JPS63259855A - Optical type information recording member - Google Patents

Optical type information recording member

Info

Publication number
JPS63259855A
JPS63259855A JP62095630A JP9563087A JPS63259855A JP S63259855 A JPS63259855 A JP S63259855A JP 62095630 A JP62095630 A JP 62095630A JP 9563087 A JP9563087 A JP 9563087A JP S63259855 A JPS63259855 A JP S63259855A
Authority
JP
Japan
Prior art keywords
information recording
resistant protective
compds
optical information
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62095630A
Other languages
Japanese (ja)
Other versions
JPH0690808B2 (en
Inventor
Masatoshi Takao
高尾 正敏
Kunio Kimura
邦夫 木村
Toshimitsu Kurumisawa
利光 胡桃沢
Kenichi Osada
憲一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62095630A priority Critical patent/JPH0690808B2/en
Priority to US07/108,649 priority patent/US4847132A/en
Priority to CA000549563A priority patent/CA1298912C/en
Priority to EP87309209A priority patent/EP0265204B1/en
Priority to DE8787309209T priority patent/DE3781363T2/en
Priority to KR1019870011615A priority patent/KR900008085B1/en
Publication of JPS63259855A publication Critical patent/JPS63259855A/en
Publication of JPH0690808B2 publication Critical patent/JPH0690808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To prevent deterioration of heat resistant protective layers and to improve recording and reproducing sensitivity by mixing plural compds. contg. compds. which do not solutionize each other and forming the grains to the smaller sizes thereby constituting the heat resistant protective layers. CONSTITUTION:This recording member is constituted of a substrate 1, the heat resistant protective layers 2, 4, an optically active layer 3, a metallic reflection layer 5, an adhesive agent layer 6 and a protective base material 7. The heat resistant protective layers 2, 4 are formed by mixing the plural compds. contg. the compds. which do not solutionize each other. These layers are constituted to the smaller grain sizes than the grain sizes in the case of forming the layers independently of the respective constituting compds. The compds. contain zinc sulfide as the chalcogenide of metal and silicon dioxide as the oxide. The particles are, therefore, uniformly pulverized and mixed to a solid soln. state by quick cooling from the vapor deposited matter. The improved reliability of the recording and reproduction is thus obtd. by the projection of laser light with the higher efficiency, the lower temp. rise and the decreased thermal damages of the protective layers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学的手段を用いて高速かつ高密度に情報を記
録、再生、消去するための光学式情報記録部材に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member for recording, reproducing, and erasing information at high speed and high density using optical means.

従来の技術 消去可能で繰り返し記録再生可能な非破壊型の光学式情
報記録部材、たとえば光デイスクメモリーにおいて、基
材として用いられるプラスチックスがレーザー加熱時に
損傷を受けないように、酸化物等の耐熱保護膜を基材と
光学活性層の間、もしくは光学活性層の直上に設けるこ
とが提案されている。耐熱保護層として用いられる材料
としては、酸化物(SiO2,GeO2,Al2O3,
Be02)、窒化物(BN、5i2N2.AIN) 、
炭化物(SiC)、カルコゲン化物(ZnS、ZnSe
)などが提案されている。耐熱保護層に要求される特性
の主なものは、 (1)使用波長領域で透明であること、(2)融点が動
作する温度より高いこと、(3)機械的強度が大きいこ
と、 (4)化学的に安定なこと、 (5)適当な熱定数(熱伝導率、比熱〉を持っているこ
と、 等である。
Conventional technology In nondestructive optical information recording members that can be erased and repeatedly recorded and reproduced, such as optical disk memories, heat-resistant materials such as oxides are used to prevent the plastics used as the base material from being damaged during laser heating. It has been proposed to provide a protective film between the substrate and the optically active layer or directly above the optically active layer. Materials used as the heat-resistant protective layer include oxides (SiO2, GeO2, Al2O3,
Be02), nitride (BN, 5i2N2.AIN),
Carbide (SiC), chalcogenide (ZnS, ZnSe
) have been proposed. The main characteristics required for a heat-resistant protective layer are (1) transparency in the wavelength range used, (2) melting point higher than the operating temperature, (3) high mechanical strength, (4) ) be chemically stable; (5) have appropriate thermal constants (thermal conductivity, specific heat), etc.

これらを説明すると、(1)は言うまでもなくレーザー
のエネルギーを効率よく光学活性層へ吸収させるために
必要であるし、(2)は光学活性層が熱変態する温度よ
り先に耐熱層が変化してしまっては不都合であるからで
あり、(3)は特に加熱、冷却の過程で割れたりしては
困るからであり、また(4)は水分により加水分解した
り潮解したりしては困るからであり、最後に(5)は、
光学式情報記録法のうちでも、相変化型の場合には加熱
と、急冷または徐冷を組み合わせて2つの相の間を可逆
的に往復させることにより記録、消去を実現しているの
で、熱秩關狽工適当でないと、レーザーのエネルギーが
効率的に利用されない。
To explain these, it goes without saying that (1) is necessary for efficiently absorbing laser energy into the optically active layer, and (2) is necessary for the heat-resistant layer to change before the temperature at which the optically active layer thermally transforms. This is because it would be inconvenient if the material were to be exposed to water, (3) it would be a problem if it cracked especially during the heating and cooling process, and (4) it would be a problem if it hydrolyzed or deliquesced due to moisture. Finally, (5) is
Among optical information recording methods, in the case of the phase change type, recording and erasure are achieved by reversibly reciprocating between two phases by combining heating and rapid cooling or slow cooling. If the system is not properly controlled, the laser energy will not be used efficiently.

