WO2002058060A1 - Optical information recording medium - Google Patents

Optical information recording medium Download PDF

Info

Publication number
WO2002058060A1
WO2002058060A1 PCT/JP2001/000305 JP0100305W WO02058060A1 WO 2002058060 A1 WO2002058060 A1 WO 2002058060A1 JP 0100305 W JP0100305 W JP 0100305W WO 02058060 A1 WO02058060 A1 WO 02058060A1
Authority
WO
WIPO (PCT)
Prior art keywords
super
information recording
recording medium
optical information
film
Prior art date
Application number
PCT/JP2001/000305
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Yamamoto
Takashi Naito
Toshimichi Shintani
Motoyasu Terao
Tetsuo Nakazawa
Mitsutoshi Honda
Tatsumi Hirano
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002558264A priority Critical patent/JPWO2002058060A1/en
Priority to PCT/JP2001/000305 priority patent/WO2002058060A1/en
Publication of WO2002058060A1 publication Critical patent/WO2002058060A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers

Definitions

  • the present invention relates to an optical information recording medium, and particularly to an optical information recording medium capable of reading and writing at a high recording density, having high reliability for repeated recording and reproduction operations, and capable of coping with high-speed rotation. Regarding the medium. Background art
  • CD compact discs
  • LD laser discs
  • DVDs having a recording density seven times or more that of CDs have been put to practical use.
  • DVD is used not only as a read-only ROM that records images and information for computers, but also as a rewritable RAM having a recording film.
  • this RAM In order to use this RAM as a recording medium for video signals that record moving images, etc., and to use it as a medium for high-definition recording, it is necessary to increase the capacity even further. To do this, a recording capacity of 20 GB to 100 GB is required on one side. In order to achieve this, studies are being made on shortening the recording wavelength, developing an irradiation lens system with a high NA, multiplex recording, and mounting a photon-mode super-resolution film on the recording medium.
  • This super-resolution film is a thin film formed on the incident surface side of the recording medium. By reducing the beam spot of the incident light transmitted through the film, high recording density can be achieved.
  • the super-resolution effect utilizes phenomena such as absorption saturation and refractive index change of this film due to laser single light irradiation.
  • the absorption saturation phenomenon utilizes a nonlinear optical characteristic that a super-resolution film transmits light having an intensity higher than the absorption saturation amount and absorbs light having an intensity lower than the absorption saturation amount.
  • the change in the refractive index utilizes a phenomenon in which the refractive index of the film changes due to heating or polarization of the film due to irradiation with a single laser beam.
  • an object of the present invention is to provide a read-only optical information recording medium (ROM disc) which has a large capacity, is less deteriorated by repeated reading, and has excellent responsiveness.
  • Another object of the present invention is to provide a high-response, large-capacity rewritable optical information recording medium (RAM disk) with little deterioration in repeated reading and writing. Disclosure of the invention
  • an optical information recording medium comprises: a substrate; a super-resolution film made of an inorganic material formed directly on the substrate or via another thin film; Or, in an optical information recording medium including an information recording film formed through another thin film, the super-resolution film has an absorption edge wavelength within 10% of the earth of one laser wavelength used for recording or reproducing information. And crystalline particles with a grain boundary phase, and the crystalline particles have an orientation.
  • This optical information recording medium can be used as a rewritable optical information recording medium.
  • an optical information recording medium comprises a substrate on which pits having information are formed. And an optical information recording medium including a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, wherein the super-resolution film has an absorption edge wavelength used for recording or reproducing information. It is composed of crystalline particles or crystalline particles with a grain boundary phase existing within 10% of the soil of the laser wavelength, and the crystalline particles have an orientation.
  • This optical information recording medium can be used as a read-only optical information recording medium.
  • the super-resolution film has an absorption edge wavelength within 5% of soil of one wavelength of a laser used for recording or reproducing information. It is more preferable.
  • the super-resolution film is a crystalline particle having an orientation of a group II-VI compound semiconductor having a wurtzite-type or zinc-blende-type crystal semiconductor or a crystalline particle having an orientation accompanied by a grain boundary phase.
  • the grain boundary phase is composed of an oxide of one or more metals selected from silicon, aluminum, titanium, aluminum metal, and aluminum earth metal, or a component thereof and a component constituting a crystal particle. It is preferably a mixture.
  • the optical information recording medium also includes a substrate, a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, and a super-resolution film directly or through another thin film.
  • the super-resolution film is a crystalline particle having the orientation of a group II-VI compound semiconductor having a plutoite-type or zinc-blende-type crystal structure. Or, it is composed of crystalline particles having an orientation accompanied by a grain boundary phase, and the grain boundary phase is one or more metals selected from silicon, aluminum, titanium, alkali metal and alkaline earth metal. Or a mixture of these with the components constituting the crystal particles.
  • This optical information recording medium can be used as a rewritable optical information recording medium.
  • An optical information recording medium also includes an optical information recording medium including: a substrate on which pits having information are formed; and a super-resolution film made of an inorganic material formed directly or via another thin film on the substrate.
  • the super-resolution film is made of crystalline particles or crystals having the orientation of a group II-VI compound semiconductor having a crystal structure of the Uruite or zinc blende type. Is composed of crystalline grains having an orientation accompanied by a grain boundary phase, and the grain boundary phase is an oxide of one or more metals selected from silicon, aluminum, titanium, alkali metals and alkaline earth metals. Alternatively, it is characterized in that it is a mixture of these and the components constituting the crystal particles.
  • This optical information recording medium can be used as a read-only optical information recording medium.
  • the II-VI compound semiconductor is cadmium and / or zinc, and one or more elements selected from sulfur, selenium, and tellurium.
  • a compound with The wurtzite compound has a (001) orientation with respect to the substrate surface
  • the zinc blende compound has a (111) orientation with respect to the substrate surface.
  • the content of the group II-VI compound semiconductor contained in the super-resolution film is desirably at least 23% by mol%, more desirably at least 35% and at most 95%.
  • the crystal grains in the super-resolution film preferably have an average particle size of 3.2 nm or more and 17 nm or less, and an average particle size of 3.5 nm or more and 10.1 nm or less. Is even more preferred.
  • FIG. 1 is a schematic diagram of a partial cross section of a RAM disk manufactured in an example of the present invention.
  • FIG. 2 is a diagram showing the spectral transmittance curves of the super-resolution films of Sample Nos. 2, 5, 6, and 7.
  • FIG. 3 is a graph showing the change in the C / N ratio with respect to the mark length.
  • FIG. 4 is a diagram showing a change in CZN with respect to the CdZnS content.
  • FIG. 5 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 2.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 6.
  • FIG. 7 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 7.
  • FIG. 8 is a schematic diagram of a crystal structure of a wurtzite type compound.
  • FIG. 9 is a schematic diagram of the crystal structure of a sphalerite-type compound.
  • FIG. 10 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 2.
  • FIG. 11 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 6.
  • FIG. 12 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 7.
  • FIG. 13 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 2.
  • FIG. 14 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 6.
  • FIG. 15 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 7.
  • FIG. 11 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 6.
  • FIG. 12 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 7.
  • FIG. 16 is a diagram showing a change in CZN when changing one laser wavelength.
  • FIG. 17 is a diagram showing a change in CZN when one laser wavelength is changed.
  • FIG. 18 is a diagram showing a change in CZN when one laser wavelength is changed.
  • FIG. 19 is a diagram showing a change in CZN when changing one laser wavelength.
  • FIG. 20 is a diagram showing a change in average particle diameter with respect to sputter power.
  • FIG. 21 is a diagram showing a change in CZN with respect to the average particle diameter of the fine particles of the precipitated semiconductor compound.
  • FIG. 22 is a schematic diagram of a partial cross section of the ROM disk manufactured in the example of the present invention.
  • FIG. 1 shows a schematic diagram of a partial cross section of the RAM disk manufactured in this example.
  • 1 is a substrate
  • 2 is a super-resolution film
  • 3 and 3 ′ are protective films
  • 4 is a recording film
  • 5 is a reflective film
  • 10 is a recorded portion (recorded pit).
  • the substrate polycarbonate, polyolefin, glass, or the like is used according to the specification. In this embodiment, polycarbonate is used.
  • the protective films 3 and 3 ′ an SiO 2 -based amorphous film was used.
  • As the recording film 4 a Ge—Sb—Te phase change material was used.
  • As the reflective film 5 an A1-Ti reflective film was used.
  • the super-resolution film, II one VI group compound semiconductor single or their and S i O 2, T i 0 2, S, i 0 2 - were studied mixture film with T i O 2 such as glass material.
  • the high-frequency magnetron sputtering method (RF sputtering) was used to form the protective film 3, 3 'and super-resolution film.
  • the DC magnetron sputtering method was used for forming the film 4 and the reflection film 5.
  • the target size of each thin film was 6 mm, and Ar was used as the sputtering gas.
  • the power during sputtering was 600 W to 1.5 kW, and the deposition time was adjusted to obtain the desired film thickness.
  • the RAM disk shown in FIG. 1 was manufactured by the following steps.
  • a super-resolution film 2 having a thickness of 50 nm was formed on a disc-shaped polycarbonate substrate 1 having a thickness of 0.6 mni, an outer diameter of 120 mm, and an inner diameter of 10 mm.
  • a protective film 3 thereon of 90 nm a recording film 4 was formed to a thickness of about 20 nm.
  • a protective film 3 'of about 40 to 100 nm a reflective film of about 200 nm was formed thereon.
  • a desired RAM disk was obtained by laminating two substrates with the film on the back of the reflective film 5 using an ultraviolet curing resin.
  • the thickness of the protective film 3 ' was adjusted to the thickness at which the intensity of the reflected light was highest in accordance with the optical characteristics of the super-resolution film to be used.
  • the obtained optical disk was irradiated with a semiconductor laser having a wavelength of 400 nm to perform writing. At this time, the laser output was adjusted according to the information to be recorded, and the optical disk was irradiated with pulses to form recording pits. In this embodiment, a recorded portion (recording pit) and a non-recorded portion are written at the same cycle. The length of one half of this period (the length of the recording pit) is called the mark length.
  • the laser output for writing was 15 mW.
  • the recording film is heated, and the crystalline portion is melted and rapidly cooled to become amorphous, and information is written.
  • Information can be read from the difference between the original reflectance of the crystalline portion and the reflectance of the amorphous portion after writing.
  • the laser output was set to 2 mW and the written pits were read.
  • the difference between the reflectivity of the crystalline part and the amorphous part at this time is defined as the signal (carrier), and the ratio (C / N ratio) of the signal to the noise signal generated by other factors such as the electrical system is evaluated. It can be determined whether or not the re-recorded information is read.
  • the mark length of the recording pit is changed from 0.1 ⁇ to 0.6 m, and the CZN ratio for each pit is evaluated to determine whether finer information can be read. It was judged.
  • a comparative example a case where no super-resolution film is formed investigated. At this time, the film configuration other than the super-resolution film of the comparative example was the same as that of the above example. In this example, the linear velocity of the disk rotation was constant at 7 m / sec.
  • Table 1 shows the composition of the super-resolution film of the fabricated RAM disk, the precipitated phase and the orientation obtained from the X-ray diffraction pattern of this film, and the peak intensity of the orientation plane for the oriented film.
  • the C / N ratio when a pit is formed with a mark length of 0.2 ⁇ is also shown.
  • the average particle size of precipitated particles observed from a transmission electron microscope (TEM) image of the film surface observed by the method described later is also shown.
  • TEM transmission electron microscope
  • the particle diameter of each particle a circle having the same area as the fine particles observed in the obtained TEM image was assumed, and the particle diameter of each particle was calculated based on the diameter. Then, for each sample, the particle size was calculated for 100 to 300 fine particles, and the average value was used as the average particle size.
  • Sample Nanba1 ⁇ 7 is, C d 0 absorption edge at about 4 OO nm as the compound semiconductor components. 5Z n. .
  • the 5 S also Example der Li when selecting S i O 2 as the grain boundary phase-forming components, varying the mixing ratio.
  • the sample vo ⁇ 7 is a C d 0. 5 Z n 0 . 5 S single super-resolution film.
  • Fig. 2 shows the spectral transmittance curves of the single-layer super-resolution films of samples Nos. 2, 5, 6, and 7 in Table 1.
  • Each thin film has an absorption edge at the position of 400 nm indicated by an arrow and is transparent in a wavelength range longer than that, so that oscillation was observed with respect to wavelength due to interference with back surface reflection.
  • the transmittance decreases to 0.3 or less. I was From this, it is expected that these materials have large absorption for light with a wavelength of 400 nm or less and have a large interaction with light.
  • Figure 3 shows the CZN ratio with respect to the mark length of Samples Nos. 2, 6, and 7 and a comparative example in which no super-resolution film was formed.
  • the comparative example when the mark length was 0.35 or more, a relatively good C / N ratio of about 40 dB or more was shown.However, as the remark length was reduced, the CZN ratio decreased, and the CZN ratio decreased. At 2 ⁇ , it was about 20 dB.
  • the CZN ratio was slightly improved compared to the comparative example, the CN ratio was almost the same as the comparative example.
  • Figure 4 shows the CZN ratio at a mark length of 0.2 when a super-resolution film of each composition shown in Table 1 was formed. Comparing this value, C d 5 Z n 0. 5 S content of 1 0 mol%, 1 9 mol. /. Sample Nos. 1 and 2 showed 10 dB and 15 dB, which was not much improved compared to 10 dB of the comparative example. On the other hand, C d 0 5 Z n 0 5 S content 2 3 ⁇ :.. L 00 mole 0/0 C / N ratio for the sample Nanba3 ⁇ 7 of becomes 30 dB ⁇ 45 d B as high I was From this, it was concluded that the super-resolution effect can be obtained with thin films such as Sample Nos.
  • FIGS 8 and 9 show schematic diagrams of the crystal structures of urite-type CdS and zinc-blende-type CdS, respectively.
  • sulfur (S) ions are closest packed, and the closest packed surface is shown in the vertical direction in the figure.
  • ions are arranged in a hexagon, and the ion sphere forming the surface on the concave portion of the ion sphere is arranged to form the closest structure.
  • the third layer is located at a different position from the ion sphere of A, and thus has a period of A, B, C, A, B, C ....
  • the unit cell of the cube can be defined by setting the closest packing direction to the (1 1 1) direction.
  • FIGS. 10 to 12 show schematic diagrams of transmission electron microscope images observed from the cross-sectional direction of the thin film.
  • FIGS. 13 to 15 show schematic images of transmission electron microscope images of the inside of the film surface. From the obtained transmission electron microscope images, the average particle size of the particles found in each thin film was calculated.
  • the particle diameter of each particle was assumed to be a circle having an area equivalent to the fine particles observed in the obtained TEM image, and the particle diameter of each particle was calculated based on the diameter. Then, for each sample, the particle size was calculated for 100 to 300 fine particles, and the average value was used as the average particle size.
  • FIG. 10 A schematic diagram of an electron microscope image of the thin film of Sample No. 2 from the cross-sectional direction is shown in FIG. 10, and a schematic diagram of a transmission electron microscope image of the thin film in the in-plane direction is shown in FIG.
  • C d 0 of the average particle size of about 3 nm in an amorphous glass matrix 7 mainly composed of S i O 2. 5 Z n 0 5 S microparticles 6 are dispersed Was observed.
  • the orientation of these precipitated particles was random. Therefore, it is probable that the crystal peak could not be confirmed in the X-ray diffraction pattern shown in Fig. 5 because the amount of X-ray obtained from each particle was small.
  • FIG. 11 shows a schematic diagram of an electron microscope image of the thin film of Sample No. 6 from the cross-sectional direction.
  • FIG. 14 is a schematic diagram of a transmission electron microscope image in the in-plane direction.
  • average particle size of about 5 nm of C d 0. 5 Z n 0 _ 5 S particles 8 had a very densely packed.
  • Electron diffraction and lattice image observation using high-resolution images showed that these particles were oriented in the c-axis direction with respect to the substrate. This result was consistent with the result of X-ray diffraction shown in FIG.
  • the in-plane transmission electron microscope image shown in Fig. 14 also revealed that the thin film had a structure in which fine particles of about 5 nm were aggregated.
  • FIGS. 12 and 15 show transmission electron microscope images of the cross section and plane of the thin film of Sample No. 7. C d also in this thin film.
  • 5 Z n. . 5 has a structure in which S particles 8 are densely packed, and c-axis were it was observed growing perpendicular to the substrate. From the cross-sectional image and the plane image shown in Fig. 15, it was confirmed that the average particle size of the particles was about 6 nm, which was slightly larger than that of Sample No. 6. In Sample No. 7, since no SiO 2 component was added, the amorphous-like grain boundary phase seen in Sample No. 6 was not formed, and the particles were densely present. Was.
  • C d and S can be regarded as a pair of atoms arranged parallel to the c-axis.
  • the Fermi surface obtained from the band structure generated by the combination of Cd and S is formed perpendicular to this c-axis.
  • the valence and conduction bands filled with electrons are formed perpendicular to the c-axis.
  • Polarization is generated by the pair of the electron and the hole, and the polarization induces an optical nonlinearity such as a change in refractive index. If the direction of this polarization is parallel to the laser beam, all the polarization components contribute to the nonlinearity, so that high nonlinear optical characteristics can be obtained. If the direction of this polarization is inclined with respect to one laser beam, the nonlinearity decreases. From this fact, it is considered that in the case of the wurtzite type compound, if the film is oriented in the hexagonal c-axis, the polarization component is very large, so that large nonlinearity can be obtained. On the other hand, in the aggregate of fine particles such as sample No.
  • C d. . 5 Z n As described above, as in sample Nos. 1 and 2, C d. . 5 Z n. When the 5S content is small, the structure becomes a dispersion type of fine crystal particles, and Cd. . 5 Z n. . 5 S microcrystal grains were the small nonlinearity to face the random orientation. Also, as shown in Sample Nos. 3 to 7, C d. . 5 Z n. . 5 When S content is high became Oriented structure in the c-axis of the hexagonal C d 0. 5 Z n 0 5 S. In this case, a large nonlinearity was obtained, and a super-resolution effect was obtained.
  • C d as shown in Table 1 and FIG. 5 Z n. If the content of 5S is 23% or more in molar ratio, oriented Cd. . 5 Z n. . 5 S crystal particles were obtained, CZN exceeds 30 d B, it was possible to obtain a super-resolution effect. In order to obtain an even higher super-resolution effect where CZN exceeds 40 dB, C d is required. . 5 Z n. . It may be the 5 S content in a molar ratio of 35% or more 95% or less and.
  • C d 0. 5 Z n 0 _ 5 S content is less than 23%, C d 0. 5 Z n 0 5 Oriented of S particles becomes random, high super-resolution effect is difficult to obtain.
  • the C d 0. 5 Z n 0 5 and S content is less than 35% of that super-resolution effect is obtained, sufficiently high CZN ratio is hardly obtained.
  • C d 0. 5 Z n 0 . 5 S content exceeds 95% when the S i O 2 content is not sufficient, the grain boundary phase component less of Li, cause coarsening of the particles, characteristics Decrease slightly.
  • the average particle size was as small as about 6.2 nm, and the CZN ratio was as large as 46.
  • Al 2 O 3 Ti O 2 was used, the average particle size was about 7 nm, and both the average particle size and the CZN ratio were almost the same as those of the Sample No. 1 Sio 2 system. there were.
  • the grain boundary phase component S i O 2 T i 0 2 A 1 2 0 3 or N a The glass preferably contains an alkali metal such as 2 O and K 20 and an alkaline earth metal such as CaO and MgO.
  • the composition of the mixed crystal of CdS and ZnS having an absorption at 320 nm (3.83 eV) was changed, and the super-resolution effect for lasers of various wavelengths was changed. investigated. We also examined the super-resolution characteristics with these films to a thin film to prepare a mixture thin film of S i 0 2.
  • the super-resolution characteristics were evaluated by the following method.
  • the C / N ratio to the mark length described in Example 1 was measured for the optical disk of the comparative example in which no super-resolution film was formed at each wavelength, and the C / N when the mark length was reduced was 8 d.
  • the mark length when it decreased to B was measured.
  • the CZN at the mark length at which the CZN of the comparative example was 8 dB was evaluated in the example sample in which the super-resolution film was formed.
  • FIG. 16 shows the case where the SiO 2 content is 0 m 0 1%
  • FIG. 17 shows the case where the SiO 2 content is 10 m 0 1%. From this figure, it can be seen that there is a wavelength range corresponding to the absorption wavelength of each semiconductor compound component and in which a high CZN can be obtained. For example, when CdS of sample No. 15 is used, the absorption edge is 480 nm, and at this time, the wavelength of the laser is 42 5 ⁇ ! High CZN of 30 dB between ⁇ 550 nm Was. Furthermore, one wavelength of laser 450 ⁇ !
  • Sample No. 17 has an absorption edge of 403 nm and a laser wavelength of 3 55 ⁇ ! The CZN was more than 30 dB in the range of 520520 nm and more than 40 dB in the range of 380-420 ⁇ m.
  • Sample No. 25 of ZnSe single phase has an absorption edge wavelength of 443 nm and a laser wavelength of 37 0 ⁇ ! ⁇ 30 dB or more at 30 nm, 420 ⁇ ! At ⁇ 450 nm, high CZN of 40 dB or more was obtained.
  • Table 4 shows the absorption wavelength, precipitated phase, orientation, and C / N ratio when using a CdSSe-based semiconductor material in which CdSe is added to CdS. Each measurement method was the same as the method shown in Table 3.
  • Fig. 18 and Fig. 19 show the change in C / N ratio when the laser wavelength is changed.
  • each sample in Table 4 differs in the laser one wavelength range where high CZN is obtained depending on the absorption edge wavelength, and is 40 d if within ⁇ 5% of the absorption edge wavelength. It can be seen that a high C / N higher than B can be obtained.
  • Sample Nos. 35 to 37 in Table 4 even if a single-phase film such as CdSe, ZnTe, A super-resolution effect was obtained in the region.
  • sample No. 38 CdSe which is a mixed crystal of CdSe and CdTe. 5 Te.
  • the wavelength of the laser used is within ⁇ 10% of each absorption edge wavelength, more preferably.
  • the compound semiconductor used at this time is a compound semiconductor composed of a group VI element such as cadmium and zinc and a group II element such as sulfur, selenium, and tellurium, visible light from near ultraviolet to near infrared , A high super-resolution effect was obtained in the wavelength range up to.
  • the compound is (00 1) oriented, and in the case of a zinc blende type compound, it is preferable that the compound is (11 1) oriented.
  • the particle size of the super-resolution film deposited by changing the sputtering conditions was changed, and the change in super-resolution characteristics with respect to the particle size was examined.
  • a DVD-RAM disk having the same structure as that shown in Fig. 1 was prepared.
  • Table 5 shows the average particle size of the super-resolution film when the sputtering rate was changed and the C / N ratio of the DVD-RAM disk equipped with the super-resolution film. See Table 5 FIG. 20 shows the change in the average particle size with respect to the obtained sputtered powder, and FIG. 21 shows the C / N ratio with respect to the average particle size. Evaluation of the average particle size was calculated from the plane image of the transmission electron microscope in the same manner as in Example 1. Table 5
  • the average particle size tended to decrease as the sputter power increased.
  • C increased with increasing average particle size up to an average particle size of about 6.0 nm, but C / N decreased with increasing average particle size. There was a tendency to move.
  • the average particle size was 3.2 nm or more and 17 nm or less, the CZN ratio was 30 dB or more, and a super-resolution effect was obtained.
  • the average particle size was 3.5 nm or more and 10 0.1 nm or less, the C / N ratio was 40 dB or more, and more favorable results were obtained. If the average particle size is less than 3.2 nm or more than 17 nm, the C ratio is less than 30 dB, which is not preferable.
  • the average particle size of the fine particles of the semiconductor compound to be deposited is not less than 3.5 nm and not more than 10.1 nm.
  • FIG. 22 1 is a polycarbonate substrate, 10 is a recording pit recorded with information, 2 is a super-resolution film, 3 is a protective film, and 5 is a reflective film.
  • the CdS-based thin film shown in Sample No. 6 in Table 1 was used as the super-resolution film of No. 3.
  • a SiO 2 protective film was used as the protective film 3.
  • the reflective film of No. 5 was made of A1-Ti alloy.
  • the optical disc has lands (hills) and groups (valleys) for tracking, and recording pits having information are formed on both lands.
  • the ROM disk was manufactured by the following steps. First, a pit pattern having a mark length of 0.1 to 0.6 ⁇ m was formed on a photoresist using a laser. Thereafter, the pit pattern was copied into a Ni mold, and a polycarbonate was injected into the mold to form a substrate. On this substrate, a super-resolution film having a thickness of 50 nm was formed by sputtering, a 90-nm SiO 2 protective film was formed, and then a 100-nm-thick A1-Ti reflective film was formed. The thickness of the substrate 1 is 0.6 mm, and in this embodiment, the two substrates formed are bonded together with the reflective film as the back using an ultraviolet curing resin to obtain a ROM disk having a thickness of 1.2 mm. Was.
  • the reproduction wavelength was set to 400 nm and the C / N ratio to the mark length was evaluated using this ROM disk, it was 42 dB for the mark length of 0.2 ⁇ . It turned out to have high super-resolution characteristics.
  • an optical disc such as a ROM or a RAM
  • the super-resolution film can be applied to a large-capacity recording medium compatible with high-speed rotation.
  • Industrial Applicability ⁇ According to the present invention, by using an oriented II-VI compound semiconductor, an optical disk having a high super-resolution effect in all wavelength ranges from near ultraviolet to visible light and near infrared region can be obtained.

