JPS63259261A - Belt type continuously variable transmission - Google Patents

Belt type continuously variable transmission

Info

Publication number
JPS63259261A
JPS63259261A JP9401287A JP9401287A JPS63259261A JP S63259261 A JPS63259261 A JP S63259261A JP 9401287 A JP9401287 A JP 9401287A JP 9401287 A JP9401287 A JP 9401287A JP S63259261 A JPS63259261 A JP S63259261A
Authority
JP
Japan
Prior art keywords
belt
continuously variable
transmission
primary
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9401287A
Other languages
Japanese (ja)
Inventor
Katsumi Kono
克己 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9401287A priority Critical patent/JPS63259261A/en
Publication of JPS63259261A publication Critical patent/JPS63259261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control a rotating speed ratio and a belt tension simultaneously by moving a movable rotator of an intermediate variable pulley so as to balance the belt reaction force of a transmission belt pressed in a variable pulley on the primary side with the belt reaction force of a transmission belt pressed in a variable pulley on the secondary side. CONSTITUTION:The belt reaction force of a transmission belt 28 acting on the movable rotator 54 of an intermediate variable pulley 26 is decided by a thrust given to a variable pulley 22 on the primary side by a hydraulic cylinder 46 on the primary side by a hydraulic cylinder 46 on the primary side and the rotating speed ratio of a continuously variable transmission mechanism 18 at that time. The belt reaction force of a transmission belt 36 acting on the movable rotator 56 of an intermediate variable pulley 30 is decided by a thrust given to a variable pulley 34 on the secondary side by a hydraulic cylinder 48 on the secondary side and the rotating speed ratio of a continuously variable transmission mechanism 20 at that time. A preset rotating speed ratio can be obtained by movement of a slide member 58 until a position where these both reaction forces are equalized to each other and stop thereof at this position.

Description

【発明の詳細な説明】 技術分野 本発明はベルト式無段変速機に係り、特に、複数の無段
変速機構が直列に接続されているベルト式無段変速機の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a belt-type continuously variable transmission, and more particularly to an improvement in a belt-type continuously variable transmission in which a plurality of continuously variable transmission mechanisms are connected in series.

従来技術 一次側回転軸および二次側回転軸にそれぞれ設けられた
一対の可変プーリと、それ等一対の可変プーリに巻き掛
けられて動力を伝達する1本の伝動ベルトとを有し、前
記一対の可変プーリのベルト掛り径が変化させられるこ
とにより、前記一次側回転軸と二次側回転軸との回転速
度比を無段階で変更する無段変速機構が従来から知られ
ている。
Conventional technology A transmission belt has a pair of variable pulleys provided on a primary rotation shaft and a secondary rotation shaft, respectively, and a transmission belt that is wound around the pair of variable pulleys to transmit power. Conventionally, a continuously variable transmission mechanism is known in which the rotational speed ratio between the primary rotation shaft and the secondary rotation shaft is changed steplessly by changing the belt hooking diameter of the variable pulley.

例えば、特開昭52−98861号公報、特開昭56−
86258号公報5或いは本願出願人が先に出願した特
願昭61−37571号等に記載されている無段変速機
構はその一例である。
For example, JP-A-52-98861, JP-A-56-
One example is the continuously variable transmission mechanism described in Japanese Patent Application No. 86258-5 or Japanese Patent Application No. 61-37571 previously filed by the applicant of the present application.