そこで記録消去時の照射レーザーパワーに対する感度が
十分でなくなる。すなわち、記録消去にレーザーパワー
が多く必要になる。
Therefore, the sensitivity to the irradiated laser power during recording and erasing is insufficient. In other words, a large amount of laser power is required to erase records.

発明が解決しようとする問題点 前記の諸物質はこれらの条件をほぼみたしているが、ま
だ完全に光学式情報記録用途とての要求を満足している
とはいえない。特に書き換え可能な光メモリーの場合、
レーザー照射加熱、冷却の繰り返しによって耐熱保護層
が変質すると、十分な記録、消去の繰り返し信頼性が得
られないことになる。
Problems to be Solved by the Invention Although the above-mentioned materials almost satisfy these conditions, they still cannot be said to completely satisfy the requirements for optical information recording applications. Especially in the case of rewritable optical memory,
If the heat-resistant protective layer changes in quality due to repeated laser irradiation heating and cooling, sufficient reliability over repeated recording and erasing cannot be obtained.

本発明は、光学式情報記録部材の記録、消去の繰り返し
寿命を決定する要因のひとつである耐熱保護層の劣化と
、記録および消去感度の改善を目的とする。
The present invention aims to improve the deterioration of the heat-resistant protective layer, which is one of the factors that determine the repeated recording and erasing life of an optical information recording member, and the recording and erasing sensitivity.

問題点を解決するための手段 耐熱保護層を、複数の化合物の混合物により構成し、そ
の混合物の構成化合物のうち、少なくとも2種は互いに
固溶しない化合物とするとともに、保護層中の微小構造
単位(グレイン)の大きさがそれぞれの構成化合物単独
で形成した場合の微小構造単位(グレイン)の大きさよ
りも小さいよう構成する。
Means for solving the problem The heat-resistant protective layer is composed of a mixture of a plurality of compounds, at least two of the constituent compounds of the mixture are compounds that do not dissolve in solid solution with each other, and the microstructural units in the protective layer are The structure is such that the size of the (grain) is smaller than the size of the microstructural unit (grain) when each constituent compound is formed alone.

作用 耐熱保護層として相互に固溶し合わない少なくとも2種
の物質を非常に微小な構造単位のを、あたかも互いに強
制的に分散させたような状態が得られ、耐熱層の熱的性
質を変化させて、光学式情報記録の記録感度の向上およ
び、記録、消去の繰り返しに関する信頼性を向上させる
ことができる。
Function: As a heat-resistant protective layer, a state is obtained in which very small structural units of at least two substances that do not dissolve into each other are forcibly dispersed into each other, changing the thermal properties of the heat-resistant layer. As a result, it is possible to improve the recording sensitivity of optical information recording and the reliability regarding repeated recording and erasing.

実施例 以下本発明の実施例について添付図面に基づき説明する
。第1図は、本発明において基本となる光学式情報記録
部材の断面の概略であり、1が基材、2と4が耐熱保護
層、3が光学活性層であって、5が光学反射層で主に金
属よりなる層で、7の保護基材を6の接着材で貼り合わ
せている。本発明では、2と4の耐熱保護層の材質を特
定のものにすることが特徴である。すなわち従来の材料
、たとえば2酸化ゲルマニウム(Ge02)、2酸化ケ
イ素(SiO2)、硫化アエン(ZnS)など、を用い
た場合とくに機械的強度と熱的性質が十分でなっかった
EXAMPLES Hereinafter, examples of the present invention will be described based on the accompanying drawings. FIG. 1 is a schematic cross-sectional view of an optical information recording member that is the basis of the present invention, in which 1 is a base material, 2 and 4 are heat-resistant protective layers, 3 is an optically active layer, and 5 is an optical reflective layer. This is a layer mainly made of metal, and the protective base material 7 is bonded with the adhesive 6. The present invention is characterized in that the heat-resistant protective layers 2 and 4 are made of specific materials. That is, when conventional materials such as germanium dioxide (Ge02), silicon dioxide (SiO2), and aene sulfide (ZnS) are used, their mechanical strength and thermal properties are insufficient.

レーザーで照射した場合に高温での機械的強度が弱いと
耐熱保護層が熱変形して割れたり、あるいは構造的な欠
陥が多いと保護層自体が加熱により収縮して永久変形し
たりする。また、熱的性質はレーザーの熱エネルギーを
効率よく利用するために、適当な熱伝導率と比熱を持っ
ていることが必要である。熱伝導率が大き過ぎると、余
分なエネルギーを必要とするので不都合であるし、また
小さ過ぎると今度は急冷条件が得られな(なってしまう
。急冷条件は、光学式情報記録法のうちでも、相変化型
の場合には加熱と、急冷または徐冷を組み合わせて2つ
の層の間を可逆的に往復させることにより記録、消去を
実現しているので、重要である。
When irradiated with a laser, if the mechanical strength at high temperatures is weak, the heat-resistant protective layer will be thermally deformed and cracked, or if there are many structural defects, the protective layer itself will shrink due to heating and become permanently deformed. In addition, in order to efficiently utilize the thermal energy of the laser, it is necessary to have appropriate thermal conductivity and specific heat. If the thermal conductivity is too large, extra energy is required, which is disadvantageous, and if it is too small, quenching conditions cannot be obtained.Quick cooling conditions are one of the most important optical information recording methods. In the case of a phase change type, recording and erasing are realized by reversibly moving back and forth between two layers by combining heating and rapid cooling or slow cooling, which is important.