Abstract

An optical information recording medium having excellent response and high recording density and not deteriorating even after repeated read/write. An super-resolution film (2) aligned with respect to the substrate surface and made of microcrystals of a compound semiconductor is provided on the upper surface of a substrate (1). An optical recording film (4) for recording information optically through a protective film (3) is provided on the upper surface thereof along with a reflective film (5).

Description

明 細 書 光情報記録媒体 技術分野  Description Optical information recording media Technical field
この発明は、 光情報記録媒体に係り、 特に高い記録密度で読み書きが可能で、 かつ繰り返しの記録再生動作に対して高い信頼性を有し、 かつ高速回転に対して も対応可能な光情報記録媒体に関する。 背景技術  The present invention relates to an optical information recording medium, and particularly to an optical information recording medium capable of reading and writing at a high recording density, having high reliability for repeated recording and reproduction operations, and capable of coping with high-speed rotation. Regarding the medium. Background art
光情報記録媒体として、 コンパクトディスク (C D )、 レーザディスク (L D ) 、 さらに最近では C Dの 7倍以上の記録密度を有する D V Dが実用化されている。 D V Dは画像やコンピュータ一用の情報を記録した再生専用の R O Mとして用い られているほか、 記録膜を有する書き換え可能な R A Mとしても実用化されてい る。 この R A Mを動画などを収録するビデオ信号の記録媒体として用い、 さらに 高精細記録用の媒体として用いるためには、更なる大容量化が必要となっておリ、 デジタルハイビジョン放送などを 2時間収録するためには片面で 2 0 G B〜 1 0 0 G Bの記録容量が必要である。 これを達成するために、 記録波長の短波長化、 高い N Aを有する照射レンズ系の開発、 多重記録方式のほか、 記録媒体にフォト ンモードの超解像膜を搭載する方式が検討されている。  As optical information recording media, compact discs (CD), laser discs (LD), and recently, DVDs having a recording density seven times or more that of CDs have been put to practical use. DVD is used not only as a read-only ROM that records images and information for computers, but also as a rewritable RAM having a recording film. In order to use this RAM as a recording medium for video signals that record moving images, etc., and to use it as a medium for high-definition recording, it is necessary to increase the capacity even further. To do this, a recording capacity of 20 GB to 100 GB is required on one side. In order to achieve this, studies are being made on shortening the recording wavelength, developing an irradiation lens system with a high NA, multiplex recording, and mounting a photon-mode super-resolution film on the recording medium.
この超解像膜は、 記録媒体の入射面側に形成される薄膜で、 この膜を透過した 入射光のビームスポットを縮小することにより、 高記録密度化を達成できる。 超 解像効果は、 この膜のレーザ一光照射による吸収飽和、 屈折率変化などの現象を 利用したものである。 吸収飽和現象は、 超解像膜がその吸収飽和量以上の強度を 持つ光は透過させ、 それ以下の強度の光は吸収するという非線形な光学特性を利 用したものである。 また、 屈折率変化はレーザ一光照射により膜が加熱されたり 分極が生じたりすることよって膜の屈折率が変化する現象を利用したものである < 現在このような超解像膜として、 特開平 8— 9 6 4 1 2号公報等にみられるよ うなフタロシアニン系の有機膜、 特開平 1 0— 3 2 0 8 5 7号公報に記載の遷移 金属酸化物粒子系無機超解像膜、 特開平 1 1 一 2 7 3 1 4 8号公報に記載の半導 体膜、 あるいは半導体微粒子分散膜等が挙げられる。 This super-resolution film is a thin film formed on the incident surface side of the recording medium. By reducing the beam spot of the incident light transmitted through the film, high recording density can be achieved. The super-resolution effect utilizes phenomena such as absorption saturation and refractive index change of this film due to laser single light irradiation. The absorption saturation phenomenon utilizes a nonlinear optical characteristic that a super-resolution film transmits light having an intensity higher than the absorption saturation amount and absorbs light having an intensity lower than the absorption saturation amount. The change in the refractive index utilizes a phenomenon in which the refractive index of the film changes due to heating or polarization of the film due to irradiation with a single laser beam. 8-9 6 4 1 2 Phthalocyanine-based organic film, transition metal oxide particle-based inorganic super-resolution film described in JP-A-10-320857, JP-A-111-27331488 Semiconductor film or semiconductor fine particle dispersed film.
特開平 8 _ 9 6 4 1 2号公報記載の有機材料系超解像膜では、 記録あるいは読 み出し時に照射されるレーザ一ビームのエネルギー密度が局所的に非常に高くな るため、 記録再生の繰り返しによって膜が劣化するという問題があった。 このた め、 コンピュータ用の R A M等、 過酷な使用条件下では十分な記録再生動作回数 を保証しにくかった。 また近年のレーザー波長の短波長化のため、 問題解決が難 しくなる懸念があった。 また、 特開平 1 0— 3 2 0 8 5 7号公報に記載の遷移金 属酸化物粒子系超解像膜では、 波長 4 0 0 n m程度の短波長レーザーに対して十 分な超解像効果が得られないという問題があった。 さらに特開平 1 1 一 2 7 3 1 4 8号公報に記載の半導体膜、 あるいは半導体微粒子分散膜では、 非線形光学特 性が十分とはいえず、 十分な超解像特性が得られにくいという問題があった。 そこで、 本発明の目的は、 大容量で、 さらに繰り返しの読み出しに対して劣化 が少なく、 また応答性に優れた読み出し専用光情報記録媒体 ( R O Mディスク) を提供することにある。 また、 本発明の他の目的は、 繰り返しの読み書きに対し て劣化が少なく、 高応答性、 大容量書き換え可能光情報記録媒体 (R AMデイス ク) を提供することにある。 発明の開示  In the organic material-based super-resolution film described in Japanese Patent Application Laid-Open No. H08-96412, recording / reproducing is performed because the energy density of a laser beam irradiated at the time of recording or reading becomes extremely high locally. There is a problem that the film is deteriorated by repeating the above. For this reason, it was difficult to guarantee a sufficient number of recording / reproducing operations under severe operating conditions such as a computer RAM. In addition, there was a concern that the solution of the problem would be difficult due to the recent shortening of the laser wavelength. In addition, the transition metal oxide particle-based super-resolution film described in Japanese Patent Application Laid-Open No. 10-32-857 has a sufficient super-resolution for a short-wavelength laser with a wavelength of about 400 nm. There was a problem that the effect could not be obtained. Furthermore, the semiconductor film described in Japanese Patent Application Laid-Open No. 11-27-314 or the semiconductor fine particle dispersion film has a problem that the nonlinear optical characteristics are not sufficient, and it is difficult to obtain sufficient super-resolution characteristics. was there. Therefore, an object of the present invention is to provide a read-only optical information recording medium (ROM disc) which has a large capacity, is less deteriorated by repeated reading, and has excellent responsiveness. Another object of the present invention is to provide a high-response, large-capacity rewritable optical information recording medium (RAM disk) with little deterioration in repeated reading and writing. Disclosure of the invention
上記課題を解決するため、 本発明による光情報記録媒体は、 基板と、 基板に直 接又は他の薄膜を介して形成された無機材料からなる超解像膜と、 超解像膜に直 接又は他の薄膜を介して形成された情報記録膜とを含む光情報記録媒体において、 超解像膜は、 吸収端波長が情報の記録又は再生に使用されるレーザ一波長の土 1 0 %以内に存在する結晶質の粒子もしくは粒界相を伴った結晶質の粒子から構成 され、結晶質の粒子は配向性を有することを特徴とする。 この光情報記録媒体は、 書き換え可能な光情報記録媒体として用いることができる。  In order to solve the above problems, an optical information recording medium according to the present invention comprises: a substrate; a super-resolution film made of an inorganic material formed directly on the substrate or via another thin film; Or, in an optical information recording medium including an information recording film formed through another thin film, the super-resolution film has an absorption edge wavelength within 10% of the earth of one laser wavelength used for recording or reproducing information. And crystalline particles with a grain boundary phase, and the crystalline particles have an orientation. This optical information recording medium can be used as a rewritable optical information recording medium.
また、 本発明による光情報記録媒体は、 情報を有するピットの形成された基板 と、 基板に直接又は他の薄膜を介して形成された無機材料からなる超解像膜とを 含む光情報記録媒体において、 超解像膜は、 吸収端波長が情報の記録又は再生に 使用されるレーザー波長の土 1 0 %以内に存在する結晶質の粒子もしくは粒界相 を伴った結晶質の粒子から構成され、 結晶質の粒子は配向性を有することを特徴 とする。 この光情報記録媒体は、 再生専用の光情報記録媒体として用いることが できる。 Further, an optical information recording medium according to the present invention comprises a substrate on which pits having information are formed. And an optical information recording medium including a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, wherein the super-resolution film has an absorption edge wavelength used for recording or reproducing information. It is composed of crystalline particles or crystalline particles with a grain boundary phase existing within 10% of the soil of the laser wavelength, and the crystalline particles have an orientation. This optical information recording medium can be used as a read-only optical information recording medium.
上記書き換え可能型あるいは再生専用型として用いることができる光情報記録 媒体において、 前記超解像膜は、 吸収端波長が情報の記録又は再生に使用される レーザ一波長の土 5 %以内に存在することがよリ好ましい。  In the above-mentioned optical information recording medium which can be used as a rewritable type or a read-only type, the super-resolution film has an absorption edge wavelength within 5% of soil of one wavelength of a laser used for recording or reproducing information. It is more preferable.
また、 前記超解像膜はウルツァイト型もしくは閃亜鉛鉱型の結晶構造を有する II - VI 族化合物半導体の配向性を有する結晶質の粒子もしくは粒界相を伴った 配向性を有する結晶質の粒子から構成され、 粒界相はシリコン、 アルミニウム、 チタン、 アル力リ金属及びアル力リ土類金属のうちから選択された 1又は複数の 金属の酸化物もしくはそれらと結晶粒子を構成する成分との混合物であることが 好ましい。  Further, the super-resolution film is a crystalline particle having an orientation of a group II-VI compound semiconductor having a wurtzite-type or zinc-blende-type crystal semiconductor or a crystalline particle having an orientation accompanied by a grain boundary phase. The grain boundary phase is composed of an oxide of one or more metals selected from silicon, aluminum, titanium, aluminum metal, and aluminum earth metal, or a component thereof and a component constituting a crystal particle. It is preferably a mixture.
本発明による光情報記録媒体は、 また、 基板と、 基板に直接又は他の薄膜を介 して形成された無機材料からなる超解像膜と、 超解像膜に直接又は他の薄膜を介 して形成された情報記録膜とを含む光情報記録媒体において、 超解像膜はゥルツ アイト型もしくは閃亜鉛鉱型の結晶構造を有する II一 VI 族化合物半導体の配向 性を有する結晶質の粒子もしくは粒界相を伴った配向性を有する結晶質の粒子か ら構成され、 粒界相はシリコン、 アルミニウム、 チタン、 アルカリ金属及びアル 力リ土類金属のうちから選択された 1又は複数の金属の酸化物もしくはそれらと 結晶粒子を構成する成分との混合物であることを特徴とする。 この光情報記録媒 体は、 書き換え可能な光情報記録媒体として用いることができる。  The optical information recording medium according to the present invention also includes a substrate, a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, and a super-resolution film directly or through another thin film. In the optical information recording medium including the information recording film formed by the above method, the super-resolution film is a crystalline particle having the orientation of a group II-VI compound semiconductor having a plutoite-type or zinc-blende-type crystal structure. Or, it is composed of crystalline particles having an orientation accompanied by a grain boundary phase, and the grain boundary phase is one or more metals selected from silicon, aluminum, titanium, alkali metal and alkaline earth metal. Or a mixture of these with the components constituting the crystal particles. This optical information recording medium can be used as a rewritable optical information recording medium.
本発明による光情報記録媒体は、 また、 情報を有するピットの形成された基板 と、 基板に直接又は他の薄膜を介して形成された無機材料からなる超解像膜とを 含む光情報記録媒体において、 超解像膜はウルッァ.ィト型もしくは閃亜鉛鉱型の 結晶構造を有する II一 VI 族化合物半導体の配向性を有する結晶質の粒子もしく は粒界相を伴った配向性を有する結晶質の粒子から構成され、粒界相はシリコン、 アルミニウム、 チタン、 アルカリ金属及びアルカリ土類金属のうちから選択され た 1又は複数の金属の酸化物もしくはそれらと結晶粒子を構成する成分との混合 物であることを特徴とする。 この光情報記録媒体は、 再生専用の光情報記録媒体 として用いることができる。 An optical information recording medium according to the present invention also includes an optical information recording medium including: a substrate on which pits having information are formed; and a super-resolution film made of an inorganic material formed directly or via another thin film on the substrate. In the above, the super-resolution film is made of crystalline particles or crystals having the orientation of a group II-VI compound semiconductor having a crystal structure of the Uruite or zinc blende type. Is composed of crystalline grains having an orientation accompanied by a grain boundary phase, and the grain boundary phase is an oxide of one or more metals selected from silicon, aluminum, titanium, alkali metals and alkaline earth metals. Alternatively, it is characterized in that it is a mixture of these and the components constituting the crystal particles. This optical information recording medium can be used as a read-only optical information recording medium.
上記書き換え可能型あるいは再生専用型として用いることができる光情報記録 媒体において、 前記 II— VI族化合物半導体はカドミウム及び/又は亜鉛と、硫黄、 セレン、 テルルのうちから選択された 1又は複数の元素との化合物とすることが できる。 また、 前記ウルツァイト化合物は基板面に対して (00 1 ) 配向であり、 前記閃亜鉛鉱型化合物は基板面に対して ( 1 1 1 ) 配向である。  In the optical information recording medium that can be used as the rewritable type or the read-only type, the II-VI compound semiconductor is cadmium and / or zinc, and one or more elements selected from sulfur, selenium, and tellurium. And a compound with The wurtzite compound has a (001) orientation with respect to the substrate surface, and the zinc blende compound has a (111) orientation with respect to the substrate surface.