ところで、このような無段変速機構において、前記回転
速度比の可変範囲を大きくしようとすると、可変ブーり
の径寸法を拡大する必要があり、変速機が大型になると
いう不都合があった。このため、かかる無段変速機構を
複数直列に接続することにより、可変プーリの径寸法を
拡大することなく回転速度比の可変範囲を大きくしたベ
ルト式無段変速機が考えられている。例えば、特開昭6
0−184758号公報に記載されている変速機はその
一例であり、+al一次側回転軸に設けられた一次側可
変プーリと、(b)二次側回転軸に設けられた二次側可
変プーリと、(Clベルト掛り径が相反して増減させら
れるように可動回転体が互いに連結されて連動させられ
る、■または2以上の中間軸に一対ずつ設けられた中間
可変プーリと、(d)それ等の可変プーリ間に巻き掛け
られて動力を伝達する複数の伝動ベルトとを備えて、前
記一次側回転軸と前記二次側回転軸との間の動力伝達が
前記中間軸を介して行われるように直列に接続された、
一対の可変プーリおよびそれ等に巻き掛けられた1本の
伝動ベルトから成る複数の無段変速機構が構成され、そ
の複数の無段変速機構の変速状態を変化させることによ
り前記一次側回転軸と前記二次側回転軸との回転速度比
を無段階で変更するのである。
By the way, in such a continuously variable transmission mechanism, if the variable range of the rotational speed ratio is to be increased, the diameter of the variable boob must be increased, resulting in an inconvenience that the transmission becomes large. For this reason, a belt-type continuously variable transmission is being considered in which a plurality of such continuously variable transmission mechanisms are connected in series to increase the variable range of the rotational speed ratio without increasing the diameter of the variable pulley. For example, JP-A-6
The transmission described in Publication No. 0-184758 is one example, and includes a primary variable pulley provided on the +al primary rotating shaft, and (b) a secondary variable pulley provided on the secondary rotating shaft. and (d) intermediate variable pulleys provided in pairs on each of two or more intermediate shafts, in which the movable rotating bodies are connected and interlocked with each other so that the diameter of the Cl belt is increased or decreased in opposition to each other. A plurality of power transmission belts are wound between variable pulleys such as the above to transmit power, and power transmission between the primary rotation shaft and the secondary rotation shaft is performed via the intermediate shaft. connected in series as,
A plurality of continuously variable transmission mechanisms are constituted by a pair of variable pulleys and a transmission belt wound around them, and by changing the speed change state of the plurality of continuously variable transmission mechanisms, the primary rotation shaft and The rotational speed ratio with the secondary rotating shaft is changed steplessly.

発明が解決しようとする問題点 しかしながら、かかる従来のベルト式無段変速機は、中
間軸に設けられた中間可変プーリの可動回転体を駆動し
て無段変速機構の変速状態を変化させるようになってい
るため、回転速度比と伝動ベルトのベルト張力とを同時
に制御することができず、過大なベルト張力に起因して
動力損失を生じる等の問題があった。
Problems to be Solved by the Invention However, such conventional belt-type continuously variable transmissions do not change the speed change state of the continuously variable transmission mechanism by driving a movable rotating body of an intermediate variable pulley provided on an intermediate shaft. Therefore, the rotational speed ratio and the belt tension of the power transmission belt cannot be controlled at the same time, resulting in problems such as power loss due to excessive belt tension.

問題点を解決するための手段 本発明は以上の事情を背景として為されたものであり、
その目的とするところは、複数の無段変速機構が直列に
接続されたベルト式無段変速機において、その回転速度
比とベルト張力とを同時に制御し得るようにすることで
ある。
Means for Solving the Problems The present invention has been made against the background of the above circumstances.
The purpose is to simultaneously control the rotational speed ratio and belt tension in a belt-type continuously variable transmission in which a plurality of continuously variable transmission mechanisms are connected in series.