本発明の特徴は、前記の高温での機械特性、と(に顕著
な熱変形を最小限に抑えたままで、熱定数を制御して記
録、消去特性を改善し、更には記録消去の繰り返しの信
頼性を向上させたことである。実際の保護層の設計条件
としては、光学的にまずレーザーのエネルギーの吸収効
率がよいのが望ましい。そのためには入射レーザー光が
無反射条件を満たすことが必要である。Teを主成分と
した光学活性層では屈折率が概ね4前後であるので、無
反射条件を得るためには、耐熱保護層の屈折率が4以下
、計算によると2以上3以下でもっとも効率がよいこと
がわかっている。無反射条件は保護層の屈折率をN、レ
ーザーの波長をり、保護層の膜厚をdとしたときに、お
およそ次のように示される。
The features of the present invention are to improve the recording and erasing characteristics by controlling the thermal constants while minimizing the mechanical properties and the noticeable thermal deformation at high temperatures, and to improve the recording and erasing characteristics. This improves reliability.In terms of actual design conditions for the protective layer, optically it is desirable that the absorption efficiency of the laser energy is high.To achieve this, the incident laser light must satisfy the non-reflection condition. The refractive index of an optically active layer containing Te as a main component is approximately 4, so in order to obtain a non-reflection condition, the refractive index of the heat-resistant protective layer should be 4 or less, and according to calculations, the refractive index should be 2 or more and 3 or less. The non-reflection condition is approximately expressed as follows, where N is the refractive index of the protective layer, d is the wavelength of the laser, and d is the thickness of the protective layer.

d=L/4N この条件を満たす材料のうちで代表的なものが、硫化ア
エン(ZnS  : N=2.3 )である。しかし前
記のごとく、ZnSは初期的な特性は優れているのであ
るが、記録、消去の繰り返し特性は必ずしも満足すべき
ものではないことが実験の結果判明したので、本発明者
らは改良を試みた。その結果得られた材料が、硫化アエ
ンと2酸化ケイ素の混合物であった。さらに実験を続け
たところ、基本的に相互に固溶し合わない2種の材料を
蒸着のような気相からの急冷によって薄膜を構成する粒
子を均一に微粒化し、混合して、強制的にあたかも固溶
体が形成されたようにすることにより新規な特性を示す
材料群を見出した。この材料群の成分の特徴は前記の相
互に固溶し合わないことであるが、その材料の組み合わ
せが、結晶質のものとガラス質の組み合わせであること
である。結晶質の材料としては前記のZnS、ZnSe
のカルコゲン化アエン、またガラス質材料またはガラス
化を促進する材料としては2酸化ケイ素、2酸化ゲルマ
ニウムなどの酸化物ガラスである。
d=L/4N A typical material that satisfies this condition is aene sulfide (ZnS: N=2.3). However, as mentioned above, although ZnS has excellent initial characteristics, it was found through experiments that the repeated recording and erasing characteristics were not necessarily satisfactory, so the present inventors attempted to improve it. . The resulting material was a mixture of aene sulfide and silicon dioxide. Further experiments revealed that the particles that make up the thin film were uniformly atomized by rapid cooling from the gas phase, such as in vapor deposition, and were mixed together to force the two materials to form a solid solution. We have discovered a group of materials that exhibit novel properties as if they were formed as a solid solution. The characteristics of the components of this material group are that they do not form a solid solution with each other, but the combination of materials is a combination of crystalline materials and glassy materials. Examples of crystalline materials include the above-mentioned ZnS and ZnSe.
Examples of glassy materials or materials that promote vitrification include oxide glasses such as silicon dioxide and germanium dioxide.

なぜガラス質と、カルコゲン化物とを混ぜると特性が良
くなるかは、わかっていない。恐ら(、ガラス質のもの
が、混合されることにより結晶質のものも薄膜構造中の
微小構造単位(グレインあるいは結晶粒)の成長が抑え
られて微細化するか、あるいはアモルファス化し、熱伝
導が小さくなることにより、投入されるレーザーエネル
ギーが効率良く光学活性層の温度上昇に寄与するためで
あると考えられる。前記微小構造単位の平均的な大きさ
は小さければ小さいほうがよいが、エックス線回折法に
よりピークが観測されないほどの小ささである。本発明
で述べる微小構造単位は、透過型電子顕微鏡によって、
測定された値で、決勝として観測される大きさ、即ち結
晶の回折像として認められるグレインの大きさく径)を
意味する。以下本発明においては、粒径はすべてこの方
法で決定した。具体的に効果のある粒径は10ナノメー
ター以下、できれば5ナノメタ−以下がよいことが分か
った。
It is not known why the properties improve when glass and chalcogenide are mixed. (By mixing glassy materials, the growth of microstructural units (grains or crystal grains) in the thin film structure of crystalline materials may be suppressed and become finer, or they may become amorphous and become less heat conductive.) It is thought that this is because the input laser energy efficiently contributes to increasing the temperature of the optically active layer by decreasing the size of the microstructure.The smaller the average size of the microstructural units, the better, but The microstructural units described in this invention are so small that no peak can be observed using a transmission electron microscope.
This is the measured value and means the final observed size, that is, the size (diameter) of the grains observed in the diffraction image of the crystal. Hereinafter, in the present invention, all particle sizes were determined by this method. It has been found that the particle size that is specifically effective is 10 nanometers or less, preferably 5 nanometers or less.

レーザーパワーが効率よく光学活性層に吸収されると、
照射パワーが少なくて済み、ひいては記録消去のときに
光学活性層の周囲の温度も上昇しないので、それだけ活
性層および耐熱保護層の熱損傷も少ないことになる。結
果として記録、消去の回数も多くなり信頼性が向上する
ことになる。
When the laser power is efficiently absorbed by the optically active layer,
Since less irradiation power is required and the temperature around the optically active layer does not rise during recording and erasing, thermal damage to the active layer and the heat-resistant protective layer is reduced accordingly. As a result, the number of times of recording and erasing increases, improving reliability.