超解像膜中に含有される II一 VI 族化合物半導体の含有量はモル%で 23 %以 上であることが望ましく、 3 5 %以上 9 5 %以下であることが更に望ましい。 ま た、 超解像膜中の前記結晶粒子は、 平均粒径が 3. 2ηπι以上 1 7 nm以下であ ることが好ましく、 平均粒径が 3. 5 nm以上 1 0. 1 n m以下であることが更 に好ましい。 図面の簡単な説明  The content of the group II-VI compound semiconductor contained in the super-resolution film is desirably at least 23% by mol%, more desirably at least 35% and at most 95%. Further, the crystal grains in the super-resolution film preferably have an average particle size of 3.2 nm or more and 17 nm or less, and an average particle size of 3.5 nm or more and 10.1 nm or less. Is even more preferred. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の実施例で作製した RAMディスクの部分断面の概略図である。 図 2は、 試料 No.2, 5, 6, 7の超解像膜の分光透過率曲線を表す図である。 図 3は、 マーク長に対する C/N比の変化を示すグラフである。  FIG. 1 is a schematic diagram of a partial cross section of a RAM disk manufactured in an example of the present invention. FIG. 2 is a diagram showing the spectral transmittance curves of the super-resolution films of Sample Nos. 2, 5, 6, and 7. FIG. 3 is a graph showing the change in the C / N ratio with respect to the mark length.
図 4は、 C d Z n S含有量に対する CZNの変化を示す図である。  FIG. 4 is a diagram showing a change in CZN with respect to the CdZnS content.
図 5は、 試料 No.2の超解像膜の X線回折図形を示す図である。  FIG. 5 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 2.
図 6は、 試料 No.6の超解像膜の X線回折図形を示す図である。  FIG. 6 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 6.
図 7は、 試料 No.7の超解像膜の X線回折図形を示す図である。  FIG. 7 is a diagram showing an X-ray diffraction pattern of the super-resolution film of Sample No. 7.
図 8は、 ウルツァイト型化合物の結晶構造の模式図である。  FIG. 8 is a schematic diagram of a crystal structure of a wurtzite type compound.
図 9は、 閃亜鉛鉱型化合物の結晶構造の模式図である。  FIG. 9 is a schematic diagram of the crystal structure of a sphalerite-type compound.
図 1 0は、 試料 No.2の超解像膜の断面透過型電子顕微鏡像の模式図である。 図 1 1は、 試料 No.6の超解像膜の断面透過型電子顕微鏡像の模式図である。 図 1 2は、 試料 No.7の超解像膜の断面透過型電子顕微鏡像の模式図である。 図 1 3は、 試料 No.2の超解像膜の平面透過型電子顕微鏡像の模式図である。 図 1 4は、 試料 No.6の超解像膜の平面透過型電子顕微鏡像の模式図である。 図 1 5は、 試料 No.7の超解像膜の平面透過型電子顕微鏡像の模式図である。 図 1 6は、 レ一ザ一波長を変化させたときの CZNの変化を示す図である。 図 1 7は、 レーザ一波長を変化させたときの CZNの変化を示す図である。 図 1 8は、 レーザ一波長を変化させたときの CZNの変化を示す図である。 図 1 9は、 レ一ザ一波長を変化させたときの CZNの変化を示す図である。 図 20は、 スパッタパヮ一に対する平均粒径の変化を示す図である。 FIG. 10 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 2. FIG. 11 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 6. FIG. 12 is a schematic diagram of a cross-sectional transmission electron microscope image of the super-resolution film of Sample No. 7. FIG. 13 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 2. FIG. 14 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 6. FIG. 15 is a schematic diagram of a plane transmission electron microscope image of the super-resolution film of Sample No. 7. FIG. 16 is a diagram showing a change in CZN when changing one laser wavelength. FIG. 17 is a diagram showing a change in CZN when one laser wavelength is changed. FIG. 18 is a diagram showing a change in CZN when one laser wavelength is changed. FIG. 19 is a diagram showing a change in CZN when changing one laser wavelength. FIG. 20 is a diagram showing a change in average particle diameter with respect to sputter power.
図 2 1は、 析出半導体化合物の微粒子の平均粒径に対する CZNの変化を示す 図である。  FIG. 21 is a diagram showing a change in CZN with respect to the average particle diameter of the fine particles of the precipitated semiconductor compound.
図 22は、 本発明の実施例で作製した ROMディスクの部分断面の模式図であ る。 発明を実施するための最良の形態  FIG. 22 is a schematic diagram of a partial cross section of the ROM disk manufactured in the example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をよリ詳細に説述するために、 添付の図面に従ってこれを説明する。 〔実施例 1〕  The present invention will be described in more detail with reference to the accompanying drawings. (Example 1)
図 1に、 本実施例で作製した RAMディスクの部分断面の概略図を示す。 図 1 において、 1は基板、 2は超解像膜、 3、 3' は保護膜、 4は記録膜、 5は反射 膜である。 また、 1 0は記録された部分 (記録ピット) である。 基板 1はポリ力 ーボネート、 ポリオレフイン、 ガラスなどが仕様に応じて用いられるが、 本実施 例ではポリカーボネートを用いた。 保護膜 3, 3' には、 S i 02系の非晶質膜 を用いた。 記録膜 4としては G e— S b— T e系相変化材料を用いた。 反射膜 5 として A 1 —T i系反射膜を用いた。 超解像膜としては、 II一 VI族化合物半導体 単体、 もしくはそれらと S i O2, T i 02, S i 02— T i O 2等のガラス材料と の混合物薄膜を検討した。 FIG. 1 shows a schematic diagram of a partial cross section of the RAM disk manufactured in this example. In FIG. 1, 1 is a substrate, 2 is a super-resolution film, 3 and 3 ′ are protective films, 4 is a recording film, and 5 is a reflective film. Also, 10 is a recorded portion (recorded pit). As the substrate 1, polycarbonate, polyolefin, glass, or the like is used according to the specification. In this embodiment, polycarbonate is used. As the protective films 3 and 3 ′, an SiO 2 -based amorphous film was used. As the recording film 4, a Ge—Sb—Te phase change material was used. As the reflective film 5, an A1-Ti reflective film was used. The super-resolution film, II one VI group compound semiconductor single or their and S i O 2, T i 0 2, S, i 0 2 - were studied mixture film with T i O 2 such as glass material.
以上の成膜は全てスパッタリング法を用いて行った。 保護膜 3、 3' 、 超解像 膜の成膜には高周波マグネトロンスパッタ法 (RFスパッタ) を用い、 また記録 膜 4、 反射膜 5の成膜には DCマグネトロンスパッタ法を用いた。 いずれの薄膜 も原料となるターゲットサイズは 6〃 とし、 スパッタガスには A rを用いた。 ま たスパッタ時のパワーは 600W〜 1. 5 kWとし、 所望の膜厚となるように成 膜時間を調整した。 All of the above film formations were performed using a sputtering method. The high-frequency magnetron sputtering method (RF sputtering) was used to form the protective film 3, 3 'and super-resolution film. The DC magnetron sputtering method was used for forming the film 4 and the reflection film 5. The target size of each thin film was 6 mm, and Ar was used as the sputtering gas. The power during sputtering was 600 W to 1.5 kW, and the deposition time was adjusted to obtain the desired film thickness.
図 1に示す RAMディスクは、 以下の工程によって作製した。 厚さ 0. 6 mni、 外径 1 20 mm、 内径 1 0 mmの円盤状のポリカーボネート基板 1の上面に超解 像膜 2を 50 nm成膜した。 その上に保護膜 3を 90 n m形成後、 記録膜 4を約 20 nm成膜した。 さらに保護膜 3' を約 40〜 1 00 n m形成後、 その上に反 射膜を約 200 nm成膜した。 膜を形成した基板を反射膜 5を背にして紫外線硬 化樹脂を用いて 2枚貼り合わせることによって所望の RAMディスクを得た。 保 護膜 3' の膜厚は、 用いる超解像膜の光学特性に合わせ、 最も反射光の強度が高 くなる膜厚となるようにした。  The RAM disk shown in FIG. 1 was manufactured by the following steps. A super-resolution film 2 having a thickness of 50 nm was formed on a disc-shaped polycarbonate substrate 1 having a thickness of 0.6 mni, an outer diameter of 120 mm, and an inner diameter of 10 mm. After forming a protective film 3 thereon of 90 nm, a recording film 4 was formed to a thickness of about 20 nm. After forming a protective film 3 'of about 40 to 100 nm, a reflective film of about 200 nm was formed thereon. A desired RAM disk was obtained by laminating two substrates with the film on the back of the reflective film 5 using an ultraviolet curing resin. The thickness of the protective film 3 'was adjusted to the thickness at which the intensity of the reflected light was highest in accordance with the optical characteristics of the super-resolution film to be used.
得られた光ディスクに波長 400 nmの半導体レーザ一を照射して書き込みを 行った。 この際、 記録される情報によりレーザー出力を調整し、 光ディスクにパ ルスを照射して記録ピットを形成した。 本実施例では、 記録された部分 (記録ピ ット) と記録されない部分を同じ周期で書き込んだ。 この周期の半周期分の長さ (記録ピットの長さ) をマーク長と呼ぶ。  The obtained optical disk was irradiated with a semiconductor laser having a wavelength of 400 nm to perform writing. At this time, the laser output was adjusted according to the information to be recorded, and the optical disk was irradiated with pulses to form recording pits. In this embodiment, a recorded portion (recording pit) and a non-recorded portion are written at the same cycle. The length of one half of this period (the length of the recording pit) is called the mark length.
書き込みのためのレーザ一出力は 1 5mWとした。 このことによって記録膜が 加熱され、 結晶部分が溶解、 急冷されることによって非晶質化し、 情報が書き込 まれる。 この元々の結晶質部の光の反射率と書き込まれた後の非晶質部の反射率 の違いから、 情報を読み出すことができる。  The laser output for writing was 15 mW. As a result, the recording film is heated, and the crystalline portion is melted and rapidly cooled to become amorphous, and information is written. Information can be read from the difference between the original reflectance of the crystalline portion and the reflectance of the amorphous portion after writing.
ピット形成後、 レーザー出力を 2 mWとし、 書き込んだピットを読み出した。 この時の結晶質部と非晶質部の反射率の差を信号 (キャリア) とし、 それと電気 系統などの他の要因で現れるノイズ信号との比 (C/N比) を評価することによ リ記録された情報が読み出される否かを判断することができる。 本実施例では、 記録ピットのマーク長を 0. 1 μπι〜0. 6 mまで変化させて、 それぞれのピ ットに対する CZN比を評価することでよリ細かい情報が読み出せているかどう かを判断した。 また比較例として、 超解像膜を形成しない場合についても同様に 検討した。 この時、 比較例の超解像膜以外の膜構成は上記実施例と同一とした。 なお、 本実施例では、 ディスク回転の線速度を 7m/秒で一定とした。 After the pits were formed, the laser output was set to 2 mW and the written pits were read. The difference between the reflectivity of the crystalline part and the amorphous part at this time is defined as the signal (carrier), and the ratio (C / N ratio) of the signal to the noise signal generated by other factors such as the electrical system is evaluated. It can be determined whether or not the re-recorded information is read. In this embodiment, the mark length of the recording pit is changed from 0.1 μπι to 0.6 m, and the CZN ratio for each pit is evaluated to determine whether finer information can be read. It was judged. In addition, as a comparative example, a case where no super-resolution film is formed investigated. At this time, the film configuration other than the super-resolution film of the comparative example was the same as that of the above example. In this example, the linear velocity of the disk rotation was constant at 7 m / sec.
表 1に、 作製した RAMディスクの超解像膜組成と、 この膜の X線回折図形よ リ得られた析出相、 及び配向性、 また配向した膜については配向面のピーク強度 を示す。 また、 マ一ク長 0. 2 μπιでピットを形成したときの C/N比を示す。 また、 後に述べる方法で観察した膜面内の透過型電子顕微鏡写真 (Transmission Electron Microscope; T EM) より観察された析出粒子の平均粒径も合わせて示 す。 各粒子の粒径は、 得られた T EM像に見られた微粒子と等しい面積の円を仮 定し、 その直径をもって各粒子の粒径を算出した。 そして各試料について 1 0 0 〜 3 0 0個の微粒子について粒径を算出し、その平均値をもって平均粒径とした。  Table 1 shows the composition of the super-resolution film of the fabricated RAM disk, the precipitated phase and the orientation obtained from the X-ray diffraction pattern of this film, and the peak intensity of the orientation plane for the oriented film. The C / N ratio when a pit is formed with a mark length of 0.2 μπι is also shown. In addition, the average particle size of precipitated particles observed from a transmission electron microscope (TEM) image of the film surface observed by the method described later is also shown. As for the particle diameter of each particle, a circle having the same area as the fine particles observed in the obtained TEM image was assumed, and the particle diameter of each particle was calculated based on the diameter. Then, for each sample, the particle size was calculated for 100 to 300 fine particles, and the average value was used as the average particle size.
表 1  table 1
Figure imgf000009_0001
Figure imgf000009_0001
試料 No.1〜 7は、化合物半導体成分として吸収端が約 4 O O nmにある C d 0. 5Z n。. 5 Sを、 また粒界相形成成分として S i O2を選択した場合の実施例であ リ、 その混合比を変化させた。 また試料 Νο·7は、 C d0. 5 Z n0. 5 S単体の超 解像膜である。 Sample Nanba1~ 7 is, C d 0 absorption edge at about 4 OO nm as the compound semiconductor components. 5Z n. . The 5 S, also Example der Li when selecting S i O 2 as the grain boundary phase-forming components, varying the mixing ratio. The sample vo · 7 is a C d 0. 5 Z n 0 . 5 S single super-resolution film.
図 2に、 表 1中の試料 Νο.2, 5 , 6, 7の超解像膜単層膜の分光透過率曲線 を示す。 いずれの薄膜においても矢印に示す 40 0 nmの位置に吸収端が有り、 それ以上の波長域では透明であるため、 裏面反射との干渉により波長に対して振 動が観察された。 一方、 吸収端より短波長側では、 透過率が 0. 3以下に低下し ていた。 このことから、 これらの材料は 400 n m以下の波長の光に対して吸収 が大きく、 光との相互作用が大きいことが期待される。 Fig. 2 shows the spectral transmittance curves of the single-layer super-resolution films of samples Nos. 2, 5, 6, and 7 in Table 1. Each thin film has an absorption edge at the position of 400 nm indicated by an arrow and is transparent in a wavelength range longer than that, so that oscillation was observed with respect to wavelength due to interference with back surface reflection. On the other hand, on the shorter wavelength side than the absorption edge, the transmittance decreases to 0.3 or less. I was From this, it is expected that these materials have large absorption for light with a wavelength of 400 nm or less and have a large interaction with light.