そして、かかる目的を達成するため、本発明は、前記(
a)一次側可変プーリと、(b)二次側可変プーリと、
(C)中間可変ブーりと、(d)伝動ベルトとを備えて
、一次側回転軸と二次側回転軸との間の動力伝達が中間
軸を介して行われるように直列に接続された、一対の可
変プーリおよびそれ等に巻き掛けられた1本の伝動ベル
トから成る複数の無段変速機構が構成され、その複数の
無段変速機構の変速状態を変化させることにより前記一
次側回転軸と前記二次側回転軸との回転速度比を無段階
で変更するベルト式無段変速機であって、(el前記一
次側可変プーリに前記伝動ベルトを挟圧させるための推
力を付与する一次側油圧シンリダと、(f)前記二次側
可変ブーりに前記伝動ベルトを挟圧させるための推力を
付与する二次側油圧シリンダと、(glそれ等一次側油
圧シンリダおよび二次側油圧シリンダによる前記推力の
大きさをそれぞれ制御して前記無段変速機構の変速状態
を変化させる制御手段とを有し、且つ、前記中間可変プ
ーリの可動回転体は、前記一次側可変プーリによって挟
圧された前記伝動ベルトのベルト反力と、前記二次側可
変プーリによって挟圧された前記伝動ベルトのベルト反
力とが釣り合うように、前記中間軸の軸線方向へ自由に
移動させられるようになっていることを特徴とする。
In order to achieve this object, the present invention provides the above-mentioned (
a) a primary variable pulley; (b) a secondary variable pulley;
(C) An intermediate variable boob and (d) a transmission belt, which are connected in series so that power transmission between the primary rotation shaft and the secondary rotation shaft is performed via the intermediate shaft. , a plurality of continuously variable transmission mechanisms consisting of a pair of variable pulleys and a transmission belt wound around them are configured, and by changing the speed change state of the plurality of continuously variable transmission mechanisms, the primary rotation shaft A belt-type continuously variable transmission that steplessly changes the rotational speed ratio between the rotational speed of the primary side variable pulley and the secondary rotating shaft, (f) a secondary hydraulic cylinder that applies a thrust for compressing the transmission belt to the secondary variable boob; (gl) a primary hydraulic cylinder and a secondary hydraulic cylinder; control means for changing the speed change state of the continuously variable transmission mechanism by respectively controlling the magnitude of the thrust by the variable transmission mechanism, and the movable rotating body of the intermediate variable pulley is pinched by the primary variable pulley. The intermediate shaft can be freely moved in the axial direction of the intermediate shaft so that the belt reaction force of the transmission belt is balanced with the belt reaction force of the transmission belt compressed by the secondary variable pulley. It is characterized by the presence of

作用および発明の効果 このようなベルト式無段変速機においては、一次側油圧
シリンダおよび二次側油圧シリンダによって一次側可変
プーリおよび二次側可変ブーりに付与される推力の大き
さが、制御手段によってそれぞれ制御されることにより
、中間可変プーリの可動回転体はそれ等一次側可変プー
リおよび二次側可変プーリによって挟圧された伝動ベル
トのベルト反力が釣り合うように中間軸の軸線方向へ移
動させられる。これにより、それ等の可変プーリのベル
ト掛り径が増減して複数の無段変速機構の変速状態がそ
れぞれ変化させられ、一次側回転輪と二次側回転軸との
回転速度比が無段階で変更される。
Function and Effects of the Invention In such a belt type continuously variable transmission, the magnitude of the thrust applied to the primary variable pulley and the secondary variable boolean by the primary hydraulic cylinder and the secondary hydraulic cylinder is controlled. By being controlled by the respective means, the movable rotating body of the intermediate variable pulley is moved in the axial direction of the intermediate shaft so that the belt reaction force of the transmission belt pinched by the primary variable pulley and the secondary variable pulley is balanced. be moved. As a result, the belt hooking diameters of these variable pulleys are increased or decreased, and the speed change states of the plurality of continuously variable transmission mechanisms are changed, and the rotational speed ratio between the primary rotating wheel and the secondary rotating shaft is adjusted steplessly. Be changed.

ここで、本発明のベルト式無段変速機には、一次側可変
プーリに推力を付与する一次側油圧シリンダ、および二
次側可変プーリに推力を付与する二次側油圧シリンダが
設けられ、それ等の推力が制御手段によってそれぞれ制
御されるようになっているため、回転速度比とベルト張
力とを同時に制御することができる。したが゛って、所
定の回転速度比を実現しつつ、伝動ベルトのベルト張力
が滑りを生じることなく且つ動力損失を生じない必要か
つ充分な大きさとなるように調節することが可能となる
のである。
Here, the belt type continuously variable transmission of the present invention is provided with a primary hydraulic cylinder that applies thrust to the primary variable pulley, and a secondary hydraulic cylinder that applies thrust to the secondary variable pulley. Since the thrust forces, etc., are respectively controlled by the control means, the rotational speed ratio and the belt tension can be controlled simultaneously. Therefore, while achieving a predetermined rotational speed ratio, it is possible to adjust the belt tension of the power transmission belt to a necessary and sufficient level without causing slippage or power loss. be.