従って、記録および消去に要するレーザーパワーが少な
(なることが記録消去の繰り返し回数を多くすることに
対して必須である。以下の各実施例では特に断わらない
が、記録および消去感度が改善された耐熱保護層を用い
た場合静的な記録消去の繰り返しの回数が少なくとも1
0の6乗回以上であることは確認されている。カルコゲ
ン化合物は、一般的に屈折率が太きく (N>2)の条
件を満たすことが可能であるが、酸化物ガラスは大きく
ても2であることが多い、そこで、カルコゲン化物に無
闇にガラス質材料を強制混合することは特性的にも良く
ないことがわかるが、適当量混合することにより飛躍的
に、特性が向上する。以下に、本発明者らによる具体的
な実施例を示す。
Therefore, it is essential that the laser power required for recording and erasing is small in order to increase the number of repetitions of recording and erasing.Although not specified in each of the following examples, recording and erasing sensitivity was improved. When using a heat-resistant protective layer, the number of times static recording/erasing is repeated is at least 1.
It has been confirmed that the number is 0 to the 6th power or more. Chalcogen compounds generally have a large refractive index and can satisfy the condition of (N > 2), but oxide glasses often have a refractive index of 2 at most, so chalcogen compounds are blindly combined with glass. Although it is clear that forced mixing of quality materials is not good in terms of properties, the properties can be dramatically improved by mixing an appropriate amount. Specific examples by the present inventors are shown below.

実施例1 ポリメチルメタクリレート(PMMA)よりなる基材上
に2元蒸着法で硫化アエンと2酸化ケイ素の、混合物よ
りなる耐熱保護層を作成した。硫化アエン(ZnS) 
 と2酸化ケイ素の混合比はそれぞれの材料の蒸発量を
制御することによって決定し、また定量化学分析も行な
った。薄膜の堆積速度はlnm7秒である。光学活性層
の成分は可逆的に結晶状態とアモルファス状態との間を
往復させることにより、記録消去が可能な相変化型の材
料の一種であるTeGe5nO系のものを用い、膜厚は
40r+mである。耐熱保護層は光学活性層の基材側お
よび上側に、それぞれおよそ100 nm、200 n
m作成した。この膜厚構成はレーザーの吸収効率の観点
からと、光学定数の変化が太き(なるような観点からと
から決めたものである。第3図にまず得られた耐熱保護
膜自体の屈折率のS i O2混合量X依存性を示す。
Example 1 A heat-resistant protective layer made of a mixture of aene sulfide and silicon dioxide was created on a base material made of polymethyl methacrylate (PMMA) by a binary vapor deposition method. Aene sulfide (ZnS)
The mixing ratio of silicon dioxide and silicon dioxide was determined by controlling the amount of evaporation of each material, and quantitative chemical analysis was also performed. The deposition rate of the thin film is lnm7 seconds. The components of the optically active layer are TeGe5nO, which is a type of phase change material that can erase records by reversibly reciprocating between a crystalline state and an amorphous state, and the film thickness is 40r+m. . The heat-resistant protective layer has a thickness of approximately 100 nm and 200 nm on the substrate side and the upper side of the optically active layer, respectively.
m created. This film thickness structure was determined from the viewpoint of laser absorption efficiency and from the viewpoint of ensuring a large change in optical constants. Figure 3 shows the refractive index of the heat-resistant protective film itself obtained. The dependence of S i O2 on the mixed amount X is shown.

ZnSにSiO2を添加するに連れて、屈折率がほぼ直
線的に減少することが示されている。これはZnSとS
 i O2が結合して混ざっているのではなくて、単純
に混合していることを間接的にしめしている。このこと
は以下の実施例で示すこれ以外の物質の組合せの屈折率
の変化についても同じことが言える。第1表にS i 
O2の添加量に対する結晶化(消去)およびアモルファ
ス化(記録)に要する最低のレーザーエネルギーを示す
。なお、第1表には、透過型電子顕微鏡で観察したZn
Sのグレインの平均的な大きさも合わせて示した。
It has been shown that as SiO2 is added to ZnS, the refractive index decreases almost linearly. This is ZnS and S
This indirectly indicates that i O2 is not combined and mixed, but simply mixed. The same can be said of changes in the refractive index of other material combinations shown in the following examples. Table 1 shows S i
The minimum laser energy required for crystallization (erasing) and amorphization (recording) with respect to the amount of O2 added is shown. Table 1 shows Zn observed with a transmission electron microscope.
The average size of S grains is also shown.

この測定はディスク状に形成したものを回転しながら動
的に測定したものでディスクの周速度はおよそ5  l
I/s  である。レーザーの波長は830  nmで
ビームはディスク上で回折限界まで絞っている。レーザ
ーのパワーはできるだけ小さ方が負担がす(なくて済む
のがで好ましい。
This measurement was performed dynamically while rotating a disk-shaped disk, and the circumferential speed of the disk was approximately 5 l.
I/s. The wavelength of the laser is 830 nm, and the beam is focused to the diffraction limit on the disk. The power of the laser should be as small as possible (preferably, it can be dispensed with).

第1表 ZnSへの5i02の添加効果S i O2の
添加量がlθ〜30のときグレイン径が10nmで効果
があることがわかる。
Table 1 Effect of adding 5i02 to ZnS It can be seen that when the amount of S i O2 added is lθ~30, there is an effect when the grain diameter is 10 nm.

ZnSにSiO2を添加するにことにより結晶化および
アモルファス化に要するの最低エネルギーは減少し、さ
らに添加量が増えると再び増加し始める。この結果から
明らかなように、SiO2の添加量には最適値があるこ
とがわがる。
By adding SiO2 to ZnS, the minimum energy required for crystallization and amorphization decreases, and as the amount of addition increases further, it begins to increase again. As is clear from this result, there is an optimum value for the amount of SiO2 added.