図 3に、 超解像膜を形成しない比較例、 及び試料 No.2, 6, 7のマーク長に 対する CZN比の変化を示す。 比較例では、 マーク長 0. 35 以上では約 4 0 d B以上と比較的良好な C/N比を示したが、 それよリマーク長を小さくして いくと、 CZN比が低下し、 0. 2 μπιでは約 20 d Bとなっていた。 これに対 して試料 No.2では、 比較例より若干 CZN比が改善されているものの、 比較例 と同程度の C N比であった。  Figure 3 shows the CZN ratio with respect to the mark length of Samples Nos. 2, 6, and 7 and a comparative example in which no super-resolution film was formed. In the comparative example, when the mark length was 0.35 or more, a relatively good C / N ratio of about 40 dB or more was shown.However, as the remark length was reduced, the CZN ratio decreased, and the CZN ratio decreased. At 2 μπι, it was about 20 dB. On the other hand, in sample No. 2, although the CZN ratio was slightly improved compared to the comparative example, the CN ratio was almost the same as the comparative example.
一方、 試料 No.6, 7では、 マーク長が 0. 2 m程度まで約 45 d Bと高い C/N比を保持しており、 0. 1 μπιでも 40 d Bと高い C/N比が得られた。 このことから、 試料 No.6, 7のような超解像膜を形成することによリ超解像効 果が得られ、 同じレーザ一光源でもよリ小さいマーク長でも記録再生可能である ことが分かった。 この試料 No.6, 7はいずれも大きな超解像効果が得られてい たが、 試料 No.6の方が、 試料 No.7よりもさらに大きな超解像特性が得られて いることが分かった。  On the other hand, in Samples Nos. 6 and 7, the C / N ratio was as high as about 45 dB until the mark length was about 0.2 m. Even at 0.1 μπι, the C / N ratio was as high as 40 dB. Obtained. From this, the super-resolution effect can be obtained by forming a super-resolution film as in Sample Nos. 6 and 7, and recording / reproducing is possible with the same laser-light source even with a small mark length. I understood. Samples Nos. 6 and 7 both had a large super-resolution effect, but it was found that sample No. 6 had even greater super-resolution characteristics than sample No. 7. Was.
表 1の各組成の超解像膜を形成した場合のマーク長 0. 2 における CZN 比を図 4に示す。 この値を比較すると、 C d 5 Z n 0. 5 S含有量が 1 0モル%、 1 9モル。/。の試料 No.1, 2では 1 0 d B, 1 5 d Bと、 比較例の 1 0 d Bに比 ベてそれほど大きく向上していなかった。 一方、 C d0. 5Z n 0. 5 S含有量が 2 3〜 : L 00モル0 /0の試料 No.3〜 7では C/N比が 30 dB〜45 d Bと高い値 になっていた。 このことから、 試料 No.3〜 7のような薄膜では、 超解像効果が 得られると判断できた。 また試料 No.5, 6の試料では、 試料 No.7の C d0. 5 Z n。. 5 S含有量が 1 00 %よりも高い超解像特性を示していた。 図 4より判断 すると、 C d 0. 5 Z n 0. 5 S含有量が 3 5モル%以上 9 5モル%以下のとき、 C /Nが 40 d B以上となることが分かった。 Figure 4 shows the CZN ratio at a mark length of 0.2 when a super-resolution film of each composition shown in Table 1 was formed. Comparing this value, C d 5 Z n 0. 5 S content of 1 0 mol%, 1 9 mol. /. Sample Nos. 1 and 2 showed 10 dB and 15 dB, which was not much improved compared to 10 dB of the comparative example. On the other hand, C d 0 5 Z n 0 5 S content 2 3~:.. L 00 mole 0/0 C / N ratio for the sample Nanba3~ 7 of becomes 30 dB~45 d B as high I was From this, it was concluded that the super-resolution effect can be obtained with thin films such as Sample Nos. 3 to 7. The sample No.5, the sample 6, C d 0 of the sample No.7. 5 Z n. . 5 S content showed higher super-resolution characteristic than 1 100%. Determined from Figure 4 Then, when C d 0. 5 Z n 0. 5 S content of 35 mol% or more 9 5 mol% or less, it was found that the C / N is equal to or greater than 40 d B.
上記の試料 No.6の超解像膜を搭載した光ディスクについて回転の線速度を上 昇していったところ、 1 5m/sという高速回転までほとんど C/N比が変化す ることなく読み書きすることが可能であった。 さらに同一周回上を書き込みパヮ 一 1 5mW、 読み出しパワー 2 mWのレーザ一パワーで照射して読み書きを行つ たところ、 1 04回まではほとんど C/N比の劣化は見られなかった。 以上のよ うに、 本実施例の超解像膜を搭載した光ディスクは高速回転にも対応しておリ、 且つレーザ一照射による耐久性にも優れていた。 When the linear velocity of rotation was increased for the optical disk on which the super-resolution film of Sample No. 6 was mounted, reading and writing were performed with almost no change in the C / N ratio until the high-speed rotation of 15 m / s. It was possible. In addition, write data on the same circuit One 1 5 mW, where having conducted the writing by irradiating a read power 2 mW laser one power, was hardly observed deterioration of C / N ratio is up to 1 0 4 times. As described above, the optical disc on which the super-resolution film of this embodiment was mounted was compatible with high-speed rotation, and was also excellent in durability by laser irradiation.
以上の現象の原因を追求するため、 表 1に示した試料の超解像膜の微構造を X 線回折によって解析した。 解析は、 各超解像膜の単体をランド · グループが形成 されていないポリカーボネート基板上に成膜して解析した。 図 5〜 7に、 試料 Νο.2 , 6 , 7の X線回折図形を示す。 図 5に示す試料 No.2の薄膜では、 ハロー パターンのみが観察された。 一方、 図 6, 7に示した試料 No.6, 7の薄膜では、 上記ハローパターンの他に 2 Θ == 26. 4° に鋭いピークが観察された。 このピ —クは六方晶のウルツァイ ト型の C d。5Z n。5Sの c軸に垂直な ( 00 2) 面で あることが分かった。 To pursue the causes of the above phenomena, the microstructure of the super-resolution film of the sample shown in Table 1 was analyzed by X-ray diffraction. The analysis was performed by forming a single film of each super-resolution film on a polycarbonate substrate on which no land group was formed. Figures 5 to 7 show the X-ray diffraction patterns of samples # 2, # 6 and # 7. In the thin film of sample No. 2 shown in Fig. 5, only the halo pattern was observed. On the other hand, in the thin films of samples Nos. 6 and 7 shown in Figs. 6 and 7, a sharp peak was observed at 2Θ == 26.4 ° in addition to the halo pattern. This peak is a hexagonal wurtzite Cd. 5 Z n. The (002) plane was found to be perpendicular to the c-axis of 5S.
ここで、 上記の C d05Z nQ5Sのような C d S系材料の結晶系について記述す る。 C d S系は、 これらの薄膜のような六方晶のゥルツアイト型の結晶系と、 立 方晶の閃亜鉛鉱型の結晶系の 2種類が知られている。 図 8、 図 9にそれぞれウル ッアイト型 C d Sと閃亜鉛鉱型 C d Sの結晶構造の模式図を示す。 いずれの構造 においても、 硫黄 (S) イオンが最密充填しており、 その最密充填面を図の上下 方向に示している。最密充填を構成する面は、 イオンが六角形に配置されており、 このイオン球の凹部にその上の面を形成するィォン球が配置されることで最密構 造を形成している。 Here, you describe the crystal system of the C d S based material as described above for C d 05 Z n Q5 S. Two types of CdS systems are known: hexagonal perzite-type crystal systems such as these thin films, and cubic zinc-blende-type crystal systems. Figures 8 and 9 show schematic diagrams of the crystal structures of urite-type CdS and zinc-blende-type CdS, respectively. In each structure, sulfur (S) ions are closest packed, and the closest packed surface is shown in the vertical direction in the figure. On the surface forming the closest packing, ions are arranged in a hexagon, and the ion sphere forming the surface on the concave portion of the ion sphere is arranged to form the closest structure.
各々の面を A, B, Cと定義すると、 図 8のウルツァイト構造では、 3層目の 面のイオン球は A面と同じ位置に配置される。 従って A, B, A, B, …の周期 が成されている。 このため六角柱状の構造となり、 六方晶系となる。 この最密充 填方向が (00 1 ) 軸 (c軸) と定義されている。  If each plane is defined as A, B, and C, in the wurtzite structure in Fig. 8, the ion sphere on the third layer is located at the same position as the A plane. Therefore, the period of A, B, A, B, ... is established. This results in a hexagonal columnar structure and a hexagonal system. This closest packing direction is defined as the (00 1) axis (c axis).
一方、 閃亜鉛鉱型構造では、 第 3層目は Aのイオン球とは異なる位置に存在す るため、 A, B, C, A, B, C…の周期となる。 このような構造のとき、 最密 充填方向を ( 1 1 1 ) 方向とすることにより立方体の単位胞を定義することがで きる。 通常のランダムな方位を有する C d0. 5Z n。. 5 S粉末から得られる X線回折 では、図 8に示す結晶がランダムな方位を向いていることから、 2 Θ = 26. 4° ( (002 ) 面) 、 2.0 = 24° ( ( 1 00) 面) 、 28° ( ( 1 0 1 ) 面) 、 47° ( ( 1 03) 面) などの位置に大きなピークが見られる。 On the other hand, in the zinc-blende structure, the third layer is located at a different position from the ion sphere of A, and thus has a period of A, B, C, A, B, C .... In such a structure, the unit cell of the cube can be defined by setting the closest packing direction to the (1 1 1) direction. C d 0 of ordinary random orientation. 5 Z n. . 5 In the X-ray diffraction obtained from S powder, since the crystal shown in FIG. 8 are oriented in random orientation, 2 Θ = 26. 4 ° ( (002) plane), 2.0 = 24 ° (( 1 00 ) Plane, 28 ° ((101) plane), 47 ° ((103) plane), etc.
上記試料 No.6, 7の薄膜ではこのうち (002 ) 面のみが観察されたことか ら、 この薄膜では、 析出している粒子の多くが、 図 8に示す c軸が基板に対して 垂直に成長していることを示している。 このように多くの結晶粒子がある方位に 優先的に成長している様子を、 配向しているという。 従って、 試料 No.6, 7の 薄膜は c軸方向に配向している薄膜であるということができる。  Only the (002) plane was observed in the thin films of Samples Nos. 6 and 7 above. Therefore, in this thin film, most of the precipitated particles had the c-axis shown in Fig. 8 perpendicular to the substrate. It shows that it is growing. Such a state in which many crystal grains grow preferentially in a certain direction is called orientation. Therefore, it can be said that the thin films of Sample Nos. 6 and 7 are thin films oriented in the c-axis direction.
これに対して図 5に示した試料 No.2の薄膜では、 このような配向しているこ とを示すピークが観察されなかった。 このことから、 この薄膜はランダムな方位 を向いているか、あるいは結晶粒子が析出していないかのいずれかと考えられる。 さらに詳細にこれらの薄膜の構造を評価するため、 透過型電子顕微鏡観察を行 つた。 図 1 0〜 1 2に薄膜の断面方向から観察した場合の透過電子顕微鏡像の模 式図を示す。 また、 図 1 3〜 1 5には、 膜面内を観察した透過型電子顕微鏡像の 模式図を示す。 得られた透過型電子顕微鏡像から、 各薄膜中に見られる粒子の平 均粒径を算出した。 各粒子の粒径は、 得られた TEM像に見られた微粒子と等し い面積の円を仮定し、 その直径をもって各粒子の粒径を算出した。 そして各試料 について 1 00〜 300個の微粒子について粒径を算出し、 その平均値をもって 平均粒径とした。  On the other hand, in the thin film of sample No. 2 shown in FIG. 5, such a peak indicating the orientation was not observed. This suggests that the thin film was oriented in a random orientation, or that no crystal grains had precipitated. In order to evaluate the structure of these thin films in more detail, transmission electron microscopy was performed. FIGS. 10 to 12 show schematic diagrams of transmission electron microscope images observed from the cross-sectional direction of the thin film. FIGS. 13 to 15 show schematic images of transmission electron microscope images of the inside of the film surface. From the obtained transmission electron microscope images, the average particle size of the particles found in each thin film was calculated. The particle diameter of each particle was assumed to be a circle having an area equivalent to the fine particles observed in the obtained TEM image, and the particle diameter of each particle was calculated based on the diameter. Then, for each sample, the particle size was calculated for 100 to 300 fine particles, and the average value was used as the average particle size.
試料 No.2の薄膜の断面方向からの電子顕微鏡像の模式図を図 1 0に、 薄膜の 面内方向の透過型電子顕微鏡像の模式図を図 1 3に示す。 これらの電子顕微鏡像 から、 S i O2を主成分とする非晶質のガラスマトリックス 7の中に平均粒径約 3 nmの C d 0. 5 Z n 0 5 Sの微粒子 6が分散している様子が観察された。 電子 線回折図形を評価したところ、 これらの析出している粒子の方位はランダムであ つた。 このため、 図 5に示した X線回折図形では各粒子から得られる X線光量が 少ないために結晶のピークが確認できなかったものと考えられる。 A schematic diagram of an electron microscope image of the thin film of Sample No. 2 from the cross-sectional direction is shown in FIG. 10, and a schematic diagram of a transmission electron microscope image of the thin film in the in-plane direction is shown in FIG. These electron microscope image, C d 0 of the average particle size of about 3 nm in an amorphous glass matrix 7 mainly composed of S i O 2. 5 Z n 0 5 S microparticles 6 are dispersed Was observed. When the electron diffraction pattern was evaluated, the orientation of these precipitated particles was random. Therefore, it is probable that the crystal peak could not be confirmed in the X-ray diffraction pattern shown in Fig. 5 because the amount of X-ray obtained from each particle was small.
試料 No.6の薄膜の断面方向からの電子顕微鏡像の模式図を図 1 1に、 薄膜の 面内方向の透過型電子顕微鏡像の模式図を図 14に示す。 図 1 1に示すように、 試料 No.6の薄膜では、 平均粒径約 5 nmの C d0. 5 Z n 0_ 5 S粒子 8が非常に 密に充填されていた。 電子線回折、 高分解能像による格子像観察により、 これら の粒子は基板に対して c軸方向に配向していることが分かった。 この結果は、 図 6に示す X線回折の結果と一致するものであった。 また、 図 1 4に示す面内透過 型電子顕微鏡像からも、 この薄膜は約 5 nmの微粒子が集合している構造である ことが分かった。 Figure 11 shows a schematic diagram of an electron microscope image of the thin film of Sample No. 6 from the cross-sectional direction. FIG. 14 is a schematic diagram of a transmission electron microscope image in the in-plane direction. As shown in FIG. 1 1, in the thin film of the sample No.6, average particle size of about 5 nm of C d 0. 5 Z n 0 _ 5 S particles 8 had a very densely packed. Electron diffraction and lattice image observation using high-resolution images showed that these particles were oriented in the c-axis direction with respect to the substrate. This result was consistent with the result of X-ray diffraction shown in FIG. The in-plane transmission electron microscope image shown in Fig. 14 also revealed that the thin film had a structure in which fine particles of about 5 nm were aggregated.
さらに詳細に観察すると、 図 1 1、 図 1 4に示すように各結晶粒子の周りには それらを取り囲む約 0. 5 nm程度の非晶質様の粒界相 9が存在していた。 この 粒界相をエネルギー分散型蛍光 X線分析装置を用いて組成分析すると、 この粒界 相は添加した S i 02がリツチな相であった。 以上よリ、 この試料 No.6に示す薄 膜では、 C d 5 Z n 0. 5 S粒子 8の側面を S i 02リツチな粒界相 9が取り囲ん でおリ、 さらに各粒子は c軸が基板面に対して垂直になるように配向している構 造となっていることが判明した。 A more detailed observation revealed that there was an amorphous-like grain boundary phase 9 of about 0.5 nm surrounding each crystal particle, as shown in Figs. 11 and 14. If the grain boundary phase composition is analyzed using an energy dispersive X-ray fluorescence analyzer, the grain boundary phase S i 0 2 added was Ritsuchi phase. Or I Li, in the thin film shown in this sample No.6, C d 5 Z n 0. 5 S particles 8 side of the S i 0 2 Ritsuchi grain boundary phase 9 the surrounding us Li, more each particle c It was found that the structure was oriented so that the axis was perpendicular to the substrate surface.
