPH03155621A (en) Dry etching method
JPH0239530A (en) Dry etching device
JP2920874B2 (en) Plasma reaction processing equipment