本実施例においては、S i O2の量が10モル%以
上30モル%以下のときに、結晶化に要するレーザーパ
ワーが6+nWないし7.5 mWと、S i O2が
ないときの9mWより低下していることが分かる。また
、この混合比では、屈折率がほぼ2以上で、光学的にも
前記の条件を満足している。
In this example, when the amount of SiO2 is 10 mol% or more and 30 mol% or less, the laser power required for crystallization is 6+nW to 7.5 mW, which is lower than 9 mW when there is no SiO2. I can see that Further, at this mixing ratio, the refractive index is approximately 2 or more, and optically the above-mentioned conditions are satisfied.

以上に示すようにZnSにS i O2を添加したとき
に結晶化に要するレーザーパワーの低下が見られること
で示される効果がある。S i 02の添加量が10〜
30モル零、グレイン径が10  nm で効果がある
ことがわかる。
As shown above, when SiO2 is added to ZnS, there is an effect shown by a decrease in the laser power required for crystallization. Addition amount of S i 02 is 10~
It can be seen that it is effective at a concentration of 30 moles and a grain diameter of 10 nm.

第3図に静的にレーザーを用いて記録消去を繰り返し行
なった場合の反射率の変化を示す。第3図中それぞれの
曲線のうち、上側が結晶状態、すなわち消去状態の反射
率に対応し、下側が非晶質状態すなわち記録状態に対応
している。反射率の差が記録信号の強度に比例するわけ
である。5i02の添加量によって繰り返しの回数に変
化が生じるのがわかる。また、レーザーパワーはディス
クにおける熱負荷をシミュレートするように決めたもの
である。
FIG. 3 shows the change in reflectance when recording and erasing is repeatedly performed statically using a laser. Among the respective curves in FIG. 3, the upper side corresponds to the reflectance in the crystalline state, that is, the erased state, and the lower side corresponds to the amorphous state, that is, the recorded state. The difference in reflectance is proportional to the intensity of the recorded signal. It can be seen that the number of repetitions changes depending on the amount of 5i02 added. Furthermore, the laser power was determined to simulate the thermal load on the disk.

記録に用いるレーザーのパワー分布のディスク上への投
影は、はぼ円対称になるように、また消去用の分布は楕
円状になるように調整されている。この場合も、S i
 O2が20モル%添加されたときに最も良い結果が得
られており10の6乗回以上の繰り返しが可能である。
The projection of the power distribution of the laser used for recording onto the disk is adjusted so that it is approximately circularly symmetrical, and the distribution for erasing is adjusted so that it is elliptical. In this case as well, S i
The best results were obtained when 20 mol % of O2 was added, and it was possible to repeat the process more than 10 times.

実施例2 実施例2ではS i O2とZnSを蒸着などの気相か
ら急冷する手段を用いて強制的に分散混合して特性を得
た。この時の堆積速度は1 nm/秒であった。同じ気
相からでも徐冷となる条件、例えば、堆積速度が極端に
遅い場合などでは、ZnS の平均グレイン径が大きく
なり、分散が妨げられて相分離が進行して、感度の向上
のみならず記録消去の繰り返しの回数も多くならなかっ
た。この原因を確かめるため、5in2添加量が25モ
ル%の時の、記録および消去に対するレーザーパワーの
感度の堆積速度依存性を測定した。第2表にその結果を
示す。
Example 2 In Example 2, characteristics were obtained by forcibly dispersing and mixing SiO2 and ZnS using a means of rapidly cooling from a gas phase such as vapor deposition. The deposition rate at this time was 1 nm/sec. Under conditions where slow cooling occurs even from the same gas phase, such as when the deposition rate is extremely slow, the average grain diameter of ZnS increases, hindering dispersion and promoting phase separation, which not only improves sensitivity but also The number of repetitions of record deletion did not increase. In order to confirm the cause of this, the dependence of the laser power sensitivity for recording and erasing on the deposition rate was measured when the amount of 5in2 added was 25 mol %. Table 2 shows the results.

第2表 堆積速度とグレイン径および 第2表から明らかなように、グレイン径が大きいときに
は、レーザーパワーが余分に必要でかんどが悪くなって
いることがわかる。また、グレイン径も、10nmであ
ることが必要であることもわかる。
Table 2: Deposition rate vs. grain diameter As is clear from Table 2, when the grain diameter is large, extra laser power is required and the performance becomes worse. It can also be seen that the grain diameter also needs to be 10 nm.

これらのことは、いかに述べる実施例での材料の組合せ
でも同じことがいえる。
The same can be said for any combination of materials in any of the embodiments described.

実施例3 ポリメチルメタクリレートよりなる基材上に2元蒸着法
でセレン化アエンと2酸化ケイ素の、混合物よりなる耐
熱保護層を作成した。到達真空度は10−6のオーダー
である。セレン化アエン(ZnSe)と2酸化ケイ素の
混合比は実施例1と同様にそれぞれの材料の蒸発量を制
御することによって決定し、また定量化学分析もおこな
った。
Example 3 A heat-resistant protective layer made of a mixture of aene selenide and silicon dioxide was prepared on a base material made of polymethyl methacrylate by a binary vapor deposition method. The ultimate vacuum degree is on the order of 10-6. The mixing ratio of ZnSe and silicon dioxide was determined by controlling the amount of evaporation of each material as in Example 1, and quantitative chemical analysis was also performed.