なお、前記無段変速機構は、理論的にはその数が多い程
可変プーリの径寸法を小さく維持しつつ回転速度比の可
変範囲を大きくすることができるが、例えば車両用のベ
ルト式無段変速機のように小型かつコンパクトに構成す
る要請が強い場合には、1本の中間軸を用いて2つの無
段変速機構を直列に接続するだけでも差支えない。その
場合には、更に、前記一次側回転軸および二次側回転軸
を同一の軸線上に配設することが望ましい。
Theoretically, the larger the number of continuously variable transmission mechanisms, the larger the variable range of the rotation speed ratio while keeping the diameter of the variable pulley small. When there is a strong demand for a small and compact structure such as a transmission, it is sufficient to simply connect two continuously variable transmission mechanisms in series using one intermediate shaft. In that case, it is further desirable that the primary rotation shaft and the secondary rotation shaft be arranged on the same axis.

また、複数の無段変速機構は、回転速度比の可変範囲を
効率的に大きくする上で、それぞれ同じ変速状態、すな
わち何れか一つの無段変速機構が設計的に定められた最
増速変速状態または最減速変速状態とされたときには、
他の無段変速機構も最増速変速状態または最減速変速状
態となるように構成することが望ましい。
In addition, in order to efficiently widen the variable range of the rotation speed ratio, multiple continuously variable transmission mechanisms each have the same speed change state, that is, any one of the continuously variable transmission mechanisms is set to the maximum speed increase that is determined by design. state or the lowest speed change state,
It is desirable that the other continuously variable transmission mechanisms be configured to be in the maximum speed increasing speed change state or the lowest speed changing state.

実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図において、10は車両用のベルト式無段変速機で
あり、エンジン12の駆動力はクラッチ14を介して一
次側回転輪16へ伝達される。無段変速機10は2つの
無段変速機構18および20を直列に備えており、無段
変速機構18は、一次側回転輪16に設けられた一次側
可変プーリ22と、中間軸24に設けられた中間可変プ
ーリ26と、それ等一次側可変プーリ22および中間可
変プーリ26に巻き掛けられて動力を伝達する伝動ベル
ト28とから構成されている。また、無段変速機構20
は、中間軸24に設けられた中間可変プーリ30と、二
次側回転軸32に設けられた二次側可変プーリ34と、
それ等中間可変プーリ30および二次側可変ブーIJ3
4に巻き掛けられて動力を伝達する伝動ベルト36とか
ら構成されている。上記一次側回転輪16および二次側
回転軸32は、同一の軸線上においてそれぞれ軸線まわ
りの回転可能に配設されており、中間軸24はそれ等の
回転軸16および32と平行な軸線まわりの回転可能に
配設されている。なお、二次側回転軸32からの出力は
、図示しない動力伝達機構を経て車両の駆動輪へ伝達さ
れる。
In FIG. 1, reference numeral 10 denotes a belt-type continuously variable transmission for a vehicle, and the driving force of an engine 12 is transmitted to a primary rotating wheel 16 via a clutch 14. The continuously variable transmission 10 includes two continuously variable transmission mechanisms 18 and 20 in series. The transmission belt 28 is constructed of an intermediate variable pulley 26, which is attached to the primary variable pulley 22, and a transmission belt 28 that is wound around the primary variable pulley 22 and the intermediate variable pulley 26 to transmit power. In addition, the continuously variable transmission mechanism 20
An intermediate variable pulley 30 provided on the intermediate shaft 24, a secondary variable pulley 34 provided on the secondary rotating shaft 32,
The intermediate variable pulley 30 and the secondary variable boob IJ3
4 and a power transmission belt 36 that is wrapped around the power transmission belt 4 and transmits power. The primary rotating wheel 16 and the secondary rotating shaft 32 are arranged to be rotatable about the respective axes on the same axis, and the intermediate shaft 24 is arranged about an axis parallel to the rotating axes 16 and 32. It is arranged so that it can rotate. Note that the output from the secondary rotating shaft 32 is transmitted to the drive wheels of the vehicle via a power transmission mechanism (not shown).