次に、 試料 No.7の薄膜の断面及び平面の透過型電子顕微鏡像を図 1 2、 図 1 5に示す。 この薄膜においても C d。 5 Z n。. 5 S微粒子 8が密に充填している 構造になっており、 かつ c軸が基板に対して垂直に成長していることが観察され た。 この断面像と、 図 1 5に示す平面像から、 粒子の平均粒径は 6 nm程度と、 試料 No.6に比較して若干大きいことが確認できた。 また試料 No.7では S i O2 成分を添加していないため、 試料 No.6で見られたような非晶質様の粒界相は形 成されておらず、 粒子同士が緻密に存在していた。 Next, FIGS. 12 and 15 show transmission electron microscope images of the cross section and plane of the thin film of Sample No. 7. C d also in this thin film. 5 Z n. . 5 has a structure in which S particles 8 are densely packed, and c-axis were it was observed growing perpendicular to the substrate. From the cross-sectional image and the plane image shown in Fig. 15, it was confirmed that the average particle size of the particles was about 6 nm, which was slightly larger than that of Sample No. 6. In Sample No. 7, since no SiO 2 component was added, the amorphous-like grain boundary phase seen in Sample No. 6 was not formed, and the particles were densely present. Was.
以上のように、 試料 No.2に見られるようにガラスマトリックス中に微粒子が 分散され、 配向していない構造の薄膜では、 超解像効果を得ることが難しく、 試 料 No.6, 7のように、 C d。. 5 Z n 0 5 S粒子が緻密に存在し、 かつ c軸が基 板に対して配向した薄膜であれば大きな超解像効果を得ることができた。 さらに 試料 No.6のように C d 0. 5 Z n 0. 5 S粒子の粒界部分を S i O2のガラス成分が 取り囲む構造であり、 かつ微粒子の平均粒径が小さい場合に、 より大きな超解像 効果が得られた。 図 8に示すウルツァイト型結晶において、 C dと Sは c軸に平行に並んだ一対 の原子とみなすことが可能である。この c軸と平行にレ一ザ一光が照射されると、 C dと Sの結合によって生じるバンド構造から得られるフェルミ面はこの c軸と 垂直に形成される。 つまり、 電子の充満している荷電子帯と伝導帯が c軸に垂直 に形成されている。 ここにレーザ一光が照射されると、 レ一ザ一光のエネルギー によって荷電子帯に存在していた電子が伝導帯に励起され、 電子とホールの対が 形成される。 As described above, it is difficult to obtain a super-resolution effect in a thin film with a structure in which fine particles are dispersed in a glass matrix and not oriented, as seen in Sample No. 2, and So, C d. . 5 Z n 0 5 S particles are present densely and c-axis was able to obtain a large super-resolution effect as long as a thin film oriented with respect to the base plate. If still more C d 0. 5 Z n 0. 5 S grain boundary portions surrounding the glass component of S i O 2 structure of the particles as in Sample No.6, and the average particle size of the fine particles is small, more A large super-resolution effect was obtained. In the wurtzite-type crystal shown in Fig. 8, C d and S can be regarded as a pair of atoms arranged parallel to the c-axis. When a laser beam is irradiated parallel to this c-axis, the Fermi surface obtained from the band structure generated by the combination of Cd and S is formed perpendicular to this c-axis. In other words, the valence and conduction bands filled with electrons are formed perpendicular to the c-axis. When one laser beam is irradiated here, electrons existing in the valence band are excited into the conduction band by the energy of one laser beam, and an electron-hole pair is formed.
この電子とホールの対によって分極が生じ、 この分極によって屈折率変化など の光学的な非線形性が誘発される。 この分極の向きがレーザ一ビ一ムと平行であ ると、 分極の成分すべてが非線形性に寄与するため、 高い非線形光学特性が得ら れる。 この分極の向きがレーザ一光に対して傾いていると、 非線形性は低下する。 このことから、 このウルツァイト型化合物の場合、 六方晶系の c軸に配向した膜 であれば分極成分が非常に多いため、 大きな非線形性が得られると考えられる。 一方、 試料 No.2のような微粒子の集合では、 上記のような分極が生じても方 位がランダムなため、 大きな非線形性に寄与できる粒子数が不足している。 この ため、 大きな非線形性が生じず、 超解像効果が得られにくかったと考察できる。 また S i 02成分を添加した試料 No.6の方が試料 No.7よりも超解像効果が 良好であった。 これは、 試料 No.6の場合、 図 1 1、 図 1 4に示すように S i 〇2 成分の添加によって C d。.5Z n。.5 S結晶の粒成長が阻害され、 結晶粒径が 8. 5 nm以下にとどまっており、 さらに粒子間に S i O 2の粒界相が存在するため に C d。. 5 Z n 0. 5 S粒子同士の結合がなくなるため、 伝導帯に生じた電子の粒 子間の移動がなくなり、 分極が保持されやすくなるためと考えられる。 試料 No. 7の場合には平均粒径が 1 0 nmと大きく、 さらに隣接する粒子同士が粒界相を 介さずに接しているため、 上記のような量子効果が生じにくいと考えられる。 試料 No.3, 4, 5についても、 試料 No.6, 7と同様な超解像効果が得られ、 さらにウルツァイ ト型 C d0. 5 Z n0 5 Sの (00 1 ) 方向に配向していた。 し かし、 ピーク強度が異なり、 C d0. 5Zn0. 5 S含有量が多いほど C d0. 5Z n0. 5 S (002) のピーク強度が増大していた。 また、 この C d。 5Z n。 含有 量の増加及び C d0. 5Z n 0. 5 S ( 002) ピーク強度の増加に伴って Cノ N比 が増加している傾向が見られた。 このことからも、 分極する C d。. 5 Z n 0. 5 S 量の増大によって非線形性も増大すると考えられる。 Polarization is generated by the pair of the electron and the hole, and the polarization induces an optical nonlinearity such as a change in refractive index. If the direction of this polarization is parallel to the laser beam, all the polarization components contribute to the nonlinearity, so that high nonlinear optical characteristics can be obtained. If the direction of this polarization is inclined with respect to one laser beam, the nonlinearity decreases. From this fact, it is considered that in the case of the wurtzite type compound, if the film is oriented in the hexagonal c-axis, the polarization component is very large, so that large nonlinearity can be obtained. On the other hand, in the aggregate of fine particles such as sample No. 2, the number of particles that can contribute to large nonlinearity is insufficient because the orientation is random even if the above-mentioned polarization occurs. Therefore, it can be considered that no large non-linearity occurred and it was difficult to obtain the super-resolution effect. The S i 0 2 super-resolution effect towards the sample No.6 added with components from the sample No.7 was good. In the case of sample No. 6, this is due to the addition of S i 〇 2 as shown in Figs. 11 and 14. . 5 Z n. . 5 grain growth of S crystals is inhibited, the crystal grain size has remained below 8. 5 nm, C d to the grain boundary phase of S i O 2 is present between the further particles. . 5 Z n 0. 5 S for binding between the particles is eliminated, there is no movement between the electron particle child generated in the conduction band, polarization is considered to become more likely to be retained. In the case of sample No. 7, the average particle size is as large as 10 nm, and the adjacent particles are in contact with each other without passing through the grain boundary phase. Sample No.3, 4, for five sample No.6, 7 similar super-resolution effect is obtained and, further Urutsuai preparative C d 0. 5 Z n 0 of 5 S (00 1) oriented in the direction Was. However, different peak intensities, C d 0. 5 Zn 0 . The more 5 S content C d 0. 5 Z n 0 . 5 peak intensity of S (002) has been increased. Also this C d. 5 Z n. Contained Increased and C d 0 of the amount. 5 Z n 0. 5 S (002) C Bruno N ratio with increasing peak intensity tended to have increased. From this, C d is polarized. . Considered nonlinearity also increased by increasing the 5 Z n 0. 5 S amount.
以上のように、 試料 No.1 , 2のように C d。. 5 Z n。 5 S含有量が少ない場 合には微結晶粒子の分散型の構造となり、 C d。. 5 Z n。. 5 S微結晶粒子がラン ダムな方位を向くために非線形性が小さかった。 また試料 No.3〜7に示すよう に C d。.5 Z n。.5 S含有量が多い場合には六方晶 C d0.5Z n0 5Sの c軸に配 向した構造となった。 この場合に大きな非線形性が得られ、 超解像効果を得るこ とができた。 As described above, as in sample Nos. 1 and 2, C d. . 5 Z n. When the 5S content is small, the structure becomes a dispersion type of fine crystal particles, and Cd. . 5 Z n. . 5 S microcrystal grains were the small nonlinearity to face the random orientation. Also, as shown in Sample Nos. 3 to 7, C d. . 5 Z n. . 5 When S content is high became Oriented structure in the c-axis of the hexagonal C d 0. 5 Z n 0 5 S. In this case, a large nonlinearity was obtained, and a super-resolution effect was obtained.
さらに S i O2成分が適切であると C d。.5 Z n 0_ 5 Sの配向を保持しながら結 晶粒子径が縮小し、 さらに粒子同士が隔離されるため、 光学的非線形性による大 きな超解像効果が得られた。 Furthermore, if the S i O 2 component is appropriate, C d. . 5 Z n 0 _ 5 shrinking crystal grain size while maintaining the orientation of S, to further grains is isolated, large Juna super-resolution effect due to optical nonlinearity is obtained.
表 1及び図 4に示したように、 C d。 5Z n。 5 Sの含有量がモル比で 2 3 % 以上であれば、 配向した C d。. 5 Z n。. 5 Sの結晶粒子が得られ、 CZNが 30 d Bを超え、 超解像効果を得ることができた。 また CZNが 40 d Bを超える更 に高い超解像効果を得るためには、 C d。. 5Z n。. 5 S含有量をモル比で 3 5 % 以上 9 5 %以下とすればよい。 C d as shown in Table 1 and FIG. 5 Z n. If the content of 5S is 23% or more in molar ratio, oriented Cd. . 5 Z n. . 5 S crystal particles were obtained, CZN exceeds 30 d B, it was possible to obtain a super-resolution effect. In order to obtain an even higher super-resolution effect where CZN exceeds 40 dB, C d is required. . 5 Z n. . It may be the 5 S content in a molar ratio of 35% or more 95% or less and.
C d 0. 5Z n 0_ 5 S含有量が 23 %未満であると、 C d0.5Z n0 5 S粒子の配 向がランダムとなり、 高い超解像効果が得られにくい。 また C d0. 5Z n0 5 S 含有量が 3 5 %未満であると超解像効果が得られるものの、 十分高い CZN比が 得られにくい。 さらに C d0.5Z n0.5 S含有量が 9 5 %を超えると S i O2含有 量が十分でなく、 粒界相成分が少なくなリ、 粒子の粗大化が生じ、 特性が若干低 下する。 If C d 0. 5 Z n 0 _ 5 S content is less than 23%, C d 0. 5 Z n 0 5 Oriented of S particles becomes random, high super-resolution effect is difficult to obtain. The C d 0. 5 Z n 0 5 and S content is less than 35% of that super-resolution effect is obtained, sufficiently high CZN ratio is hardly obtained. Furthermore C d 0. 5 Z n 0 . 5 S content exceeds 95% when the S i O 2 content is not sufficient, the grain boundary phase component less of Li, cause coarsening of the particles, characteristics Decrease slightly.
〔実施例 2〕  (Example 2)
表 2に、 化合物半導体成分を実施例 1 と同様の C d0. 5 Z n0. 5 Sとし、 粒界 相の成分を S i O2 ' T i 02、 A l 2O3、 T i O2、 S i 02— Na2O— C a O ガラス、 S i O2— K2O— C a Oガラス、 S i O2— N a20— MgOガラス、 S i 02—B 203ガラスとした場合の試料 No.8〜 l 4を示す。 評価項目、 媒体構 造などは実施例 1 と同様とした Table 2, compound semiconductor component similar to C d as in Example 1 0. 5 Z n 0. 5 and S, S i O 2 'T i 0 2 components of the grain boundary phase, A l 2 O 3, T i O 2, S i 0 2 - Na 2 O- C a O glass, S i O 2 - K 2 O- C a O glass, S i O 2 - N a 2 0- MgO glass, S i 0 2 - shows a sample No.8~ l 4 in the case of the B 2 0 3 glass. Evaluation items, medium structure The construction was the same as in Example 1.
表 2  Table 2
Figure imgf000016_0001
Figure imgf000016_0001
化合物半導体成分の C d0. 5Z n0. 5 S含有量は、 実施例 1で良好な結果の得 られた 90モル0 /0に固定した。 いずれの粒界相成分を用いた場合でも C d 0. 5 Z n n 5 S (O O l ) 配向が得られ、 かつ高い超解像効果を得ることができた。 し かし、 生じている C d 0. 5Z n0. 5 S結晶粒子の粒径が若干異なっており、 その ため得られる CZN比が粒界相成分を変化させることで若干変化していた。 C d 0 of the compound semiconductor component. 5 Z n 0. 5 S content was fixed at 90 mol 0/0 obtained good results in Example 1. C d 0. 5 Z n n 5 S (OO l) orientation can be obtained even when using any of the grain boundary phase component and could be obtained at a high super-resolution effect. However, it occurs and C d 0. 5 Z n 0 . Particle size of 5 S crystal grains are slightly different, CZN ratio obtained therefore had slightly changed by changing the grain boundary phase component .
粒界相成分として S i 02 · T i O2を用いた場合には平均粒径が約 6. 2 nm と小さく、 そのため CZN比が 46と大きかった。 A l 2O3 T i O2を用いた 場合には、 平均粒径が約 7 nm程度であり、 平均粒径、 CZN比とも試料 No.l の S i 02系の場合とほぼ同じであった。 When Sio 2 · TiO 2 was used as the grain boundary phase component, the average particle size was as small as about 6.2 nm, and the CZN ratio was as large as 46. When Al 2 O 3 Ti O 2 was used, the average particle size was about 7 nm, and both the average particle size and the CZN ratio were almost the same as those of the Sample No. 1 Sio 2 system. there were.
粒界相成分として S i O2— N a2O— C aO S i 〇2— K2O— C a O S iS i O 2 —Na 2 O—C aO S i 〇 2 —K 2 O—C a OS i
Ο,— N a2O— MgO S i O 2— B 2 O 3の各ガラスを用いた試料 No.l :! 1試 料, — N a 2 O— MgO S i O 2 — B 2 O 3 Sample No.l using each glass:! 1
4の場合には、 逆に平均粒径は 9. 5 nm前後と増大しており、 このため C/N 比は若干低下していた。 しかし、 いずれの場合も、 表 1の試料 No.6と同等の超 解像効果が得られておリ、 粒界相成分として良好であった。 In the case of 4, on the contrary, the average particle size increased to about 9.5 nm, and as a result, the C / N ratio decreased slightly. However, in each case, a super-resolution effect equivalent to that of sample No. 6 in Table 1 was obtained, and it was good as a grain boundary phase component.
以上のように、 粒界相成分としては S i O2 T i 02 A 1203若しくは N a 2O, K20等のアルカリ金属、 C a O, M g Oなどのアルカリ土類金属を含有し たガラスであることが好ましい。 As described above, the grain boundary phase component S i O 2 T i 0 2 A 1 2 0 3 or N a The glass preferably contains an alkali metal such as 2 O and K 20 and an alkaline earth metal such as CaO and MgO.
〔実施例 3〕  (Example 3)
次に、 いろいろなレーザー波長に対して超解像膜として最適な組成を有する化 合物半導体物質の検討を詳細に行った。 化合物半導体では、 2種類以上の半導体 物質の化合物 (混晶) を作ることによって、 吸収波長を任意に変化させることが 可能である。 実施例 1, 2に示した C d。 5Z n。 5 Sの吸収端は 40 3 nmであ るため、 波長 400 nmのレ一ザ一光とよリ強い相互作用を持っているものと考 えられる。 従って、 使用するレーザ一波長において超解像効果を持たせるために は、 使用するレーザー波長に近い吸収端を有する組成費の化合物半導体を利用す ることが必要である。 Next, we investigated in detail compound semiconductor materials that have the optimum composition as a super-resolution film for various laser wavelengths. In compound semiconductors, it is possible to arbitrarily change the absorption wavelength by making a compound (mixed crystal) of two or more semiconductor substances. C d shown in Examples 1 and 2. 5 Z n. Since the absorption edge of 5S is 403 nm, it is considered that the 5S has a stronger interaction with a laser beam with a wavelength of 400 nm. Therefore, in order to have a super-resolution effect at one laser wavelength to be used, it is necessary to use a compound semiconductor having a composition edge having an absorption edge close to the laser wavelength to be used.