光学活性層の成分も実施例1と同じTeGe5nO系の
ものを用い、膜厚は100 nmである。耐熱保護層は
光学活性層の基材側および上側に、それぞれおよそ10
0 nm、200 nm作成した。
The same TeGe5nO components as in Example 1 were used for the optically active layer, and the film thickness was 100 nm. The heat-resistant protective layer is provided on the substrate side and on the top side of the optically active layer, each having a thickness of about 10
0 nm and 200 nm.

次に第3表に、S i O2の添加量に対する結晶化お
よびアモルファス化に要する最低のレーザーエネルギー
を示す。測定法は実施例1と同じである。
Next, Table 3 shows the minimum laser energy required for crystallization and amorphization with respect to the amount of SiO2 added. The measurement method is the same as in Example 1.

第3表 ZnSeへの5i02の添加効果第3表には、
透過型電子顕微鏡で観察したZnS のグレインの平均
的な大きさも合わせて示した。
Table 3 Table 3 shows the effect of adding 5i02 to ZnSe.
The average size of ZnS grains observed with a transmission electron microscope is also shown.

実施例1と同様に、ZnSeにS i O2を添加する
にことにより結晶化およびアモルファス化に要するレー
ザエネルギーは減少し、さらに添加量が増えると再び増
加し始める。この結果から明らかなように、S i O
2の添加量には最適値があることが分かる。
As in Example 1, the laser energy required for crystallization and amorphization decreases by adding SiO2 to ZnSe, and begins to increase again when the amount added is further increased. As is clear from this result, S i O
It can be seen that there is an optimum value for the addition amount of 2.

本実施例においては、S i O2の量が15モル%以
上35モル%以下のときに、グレイン径が10nm以下
になって、結晶化に要するレーザーパワーが6iWない
し7.5  mWと、S i O2がないときの9mW
より低下していることが分かる。
In this example, when the amount of Si O2 is 15 mol % or more and 35 mol % or less, the grain diameter becomes 10 nm or less, and the laser power required for crystallization is 6 iW to 7.5 mW. 9mW without O2
It can be seen that it has decreased further.

以上に示すようにZnSeにS i O2を添加したと
きに、結晶化およびアモルファス化に要するレーザーパ
ワーの低下が見られることで示される効果がある。また
、同じ組成のとき記録消去の静的な繰り返しにおいても
実施例1と同様に106回以上の繰り返しに耐えられる
As shown above, when SiO2 is added to ZnSe, there is an effect shown by a decrease in the laser power required for crystallization and amorphization. Further, when the composition is the same, static repetition of recording and erasing can be repeated 106 times or more as in Example 1.

実施例4 ポリメチルメタクリレートよりなる基材上に、2元蒸着
法でカルコゲン化アエンすなわち硫化アエン(ZnS)
またはセレン化アエン(ZnSe)またはテルル化アエ
ン(ZnTe)と、ガラス化した2酸化ゲルマニウム(
GeO2)、酸化スズ(SnO2)、酸化インジウム(
In202)、2酸化テルル(TeO2)のいずれかと
の、混合物よりなる耐熱保護層を作成した。カルコゲン
化アエン(ZnX :  X ;カルコゲン)とガラス
化した酸化物の混合比は実施例1と同様にそれぞれの材
料の蒸発量を制御することによって決定し、また定量化
学分析もおこなった。光学活性層の成分も実施例1と同
じTeGe5nO系のものを用い、膜厚は100  n
m  である。耐熱保護層は光学活性層の基材側および
上側に、それぞれおよそ100 nm、200 nm作
成した。
Example 4 Chalcogenated aene, that is, aene sulfide (ZnS) was deposited on a base material made of polymethyl methacrylate by a binary vapor deposition method.
Alternatively, a combination of aene selenide (ZnSe) or aene telluride (ZnTe) and vitrified germanium dioxide (
GeO2), tin oxide (SnO2), indium oxide (
A heat-resistant protective layer made of a mixture of In202) and tellurium dioxide (TeO2) was prepared. The mixing ratio of chalcogenated enene (ZnX: The same TeGe5nO components as in Example 1 were used for the optically active layer, and the film thickness was 100 nm.
It is m. Heat-resistant protective layers were formed to a thickness of approximately 100 nm and 200 nm on the base material side and above the optically active layer, respectively.

次に第4表に、酸化物の添加量に対する結晶化およびア
モルファス化に要する最低のレーザーエネルギーを示す
。測定法は実施例1と同じである。カルコゲン化アエン
にガラス質酸化物を添加するにことにより結晶化に要す
るの最低エネルギーは減少し、さらに添加量が増えると
再び増加し始める。この結果から明らかなように、ガラ
ス化酸化物の添加量には最適値があることがわかる。
Next, Table 4 shows the minimum laser energy required for crystallization and amorphization with respect to the amount of oxide added. The measurement method is the same as in Example 1. By adding a glassy oxide to the chalcogenated aene, the minimum energy required for crystallization decreases, and begins to increase again as the amount added is further increased. As is clear from this result, there is an optimum value for the amount of vitrification oxide added.

本実施例においては、S n O2においては添加量が
15モル%以上35モル%以下のときに、グレイン径が
lonm以下になって、結晶化に要するレーザーパワー
が6IIIWないし7iWと、酸化物ガラスがないとき
の91より低下していることがわかる。また、アモルフ
ァス化に要するレーザーパワーも低下していることがわ
かる。
In this example, when the addition amount of S n O2 is 15 mol % or more and 35 mol % or less, the grain diameter becomes lonm or less, and the laser power required for crystallization is 6IIIW to 7iW, and the oxide glass It can be seen that this is lower than 91 when there is no. It can also be seen that the laser power required for amorphization is also reduced.

他の2種ののカルコゲン化アエンおよび酸化物の場合も
ほぼ同様の結果が得られている。
Almost similar results were obtained with the other two chalcogenated enenes and oxides.

第4表には、透過型電子顕微鏡で観察したZnS のグ
レインの平均的な大きさも合わせて示した。
Table 4 also shows the average size of ZnS grains observed with a transmission electron microscope.

一21= 以上の実施例で示した様に本発明は、光学式情報記録部
材の特性向上に効果があるといえる。特に、入射レーザ
ーパワーを効率よく利用する点、記録消去の回数を増加
させる点、光学活性層を酸などから守る信頼性改善の点
に大きな効果がある。前記実施例では硫化アエン等の結
晶質のものと、2酸化ケイ素等のガラス質のものとを気
相などから急冷することにより薄膜を構成する粒子を微
細化してあたかも強制的に固溶させた様な構造にする例
を示したが、この考え方は従来にないものである。
-21= As shown in the above examples, it can be said that the present invention is effective in improving the characteristics of optical information recording members. In particular, it has great effects in efficiently utilizing incident laser power, increasing the number of recording and erasing operations, and improving reliability in protecting the optically active layer from acids and the like. In the above example, a crystalline material such as aene sulfide and a glassy material such as silicon dioxide were rapidly cooled from a gas phase, so that the particles constituting the thin film were made fine and forced into a solid solution. Although we have shown an example of a similar structure, this idea is unprecedented.

発明の効果 本発明によれば、基材上に光学活性層を設けてなる光学
式情報記録部材において、前記光学活性層と基材の間、
もしくは光学活性層の上に、複数の化合物よりなる耐熱
保護層を設け、かつそれらの混合物の構成化合物のうち
少なくとも2種は互いに固溶し合わないものより選らぶ
ことにより、記録時の入射光パワーに対する感度を上昇
させ、あるいは記録消去の繰り返しの回数を増やすこと
ができる。
Effects of the Invention According to the present invention, in an optical information recording member comprising an optically active layer provided on a base material, between the optically active layer and the base material,
Alternatively, a heat-resistant protective layer made of a plurality of compounds is provided on the optically active layer, and at least two of the constituent compounds of the mixture are selected from those that do not dissolve in solid solution with each other. It is possible to increase the sensitivity to power or increase the number of repetitions of recording and erasing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における光学式情報記録媒
体の断面図、第2図はZnS+S ioz系の屈折率を
示すグラフ、第3図はZnS十S i02系の繰り返し
特性を示すグラフである。 1・・・基材、 2.4・・・耐熱保護層、3・・・光
学活性層、 5・・・接着剤層、6・・・保護基材。
FIG. 1 is a cross-sectional view of an optical information recording medium according to an embodiment of the present invention, FIG. 2 is a graph showing the refractive index of the ZnS+S i02 system, and FIG. 3 is a graph showing the repetition characteristics of the ZnS+S i02 system. It is. DESCRIPTION OF SYMBOLS 1... Base material, 2.4... Heat-resistant protective layer, 3... Optical active layer, 5... Adhesive layer, 6... Protective base material.

Claims (7)

【特許請求の範囲】[Claims] (1)基材と、その基材上に設けた光学活性層と、前記
光学活性層と前記基材の間もしくは前記光学活性層の上
に設けた耐熱保護層とを備え、前記耐熱保護層は、複数
の化合物の混合物よりなり、前記混合物の構成化合物の
うち、少なくとも2種は互いに固溶しない化合物からな
るとともに、前記保護層中の微小構造単位(グレイン)
の大きさがそれぞれの構成化合物単独で形成した場合の
微小構造単位(グレイン)の大きさよりも小さいことを
特徴とする光学式情報記録部材。
(1) A base material, an optically active layer provided on the base material, and a heat-resistant protective layer provided between the optically active layer and the base material or on the optically active layer, the heat-resistant protective layer consists of a mixture of a plurality of compounds, at least two of the constituent compounds of the mixture are compounds that do not dissolve in solid solution with each other, and microstructural units (grains) in the protective layer
1. An optical information recording member characterized in that the size of the grain is smaller than the size of a microstructural unit (grain) when formed from each constituent compound alone.
(2)耐熱保護層を構成する化合物のうち、少なくとも
一種はガラス、またはガラス化を促進するものであり、
少なくとも一種は、結晶質であることを特徴とする特許
請求の範囲第1項記載の光学式情報記録部材。
(2) At least one of the compounds constituting the heat-resistant protective layer is glass or one that promotes vitrification;
2. The optical information recording member according to claim 1, wherein at least one of the members is crystalline.
(3)耐熱保護層を構成する化合物のうち、少なくとも
一種は金属のカルコゲン化物であり、少なくとも一種は
酸化物であることを特徴とする特許請求の範囲第1項記
載の光学式情報記録部材。
(3) The optical information recording member according to claim 1, wherein at least one of the compounds constituting the heat-resistant protective layer is a metal chalcogenide, and at least one of the compounds is an oxide.
(4)金属のカルコゲン化物のうち少なくとも一種はカ
ルコゲン化アエンであり、酸化物のうち少なくとも一種
はガラス化した酸化物であることを特徴とする特許請求
の範囲第3項記載の光学式情報記録部材。
(4) Optical information recording according to claim 3, characterized in that at least one of the metal chalcogenides is a chalcogenated aene, and at least one of the oxides is a vitrified oxide. Element.
(5)カルコゲン化アエンがZnS、ZnSeおよびZ
nTeから選択された少なくとも一種であり、ガラス化
した酸化物がSiO_2、GeO_2、SnO_2、I
n_2O_2及びTeO_2から選択された少なくとも
一種であることを特徴とする特許請求の範囲第4項記載
の光学式情報記録部材。
(5) Chalcogenated enenes are ZnS, ZnSe and Z
At least one kind selected from nTe, and the vitrified oxide is SiO_2, GeO_2, SnO_2, I
The optical information recording member according to claim 4, characterized in that it is at least one selected from n_2O_2 and TeO_2.
(6)薄膜構成成分のうち結晶質部分の微小構造単位の
平均的な大きさが10ナノメートル(nm)以下である
ことを特徴とする特許請求の範囲第1項記載の光学式情
報記録部材。
(6) The optical information recording member according to claim 1, wherein the average size of the microstructural units of the crystalline portion of the thin film constituents is 10 nanometers (nm) or less. .
(7)薄膜構成成分のうち結晶質部分となるZnS、Z
nSeおよびZnTeから選択された少なくとも一種の
薄膜中での微小構造単位の平均的な大きさが10ナノメ
ートル(nm)以下であることを特徴とする特許請求の
範囲第5項又は第6項記載の光学式情報記録部材。
(7) ZnS and Z, which form the crystalline part of the thin film components
Claim 5 or 6, characterized in that the average size of microstructural units in the thin film of at least one selected from nSe and ZnTe is 10 nanometers (nm) or less optical information recording member.
JP62095630A 1986-10-20 1987-04-17 Optical information recording member Expired - Lifetime JPH0690808B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62095630A JPH0690808B2 (en) 1987-04-17 1987-04-17 Optical information recording member
US07/108,649 US4847132A (en) 1986-10-20 1987-10-15 Protective layer for optical information recording medium
CA000549563A CA1298912C (en) 1986-10-20 1987-10-19 Protective layer for optical information recording medium
EP87309209A EP0265204B1 (en) 1986-10-20 1987-10-19 Protective layer for optical information recording medium
DE8787309209T DE3781363T2 (en) 1986-10-20 1987-10-19 PROTECTIVE LAYER FOR AN OPTICAL RECORDING MEDIUM.
KR1019870011615A KR900008085B1 (en) 1986-10-20 1987-10-20 Protecting layer for optical information recording carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095630A JPH0690808B2 (en) 1987-04-17 1987-04-17 Optical information recording member