本実施例では、 C d Sと、 3 20 nm ( 3. 83 e V) に吸収を有する Z n S の混晶の配合組成を変化させ、 いろいろな波長のレーザ一に対する超解像効果に ついて検討した。 また、 これらの膜を S i 02との混合物薄膜とした薄膜につい ても超解像特性を検討した。 In this example, the composition of the mixed crystal of CdS and ZnS having an absorption at 320 nm (3.83 eV) was changed, and the super-resolution effect for lasers of various wavelengths was changed. investigated. We also examined the super-resolution characteristics with these films to a thin film to prepare a mixture thin film of S i 0 2.
用いるレーザ一波長が長くなると、 高い CZNで読み出せるマーク長が長くな る。 従って各波長における超解像効果を適正に評価するため、 下記のような方法 で超解像特性の評価を行った。  The longer the wavelength of the laser used, the longer the mark length that can be read with a high CZN. Therefore, in order to properly evaluate the super-resolution effect at each wavelength, the super-resolution characteristics were evaluated by the following method.
各波長において超解像膜を形成しない比較例の光ディスクに対して実施例 1で 述べたマーク長に対する C/N比を実測し、 マーク長を短くしていった時の C/ Nが 8 d Bまで低下するときのマーク長を測定した。 そして超解像膜を形成した 実施例試料において比較例の CZNが 8 d Bとなるマーク長における CZNを評 価した。  The C / N ratio to the mark length described in Example 1 was measured for the optical disk of the comparative example in which no super-resolution film was formed at each wavelength, and the C / N when the mark length was reduced was 8 d. The mark length when it decreased to B was measured. Then, the CZN at the mark length at which the CZN of the comparative example was 8 dB was evaluated in the example sample in which the super-resolution film was formed.
作製した混晶の組成、及び実施例 1 と同様の方法で測定した吸収波長、析出相、 X線回折により評価した配向性、配向したときの配向面の X線回折のピーク強度、 各レーザー波長に対する C/N比を表 3に示す。 表 3 Composition of the prepared mixed crystal, absorption wavelength measured by the same method as in Example 1, precipitated phase, orientation evaluated by X-ray diffraction, peak intensity of X-ray diffraction of oriented surface when oriented, each laser wavelength Table 3 shows the C / N ratio with respect to. Table 3
Figure imgf000018_0001
Figure imgf000018_0001
表 3の No.1 5〜 1 9に示すように、 C d Sに Z n Sを添加してその含有量を 変化させると、 吸収波長は 48 1 nmから 320 nmとほぼ Z n含有量に比例し て低下していった。 また、 No.20〜 24のように S i 02を 1 Omo 1 %添加し ても同様の傾向になった。 また、 いずれの薄膜においても析出相はゥルツアイ ト 型結晶であり、 (00 1 ) に配向した薄膜であることが分かった。 また、 試料 No.2 5は Z n S eの単相を用いたものであり、 これは 443 n mに吸収端を有 している。 As shown in Table 3, Nos. 15 to 19, when ZnS was added to CdS and the content was changed, the absorption wavelength decreased from 481 nm to 320 nm, almost the Zn content. It decreased in proportion. The same tendency was obtained even when 1% O 2 O was added as in Nos. 20 to 24. In each of the thin films, the precipitated phase was perzite-type crystal, and it was found that the thin film was oriented in (00 1). Sample No. 25 uses a single phase of ZnSe, which has an absorption edge at 443 nm.
各レーザ—波長に対する各組成の超解像膜を用いた場合の CZNを図 1 6、 及 び図 1 7に示す。 図 1 6には S i O 2含有量が 0 m 0 1 %のもの、 図 1 7には 1 0 m 0 1 %のものについて示す。 この図を見ると、 各半導体化合物成分の吸収波 長に対応し 、 高い CZNが得られる波長域が存在していることが分かる。 例え ば、 試料 No.1 5の C d Sを用いた場合では、 吸収端が 480 nmであり、 この 時、 レーザ一波長 42 5 ηπ!〜 5 50 nmの間で 30 d Bと高い CZNが得られ た。 さらに、 レーザ一波長 450 ηπ!〜 500 nmでは 40 d B以上と、 非常に 高い Cノ Nが得られた。 また、 試料 No.1 7は吸収端が 403 nmであり、 レ一 ザ一波長が 3 55 ηπ!〜 520 nmの範囲では 30 d B以上、 3 80〜 420 η mのとき CZNが 40 d B以上となった。さらに Z n S e単相の試料 No.2 5は、 吸収端波長が 443 nmであリ、 レーザー波長が 37 0 ηπ!〜 5 30 nmのとき 30 d B以上、 420 ηπ!〜 450 nmのとき 40 d B以上の高い CZNが得ら れた。 Figures 16 and 17 show the CZN when using the super-resolution film of each composition for each laser wavelength. FIG. 16 shows the case where the SiO 2 content is 0 m 0 1%, and FIG. 17 shows the case where the SiO 2 content is 10 m 0 1%. From this figure, it can be seen that there is a wavelength range corresponding to the absorption wavelength of each semiconductor compound component and in which a high CZN can be obtained. For example, when CdS of sample No. 15 is used, the absorption edge is 480 nm, and at this time, the wavelength of the laser is 42 5 ηπ! High CZN of 30 dB between ~ 550 nm Was. Furthermore, one wavelength of laser 450 ηπ! At ~ 500 nm, a very high C-N value of 40 dB or more was obtained. Sample No. 17 has an absorption edge of 403 nm and a laser wavelength of 3 55 ηπ! The CZN was more than 30 dB in the range of 520520 nm and more than 40 dB in the range of 380-420 ηm. Sample No. 25 of ZnSe single phase has an absorption edge wavelength of 443 nm and a laser wavelength of 37 0 ηπ! ~ 30 dB or more at 30 nm, 420 ηπ! At ~ 450 nm, high CZN of 40 dB or more was obtained.
このように各吸収波長を中心として 30 d B, あるいはさらに良好な場合とし て 40 d B以上の C/Nの得られるレ一ザ一波長域が存在するが、 図 1 6、 図 1 7に示す試料 No.1 5 ~ 2 5の検討では、 吸収端波長の土 1 0 %以内の波長レ一 ザ一を用いると、 30 d B以上の高い CZNを得ることができた。 さらに ± 5 % 以内の波長のレーザーを用いれば、 40 d B以上のさらに高い CZNを得ること ができた。  As described above, there is a laser wavelength range where a C / N of 30 dB or more, more preferably 40 dB or more, is obtained around each absorption wavelength. In the examination of Samples Nos. 15 to 25 shown below, a high CZN of 30 dB or more could be obtained using a wavelength laser within 10% of the soil at the absorption edge. Using a laser with a wavelength within ± 5%, a higher CZN of 40 dB or more could be obtained.
表 3の試料 No.1 5〜 24の検討では、 C d Sの吸収端が 480 n m、 Z n S の吸収端が 320 nmであったため、 この範囲のレ一ザ一波長に対応することが 可能であつたが、 さらに長波長側に吸収端を有する C d S e , Z n T e , C dT e等の化合物半導体を用いることによリ、 よリ長波長側のレーザ一に対しても同 様の効果を得ることができる。  In the examination of sample Nos. 15 to 24 in Table 3, the absorption edge of CdS was 480 nm and the absorption edge of ZnS was 320 nm. Although it was possible, by using a compound semiconductor such as CdSe, ZnTe, CdTe, etc. having an absorption edge on the longer wavelength side, a laser with a longer wavelength could be used. The same effect can be obtained.
表 4に、 C d Sに C d S eを添加した C d S S e系半導体材料を用いた場合の 吸収波長、 析出相、 配向性、 C/N比を示す。 それぞれの測定法は、 表 3に示し た方法と同一とした。 Table 4 shows the absorption wavelength, precipitated phase, orientation, and C / N ratio when using a CdSSe-based semiconductor material in which CdSe is added to CdS. Each measurement method was the same as the method shown in Table 3.
表 4 Table 4
Figure imgf000020_0001
Figure imgf000020_0001
この C d S S e系半導体材料を用いた試料 No.26〜 35では、 C d Sに C d S eを含有させるにつれて、 吸収波長が長くなつた。 C d S : C d S eのモル比 力 1 : 1の試料 No.2 8の場合、 吸収波長は 5 77 n mであり、 C d S e単体の 試料 No.30の場合には吸収は長は 6 74 nmであった。 In Sample Nos. 26 to 35 using this CdSSe-based semiconductor material, the absorption wavelength became longer as CdSe was added to CdS. In the case of sample No. 28 with a molar ratio of C d S: C d Se of 1: 1, the absorption wavelength is 577 nm, and in the case of sample No. 30 of C d Se alone, the absorption is long. Was 675 nm.
また C d Sに C d S eを添加していくと、 C d S単体のときに見られたゥルツ アイト型化合物のほか、 試料 No.2 9の C d S 0. a S e 0. 7のとき立方晶の閃亜 鉛鉱型化合物が析出していた。 この場合は立方晶の ( 1 1 1 ) のピークのみが観 察されており、 やはり配向性を有していた。 また、 この立方晶の ( 1 1 1 ) 方向 は六方晶の (00 1 ) 方向に相当する方位であり、 分極の生じ易い方位に配向し ていた。 また TEMによる観察の結果、 析出している相の結晶系によらず、 試料 N o.2 6〜 3 0の試料では粒界相を伴わない粒径約 1 0 nm程度の微粒子が析 出していた。 また試料 N o. 3 1〜38の場合では、 非晶質の粒界相を伴った粒 径 1 0 nmを切る微少な粒子の集合であった。 Further, when C d S gradually added C d S e, the addition of Urutsu Ait type compound seen at C d S alone, C d S of the sample No.2 9 0. a S e 0. 7 At that time, a cubic sphalerite compound was precipitated. In this case, only the (11 1) peak of the cubic system was observed, and it also had the orientation. Further, the (111) direction of the cubic system was equivalent to the (001) direction of the hexagonal system, and was oriented in a direction in which polarization easily occurred. In addition, TEM observation showed that the sample In the samples of Nos. 26 to 30, fine particles with a grain size of about 10 nm without a grain boundary phase were precipitated. In the case of sample Nos. 31 to 38, the particles were aggregates of fine particles less than 10 nm in diameter with an amorphous grain boundary phase.
レーザー波長を変化させたときの C/N比の変化を図 1 8、 図 1 9に示す。 表 3の試料と同様に、 表 4の各試料とも吸収端波長に依存して高い CZNが得られ るレーザ一波長領域が異なっておリ、 吸収端波長の ± 5 %以内であれば 40 d B 以上の高い C/Nが得られることが分かる。 また表 4の試料 No.35〜 3 7に示 すように、 C d S e, Z n T e , C d T e等の単相の膜を用いても、 各吸収端波 長に対応した領域で超解像効果が得られた。 さらに試料 N o. 38のように C d S eと C d T eとの混晶である C d S e。 5T e。 5については波長 7 30 nm付 近に吸収端があり、 その波長付近のレーザー波長で高い超解像効果が得られた。 以上の検討より、 化合物半導体の混晶ゃ単相、 あるいはこれらを S i 02等の ガラス材料と複合させた場合、 用いるレーザ一波長が各吸収端波長の ± 1 0 %以 内、 さらに好ましくは土 5 %以内であれば高い超解像効果を得ることができた。 このとき用いる化合物半導体が、 カドミウム、 亜鉛等の VI族の元素と、 硫黄、 セレン、 テルル等の II族の元素から構成される化合物半導体であれば、 近紫外か ら可視光、及び近赤外に至る波長域において高い超解像効果を得ることができた。 また析出相はウルツァイト型化合物のみならず立方晶の閃亜鉛鉱型化合物であ つても高い超解像効果を得ることが出来た。 ウルツァイト型化合物が析出する場 合には (00 1 ) 配向していることが好ましく、 また閃亜鉛鉱型化合物の場合に はこの化合物は ( 1 1 1 ) 配向していることが好ましい。 Fig. 18 and Fig. 19 show the change in C / N ratio when the laser wavelength is changed. As with the samples in Table 3, each sample in Table 4 differs in the laser one wavelength range where high CZN is obtained depending on the absorption edge wavelength, and is 40 d if within ± 5% of the absorption edge wavelength. It can be seen that a high C / N higher than B can be obtained. In addition, as shown in Sample Nos. 35 to 37 in Table 4, even if a single-phase film such as CdSe, ZnTe, A super-resolution effect was obtained in the region. Further, as shown in sample No. 38, CdSe which is a mixed crystal of CdSe and CdTe. 5 Te. For 5, there was an absorption edge near the wavelength of 730 nm, and a high super-resolution effect was obtained at a laser wavelength near that wavelength. From the above examinations, when the compound semiconductor is a mixed crystal single phase, or when these are combined with a glass material such as SiO 2, the wavelength of the laser used is within ± 10% of each absorption edge wavelength, more preferably. Could achieve a high super-resolution effect within 5% of soil. If the compound semiconductor used at this time is a compound semiconductor composed of a group VI element such as cadmium and zinc and a group II element such as sulfur, selenium, and tellurium, visible light from near ultraviolet to near infrared , A high super-resolution effect was obtained in the wavelength range up to. In addition, a high super-resolution effect was obtained not only for the wurtzite-type compound but also for the cubic zinc-blende-type compound. In the case where a wurtzite type compound is precipitated, it is preferable that the compound is (00 1) oriented, and in the case of a zinc blende type compound, it is preferable that the compound is (11 1) oriented.
〔実施例 4〕  (Example 4)
次に、 スパッタリング条件を変化させることにより析出する超解像膜の粒径を 変化させて、 粒径に対する超解像特性の変化を検討した。 超解像膜として表 1の N o.6の薄膜を用い、 図 1に示す構造と同じ DVD— RAMディスクを作製し、 実施例 1 と同様にマ一ク長 0. 2 μπιのときの CZN比を評価した。  Next, the particle size of the super-resolution film deposited by changing the sputtering conditions was changed, and the change in super-resolution characteristics with respect to the particle size was examined. Using the thin film of No. 6 in Table 1 as the super-resolution film, a DVD-RAM disk having the same structure as that shown in Fig. 1 was prepared. The CZN at a mark length of 0.2 μπι The ratio was evaluated.
表 5に、 スパッタリングパヮ一を変化させたときの超解像膜の平均粒径及びそ の超解像膜を搭載した DVD— RAMディスクの C/N比を示す。 また表 5よリ 得られたスパッタパヮ一に対する平均粒径の変化を図 20に、 またこの平均粒径 に対する C/N比を図 2 1に示す。 平均粒径の評価は実施例 1 と同様に透過型電 子顕微鏡の平面像から算出した。 表 5 Table 5 shows the average particle size of the super-resolution film when the sputtering rate was changed and the C / N ratio of the DVD-RAM disk equipped with the super-resolution film. See Table 5 FIG. 20 shows the change in the average particle size with respect to the obtained sputtered powder, and FIG. 21 shows the C / N ratio with respect to the average particle size. Evaluation of the average particle size was calculated from the plane image of the transmission electron microscope in the same manner as in Example 1. Table 5
Figure imgf000022_0001
表 5、 図 20に示すように、 スパッタパヮ一が上昇するに伴って平均粒径が小 さくなつていく傾向が見られた。 また図 2 1に示すように、 平均粒径が約 6. 0 n m程度までは平均粒径の増加に伴って C が上昇したが、 さらに平均粒径が 増大すると逆に C/Nが低下していく傾向が見られた。 図 2 1から判断すると、 平均粒径が 3. 2 nm以上 1 7 nm以下では、 C ZN比が 30 d B以上となリ、 超解像効果が得られていた。 また平均粒径が 3. 5 nm以上 1 0. l nm以下で は、 C/N比が 40 d B以上となり、 さらに良好な結果が得られた。 平均粒径が 3. 2 nmを下回り、 又は 1 7 n mを上回ると、 C 比が 30 d Bを下回るた め、 好ましくなかった。
Figure imgf000022_0001
As shown in Table 5 and FIG. 20, the average particle size tended to decrease as the sputter power increased. As shown in Fig. 21, C increased with increasing average particle size up to an average particle size of about 6.0 nm, but C / N decreased with increasing average particle size. There was a tendency to move. Judging from Fig. 21, when the average particle size was 3.2 nm or more and 17 nm or less, the CZN ratio was 30 dB or more, and a super-resolution effect was obtained. When the average particle size was 3.5 nm or more and 10 0.1 nm or less, the C / N ratio was 40 dB or more, and more favorable results were obtained. If the average particle size is less than 3.2 nm or more than 17 nm, the C ratio is less than 30 dB, which is not preferable.
以上より、 超解像効果を得るためには、 析出する半導体化合物の微粒子の平均 粒径が 3. 2 nm以上 1 7 nm以下であることが好ましかった。 また更に高い C /N比を得るためには、 析出する半導体化合物の微粒子の平均粒径が 3. 5 nm 以上 1 0. 1 n m以下であることが好ましかった。 As described above, in order to obtain the super-resolution effect, the average It was preferred that the particle size was between 3.2 nm and 17 nm. In order to obtain a higher C / N ratio, it is preferable that the average particle diameter of the fine particles of the semiconductor compound to be deposited is not less than 3.5 nm and not more than 10.1 nm.
〔実施例 5〕  (Example 5)
次に、 図 2 2に示す ROM構造の光ディスクを作製してその超解像特性を評価 した。 図 22において、 1はポリカーボネート基板、 1 0は情報を持って記録さ れた記録ピット、 2は超解像膜、 3は保護膜、 5は反射膜である。 本実施例では、 3の超解像膜には表 1の試料 No.6に示した C d S系薄膜を用いた。 また 3の保 護膜には S i O2保護膜を用いた。 また 5の反射膜には A 1 — T i系合金を用い た。 Next, an optical disk having a ROM structure shown in Fig. 22 was manufactured and its super-resolution characteristics were evaluated. In FIG. 22, 1 is a polycarbonate substrate, 10 is a recording pit recorded with information, 2 is a super-resolution film, 3 is a protective film, and 5 is a reflective film. In this example, the CdS-based thin film shown in Sample No. 6 in Table 1 was used as the super-resolution film of No. 3. In addition, a SiO 2 protective film was used as the protective film 3. The reflective film of No. 5 was made of A1-Ti alloy.
また、 図 2 2に示すように本光ディスクはトラッキングのためにランド (丘) とグループ (谷) が形成されており、 その両方に情報を有する記録ピットが形成 されている。  As shown in FIG. 22, the optical disc has lands (hills) and groups (valleys) for tracking, and recording pits having information are formed on both lands.
ROMディスクは以下の工程によって作製した。 まず、 フォトレジスト上にレ 一ザ一を用いて 0. 1〜0. 6 μ mのマーク長を有するピットパターンを形成し た。 その後 N i金型にピットパターンを複写し、 この金型にポリカーボネートを 射出成形することによって基板を形成した。 この基板上に膜厚 50 nmの超解像 膜をスパッタリングにて形成し、 S i 02保護膜 90 nmを形成した後、 A 1— T i系反射膜を 1 0 O nm形成した。 基板 1の厚さは 0. 6mmであり、 本実施 例では成膜した 2枚の基板を反射膜を背にして紫外線硬化樹脂を用いて貼り合わ せ、 1. 2 mm厚の ROMディスクを得た。 The ROM disk was manufactured by the following steps. First, a pit pattern having a mark length of 0.1 to 0.6 μm was formed on a photoresist using a laser. Thereafter, the pit pattern was copied into a Ni mold, and a polycarbonate was injected into the mold to form a substrate. On this substrate, a super-resolution film having a thickness of 50 nm was formed by sputtering, a 90-nm SiO 2 protective film was formed, and then a 100-nm-thick A1-Ti reflective film was formed. The thickness of the substrate 1 is 0.6 mm, and in this embodiment, the two substrates formed are bonded together with the reflective film as the back using an ultraviolet curing resin to obtain a ROM disk having a thickness of 1.2 mm. Was.
再生波長を 400 nmとし、 この R O Mディスクを用いてマーク長に対する C /N比を評価したところ、 マーク長 0. 2 μπιに対して 42 d Bであった。 高い 超解像特性を有していることが分かった。 このように、 本発明の超解像膜を RO M、 RAM等の光ディスクに搭載することにより、 高速回転に対応した大容量記 録媒体に適応可能であった。 産業上の利用可能性 · 本発明によると、 配向した II一 VI族の化合物半導体を用いることにより、 近紫 外から可視光、 さらに近赤外領域のあらゆる波長域において高い超解像効果を有 する光ディスクが得られる。 また、 この超解像膜を光ディスクに搭載することに より、 繰り返しの読み書きに対して劣化が少なく、 高応答性、 大容量書き換え可 能光ディスク (R AMディスク) が得られる。 また、 大容量で、 さらに繰り返し の読み書きに対して劣化が少なく、 また応答性に優れた読み出し専用光' ( R O Mディスク) が得られる。 When the reproduction wavelength was set to 400 nm and the C / N ratio to the mark length was evaluated using this ROM disk, it was 42 dB for the mark length of 0.2 μπι. It turned out to have high super-resolution characteristics. As described above, by mounting the super-resolution film of the present invention on an optical disc such as a ROM or a RAM, the super-resolution film can be applied to a large-capacity recording medium compatible with high-speed rotation. Industrial Applicability · According to the present invention, by using an oriented II-VI compound semiconductor, an optical disk having a high super-resolution effect in all wavelength ranges from near ultraviolet to visible light and near infrared region can be obtained. In addition, by mounting this super-resolution film on an optical disk, a highly responsive, large-capacity rewritable optical disk (RAM disk) with little deterioration due to repeated reading and writing can be obtained. In addition, a read-only light (ROM disk) with a large capacity, less deterioration with repeated reading and writing, and excellent responsiveness can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板と、 前記基板に直接又は他の薄膜を介して形成された無機材料からなる 超解像膜と、 前記超解像膜に直接又は他の薄膜を介して形成された情報記録膜と を含む光情報記録媒体において、 1. A substrate, a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, and an information recording film formed directly on the super-resolution film or through another thin film. In an optical information recording medium containing
前記超解像膜は、 吸収端波長が情報の記録又は再生に使用されるレーザ一波長 の土 1 0 %以内に存在する結晶質の粒子もしくは粒界相を伴った結晶質の粒子か ら構成され、 前記結晶質の粒子は配向性を有することを特徴とする光情報記録媒 体。  The super-resolution film is composed of crystalline particles or crystalline particles accompanied by a grain boundary phase, whose absorption edge wavelength is within 10% of soil of one laser wavelength used for recording or reproducing information. The optical information recording medium, wherein the crystalline particles have an orientation.
2 . 情報を有するピットの形成された基板と、 前記基板に直接又は他の薄膜を介 して形成された無機材料からなる超解像膜とを含む光情報記録媒体において、 前記超解像膜は、 吸収端波長が情報の記録又は再生に使用されるレーザ一波長の 土 1 0 %以内に存在する結晶質の粒子もしくは粒界相を伴った結晶質の粒子から 構成され、前 己結晶質の粒子は配向性を有することを特徴とする光情報記録媒体。 2. An optical information recording medium including a substrate having information-formed pits formed thereon and a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, wherein the super-resolution film is Is composed of crystalline particles or crystalline particles with an intergranular phase whose absorption edge wavelength is within 10% of the soil of one laser wavelength used for recording or reproducing information. An optical information recording medium, wherein the particles have orientation.
3 . 請求項 1又は 2記載の光情報記録媒体において、 前記超解像膜は、 吸収端波 長が情報の記録又は再生に使用されるレーザ一波長の土 5 %以内に存在すること を特徴とする光情報記録媒体。 3. The optical information recording medium according to claim 1, wherein the super-resolution film has an absorption edge wavelength within 5% of a laser wavelength used for recording or reproducing information. Optical information recording medium.
4 . 請求項 1 〜 3のいずれか 1項記載の光情報記録媒体において、 前記超解像膜 はウルツァイト型もしくは閃亜鉛鉱型の結晶構造を有する II— VI 族化合物半導 体の配向性を有する結晶質の粒子もしくは粒界相を伴った配向性を有する結晶質 の粒子から構成され、 前記粒界相はシリコン、 アルミニウム、 チタン、 アルカリ 金属及びアルカリ土類金属のうちから選択された 1又は複数の金属の酸化物もし くはそれらと結晶粒子を構成する成分との混合物であることを特徴とする光情報 記録媒体。  4. The optical information recording medium according to any one of claims 1 to 3, wherein the super-resolution film has an orientation of a group II-VI compound semiconductor having a wurtzite type or zinc blende type crystal structure. And crystalline particles having an orientation accompanied by a grain boundary phase, wherein the grain boundary phase is selected from silicon, aluminum, titanium, an alkali metal, and an alkaline earth metal. An optical information recording medium, which is an oxide of a plurality of metals or a mixture of them with components constituting crystal grains.
5 . 基板と、 前記基板に直接又は他の薄膜を介して形成された無機材料からなる 超解像膜と、 前記超解像膜に直接又は他の薄膜を介して形成された情報記録膜と を含む光情報記録媒体において、  5. A substrate, a super-resolution film made of an inorganic material formed directly on the substrate or through another thin film, and an information recording film formed directly on the super-resolution film or through another thin film. In an optical information recording medium containing
前記超解像膜はウルツァイト型もしくは閃亜鉛鉱型の結晶構造を有する II一 VI 族化合物半導体の配向性を有する結晶質の粒子もしくは粒界相を伴った配向 性を有する結晶質の粒子から構成され、 前記粒界相はシリコン、 アルミニウム、 チタン、 アル力リ金属及びアル力リ土類金属のうちから選択された 1又は複数の 金属の酸化物もしくはそれらと結晶粒子を構成する成分との混合物であることを 特徴とする光情報記録媒体。 The super-resolution film has a wurtzite-type or zinc-blende-type crystal structure. It is composed of crystalline particles having an orientation of a group VI compound semiconductor or crystalline particles having an orientation accompanied by a grain boundary phase, wherein the grain boundary phase is silicon, aluminum, titanium, aluminum alloy, and aluminum alloy. An optical information recording medium characterized by being an oxide of one or more metals selected from the earth metal or a mixture of them with a component constituting a crystal particle.
6 . 情報を有するピットの形成された基板と、 前記基板に直接又は他の薄膜を介 して形成された無機材料からなる超解像膜とを含む光情報記録媒体において、 前記超解像膜はウルツァイ ト型もしくは閃亜鉛鉱型の結晶構造を有する II— VI 族化合物半導体の配向性を有する結晶質の粒子もしくは粒界相を伴った配向 性を有する結晶質の粒子から構成され、 前記粒界相はシリコン、 アルミニウム、 チタン、 アルカリ金属及びアルカリ土類金属のうちから選択された 1又は複数の 金属の酸化物もしくはそれらと結晶粒子を構成する成分との混合物であることを 特徴とする光情報記録媒体。  6. An optical information recording medium including a substrate on which pits having information are formed, and a super-resolution film made of an inorganic material formed directly or through another thin film on the substrate, wherein the super-resolution film is Is composed of crystalline particles having an orientation of a II-VI compound semiconductor having a wurtzite type or zinc blende type crystal structure or crystalline particles having an orientation accompanied by a grain boundary phase. The field phase is an oxide of one or more metals selected from silicon, aluminum, titanium, an alkali metal, and an alkaline earth metal, or a mixture thereof with a component constituting a crystal particle. Information recording medium.
7 . 請求項 5又は 6記載の光情報記録媒体において、 前記 II一 VI族化合物半導体 はカドミウム及び 又は亜鉛と、 硫黄、 セレン、 テルルのうちから選択された 1 又は複数の元素との化合物であることを特徴とする光情報記録媒体。  7. The optical information recording medium according to claim 5, wherein the II-VI compound semiconductor is a compound of cadmium and / or zinc and one or more elements selected from sulfur, selenium, and tellurium. An optical information recording medium characterized by the above-mentioned.
8 . 請求項 5, 6又は 7記載の光情報記録媒体において、 前記ウルツァイト化合 物は基板面に対して (0 0 1 ) 配向であり、 前記閃亜鉛鉱型化合物は基板面に対 して ( 1 1 1 ) 配向であることを特徴とする光情報記録媒体。  8. The optical information recording medium according to claim 5, 6 or 7, wherein the wurtzite compound has a (01) orientation with respect to the substrate surface, and the zinc blende compound has a (01) orientation with respect to the substrate surface. 1 1 1) An optical information recording medium having an orientation.
9 . 請求頊 5〜 8のいずれか 1項記載の光情報記録媒体において、 前記超解像膜 中に含有される II— VI 族化合物半導体の含有量がモル%で 2 3 %以上であるこ とを特徴とする光情報記録媒体。  9. The optical information recording medium according to any one of claims 5 to 8, wherein the content of the group II-VI compound semiconductor contained in the super-resolution film is at least 23% by mol%. An optical information recording medium characterized by the above-mentioned.
1 0 . 請求項 5〜 9のいずれか 1項記載の光情報記録媒体において、 前記超解像 膜中に含有される II— VI 族化合物半導体の含有量がモル%で 3 5 %以上 9 5 % 以下であることを特徴とする光情報記録媒体。  10. The optical information recording medium according to any one of claims 5 to 9, wherein the content of the group II-VI compound semiconductor contained in the super-resolution film is at least 35% by mole and at least 95%. % Or less.
1 1 . 請求項 1〜 1 0のいずれか 1項記載の光情報記録媒体において、 前記超解 像膜中の前記結晶粒子は、 平均粒径が 3 . 2 n m以上 1 7 n m以下であることを 特徴とする光情報記録媒体。 11. The optical information recording medium according to any one of claims 1 to 10, wherein the crystal grains in the super-resolution film have an average particle size of 3.2 nm or more and 17 nm or less. An optical information recording medium characterized by the above-mentioned.
1 2. 請求項 1〜 1 0のいずれか 1項記載の光情報記録媒体において、 前記超解 像^中の前記結晶粒子は、 平均粒径が 3. 5 nm以上 1 0. l nm以下であるこ とを特徴とする光情報記録媒体。 1 2. The optical information recording medium according to any one of claims 1 to 10, wherein the crystal grains in the super-resolution ^ have an average particle size of 3.5 nm or more and 10 0.1 nm or less. An optical information recording medium characterized by the following.
PCT/JP2001/000305 2001-01-18 2001-01-18 Optical information recording medium WO2002058060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002558264A JPWO2002058060A1 (en) 2001-01-18 2001-01-18 Optical information recording medium
PCT/JP2001/000305 WO2002058060A1 (en) 2001-01-18 2001-01-18 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000305 WO2002058060A1 (en) 2001-01-18 2001-01-18 Optical information recording medium