Publications (2)

Publication Number Publication Date
JPS63259855A true JPS63259855A (en) 1988-10-26
JPH0690808B2 JPH0690808B2 (en) 1994-11-14

Family

ID=14142841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095630A Expired - Lifetime JPH0690808B2 (en) 1986-10-20 1987-04-17 Optical information recording member

Country Status (1)

Country Link
JP (1) JPH0690808B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195538A (en) * 1989-01-23 1990-08-02 Matsushita Electric Ind Co Ltd Component for optical information recording, reproducing and erasing
JPH03178050A (en) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member
EP0516178A2 (en) * 1991-05-30 1992-12-02 Nec Corporation Optical information recording medium in which a protective layer comprises a mixture layer containing ZnS and SiO2
US7608385B2 (en) 2003-07-24 2009-10-27 Panasonic Corporation Information recording medium and method for producing the same
US8323763B2 (en) 2009-08-31 2012-12-04 Panasonic Corporation Information recording medium and method for producing the same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103453A (en) * 1986-10-20 1988-05-09 Matsushita Electric Ind Co Ltd Optical information recording member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103453A (en) * 1986-10-20 1988-05-09 Matsushita Electric Ind Co Ltd Optical information recording member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02195538A (en) * 1989-01-23 1990-08-02 Matsushita Electric Ind Co Ltd Component for optical information recording, reproducing and erasing
JPH03178050A (en) * 1989-12-07 1991-08-02 Matsushita Electric Ind Co Ltd Optical information recording, reproducing and erasing member
EP0516178A2 (en) * 1991-05-30 1992-12-02 Nec Corporation Optical information recording medium in which a protective layer comprises a mixture layer containing ZnS and SiO2
US7608385B2 (en) 2003-07-24 2009-10-27 Panasonic Corporation Information recording medium and method for producing the same
US7967956B2 (en) 2003-07-24 2011-06-28 Panasonic Corporation Information recording medium and method for producing the same
US8323763B2 (en) 2009-08-31 2012-12-04 Panasonic Corporation Information recording medium and method for producing the same
US8580368B2 (en) 2011-03-08 2013-11-12 Panasonic Corporation Information recording medium and method for manufacturing the same
US8685518B2 (en) 2011-03-08 2014-04-01 Panasonic Corporation Information recording medium and method for producing same

Also Published As

Publication number Publication date
JPH0690808B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
KR900008085B1 (en) Protecting layer for optical information recording carrier
KR890004263B1 (en) Optical memory and its recording device and its method
USRE36383E (en) Optical recording medium and production process for the medium
KR890004231B1 (en) Optical information recording member
EP0121426A2 (en) Optical recording medium and method of optical recording and erasing using same medium
JPS63103453A (en) Optical information recording member
US5147701A (en) Information recording medium
JP2000229479A (en) Optical-recording medium
US4860274A (en) Information storage medium and method of erasing information
US5453346A (en) Optical information recording medium having protection layers with different properties on both sides of an optical active layer
JPS63259855A (en) Optical type information recording member
US5882493A (en) Heat treated and sintered sputtering target
JPH0734267B2 (en) Reversible optical information recording medium and recording / reproducing method
WO2002058060A1 (en) Optical information recording medium
JPS63306550A (en) Optical information recording member
JPS63276724A (en) Optical information recording member
JP2867701B2 (en) Manufacturing method of optical information recording medium
KR100186525B1 (en) Structure for phase change type optical disk
JP2663438B2 (en) Optical information recording medium
KR100763364B1 (en) phase change type optical disk
JPH1173680A (en) Optical recording medium
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JPS632131A (en) Optical information recording member
JPH08306073A (en) Optical disk
JPS63306549A (en) Optical information recording member

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 13