Publications (1)

Publication Number Publication Date
WO2002058060A1 true WO2002058060A1 (en) 2002-07-25

Family

ID=11736922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000305 WO2002058060A1 (en) 2001-01-18 2001-01-18 Optical information recording medium

Country Status (2)

Country Link
JP (1) JPWO2002058060A1 (en)
WO (1) WO2002058060A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436755B2 (en) 2002-11-18 2008-10-14 Sharp Kabushiki Kaisha Optical information recording medium, recording and reproduction methods using the same, optical information recording device, and optical information reproduction device
US7556912B2 (en) 2003-06-06 2009-07-07 Sharp Kabushiki Kaisha Optical information recording medium, reproducting method using the same, and optical information processing device
US7682678B2 (en) 2003-06-06 2010-03-23 Sharp Kabushiki Kaisha Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
US7782747B2 (en) * 2005-03-03 2010-08-24 Sharp Kabushiki Kaisha Optical information recording medium including super resolution reproducing film, method for reproducing optical information recording medium, and optical information processing apparatus using optical information recording medium
US8125881B2 (en) 2004-08-04 2012-02-28 Sharp Kabushiki Kaisha Optical information recording medium, reproduction method and optical information processing device using the same
US8223620B2 (en) 2007-08-30 2012-07-17 Sharp Kabushiki Kaisha Super-resolution optical recording medium on which information is recorded using train of prepits, optical recording medium reproduction device, and control method
US8233375B2 (en) 2006-03-03 2012-07-31 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363390A (en) * 1993-11-22 1994-11-08 Hewlett-Packard Company Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity
JPH0862648A (en) * 1994-08-26 1996-03-08 Hoya Corp Nonlinear optical material, its production and nonlinear optical element using that nonlinear optical material
JPH10320857A (en) * 1997-03-17 1998-12-04 Toshiba Corp Optical recording medium and its ultra resolving/ reproducing method
JPH1186342A (en) * 1997-09-16 1999-03-30 Toshiba Corp Optical recording medium and super-high resolution reproduction method
JPH11273148A (en) * 1998-03-20 1999-10-08 Toshiba Corp Optical disk and its recording/reproducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363390A (en) * 1993-11-22 1994-11-08 Hewlett-Packard Company Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity
JPH0862648A (en) * 1994-08-26 1996-03-08 Hoya Corp Nonlinear optical material, its production and nonlinear optical element using that nonlinear optical material
JPH10320857A (en) * 1997-03-17 1998-12-04 Toshiba Corp Optical recording medium and its ultra resolving/ reproducing method
JPH1186342A (en) * 1997-09-16 1999-03-30 Toshiba Corp Optical recording medium and super-high resolution reproduction method
JPH11273148A (en) * 1998-03-20 1999-10-08 Toshiba Corp Optical disk and its recording/reproducing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436755B2 (en) 2002-11-18 2008-10-14 Sharp Kabushiki Kaisha Optical information recording medium, recording and reproduction methods using the same, optical information recording device, and optical information reproduction device
US7556912B2 (en) 2003-06-06 2009-07-07 Sharp Kabushiki Kaisha Optical information recording medium, reproducting method using the same, and optical information processing device
US7682678B2 (en) 2003-06-06 2010-03-23 Sharp Kabushiki Kaisha Optical information recording medium, recording and readout methods using the same, optical information recording device, and optical information readout device
US8125881B2 (en) 2004-08-04 2012-02-28 Sharp Kabushiki Kaisha Optical information recording medium, reproduction method and optical information processing device using the same
US7782747B2 (en) * 2005-03-03 2010-08-24 Sharp Kabushiki Kaisha Optical information recording medium including super resolution reproducing film, method for reproducing optical information recording medium, and optical information processing apparatus using optical information recording medium
US8233375B2 (en) 2006-03-03 2012-07-31 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein
US8355304B2 (en) 2006-03-03 2013-01-15 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein
US8400903B2 (en) 2006-03-03 2013-03-19 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein
US8446807B2 (en) 2006-03-03 2013-05-21 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein
US8462606B2 (en) 2006-03-03 2013-06-11 Sharp Kabushiki Kaisha Optical information recording medium, reproducing device for optical information recording medium, control method and control program for the reproducing device, and medium with the control program recorded therein
US8223620B2 (en) 2007-08-30 2012-07-17 Sharp Kabushiki Kaisha Super-resolution optical recording medium on which information is recorded using train of prepits, optical recording medium reproduction device, and control method
US8379505B2 (en) 2007-08-30 2013-02-19 Sharp Kabushiki Kaisha Super-resolution optical recording medium on which information is recorded using train of prepits, optical recording medium reproduction device, and control method
US8570850B2 (en) 2007-08-30 2013-10-29 Sharp Kabushiki Kaisha Super-resolution optical recording medium on which information is recorded using train of prepits, optical recording medium reproduction device, and control method
US8705333B2 (en) 2007-08-30 2014-04-22 Sharp Kabushiki Kaisha Super-resolution optical recording medium on which information is recorded using train of prepits, optical recording medium reproduction device, and control method
US8867328B2 (en) 2007-08-30 2014-10-21 Sharp Kabushiki Kaisha Optical recording medium on which information is recorded using train of prepits, and method for reproducing optical recording medium

Also Published As

Publication number Publication date
JPWO2002058060A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
CN1121031C (en) Information recording medium and information recording and reproducing apparatus using the same
US7260053B2 (en) Optical recording medium, process for manufacturing the same, sputtering target for manufacturing the same, and optical recording process using the same
JP3566743B2 (en) Optical recording medium
EP0784316B1 (en) Optical recording media and information recording and reproducing units
JP4145446B2 (en) How to use optical recording media
JP2001184725A (en) Optical information recording medium
JP2000229479A (en) Optical-recording medium
EP1566801B1 (en) Sputtering target for manufacturing an optical recording medium
WO2002058060A1 (en) Optical information recording medium
JP2003051137A (en) Information recording medium
Kato et al. Compositional dependence of optical constants and microstructures of GeSbTe thin films for Compact-Disc-Rewritable (CD-RW) readable with conventional CD-ROM drives
WO2002043060A1 (en) Optical recording medium
JP3731372B2 (en) Optical information recording medium, reproducing method and recording method thereof
JP4093846B2 (en) Phase change optical recording medium
US7758941B2 (en) Optical data storage medium with super resolution layer
JP5437793B2 (en) Information recording medium and manufacturing method thereof
JP2002319184A (en) Optical recording medium
JPH07161071A (en) Optical recording medium
JP2712207B2 (en) Optical information recording medium
JP2867701B2 (en) Manufacturing method of optical information recording medium
JP2001010232A (en) Phase change type optical recording medium
JP3691501B2 (en) Optical recording medium
JPH07220303A (en) Phase change type disk medium
JPH08115536A (en) Optical recording medium
JP2004303350A (en) Information recording medium, and method and device of recording information to the medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002558264

Country of ref document: JP

122 Ep: pct application non-entry in european phase