一次側可変プーリ22および二次側可変プーリ34は、
一次側回転軸16および二次側回転軸32にそれぞれ固
定された固定回転体38および40と、一次側回転軸1
6および二次側回転軸32にそれぞれ相対回転不能かつ
軸線方向の移動可能に設けられ、上記固定回転体38お
よび40との間に■溝を形成する可動回転体42および
44とから成る。可動回転体42および44には、伝動
ベルト28および36を固定回転体38および40との
間で挟圧するための推力がそれぞれ一次側油圧シリンダ
46および二次側油圧シリンダ48によって付与される
ようになっており、その推力の大きさが変更されて可動
回転体42および44が固定回転体38および40に対
して接近離間させられることにより、伝動ベルト28お
よび36のベルト掛り径が変化させられる。なお、一次
側油圧シリンダ46の受圧面積は二次側油圧シリンダ4
8の受圧面積よりも大きい。
The primary variable pulley 22 and the secondary variable pulley 34 are
Fixed rotating bodies 38 and 40 fixed to the primary rotating shaft 16 and the secondary rotating shaft 32, respectively, and the primary rotating shaft 1
6 and the secondary rotating shaft 32, respectively, so as to be non-rotatably but movable in the axial direction, and to form a groove with the fixed rotating bodies 38 and 40. A primary hydraulic cylinder 46 and a secondary hydraulic cylinder 48 apply thrust to the movable rotating bodies 42 and 44 to pinch the transmission belts 28 and 36 between the fixed rotating bodies 38 and 40, respectively. By changing the magnitude of the thrust and moving the movable rotating bodies 42 and 44 toward and away from the fixed rotating bodies 38 and 40, the belt-covering diameters of the transmission belts 28 and 36 are changed. Note that the pressure receiving area of the primary hydraulic cylinder 46 is the same as that of the secondary hydraulic cylinder 4.
It is larger than the pressure receiving area of 8.

また、前記中間可変プーリ26および30は、相対向す
る状態で前記中間軸24に固定された固定回転体50お
よび52と、それ等固定回転体50と52との間に設け
られて固定回転体50および52との間に■溝を形成す
る可動回転体54および56とから成る。可動回転体5
4および56は、中間軸24に相対回転不能かつ軸線方
向の移動可能に配設されたスライドメンバ58の両端に
設けられ、一体重に連動させられるようになっており、
これにより、中間可変プーリ26および30のベルト掛
り径は相反して増減させられる。
Further, the intermediate variable pulleys 26 and 30 are fixed rotating bodies 50 and 52 fixed to the intermediate shaft 24 in a state of facing each other, and fixed rotating bodies 50 and 52 provided between the fixed rotating bodies 50 and 52. 50 and 52, and movable rotating bodies 54 and 56 forming grooves between them. Movable rotating body 5
4 and 56 are provided at both ends of a slide member 58 that is disposed on the intermediate shaft 24 so as to be non-rotatable but movable in the axial direction, and are configured to be interlocked with a single weight.
As a result, the belt hooking diameters of the intermediate variable pulleys 26 and 30 are increased and decreased contrary to each other.

ここで、上記可動回転体54には前記一次側可変プーリ
22によって挟圧される伝動ベルト28のベルト反力が
作用させられる一方、可動回転体56には二次側可変プ
ーリ34によって挟圧される伝動ベルト36のベルト反
力が作用させられるため、スライドメンバ58はそれ等
のベルト反力が釣り合う位置へ移動させられるが、この
スライドメンバ58の移動ストロークは、一次側可変プ
ーリ22.二次側可変プーリ34のベルト掛り径が設計
上の最大または最小となった場合でも、スライドメンバ
58がその移動端に達することがないように設定されて
いる。換言すれば、一次側可変プーリ22.二次側可変
プーリ34のベルト掛り径が最大または最小となった場
合でも、伝動ベルト28および36はそれぞれ他方の伝
動ベルト36または28のベルト反力に基づいて固定回
転体50および52との間で挟圧されるようになってい
るのである。
Here, the belt reaction force of the transmission belt 28 which is pinched by the primary variable pulley 22 is applied to the movable rotating body 54, while the movable rotating body 56 is pinched by the secondary variable pulley 34. Since the belt reaction force of the transmission belt 36 is applied, the slide member 58 is moved to a position where the belt reaction forces are balanced, but the movement stroke of the slide member 58 is the same as that of the primary variable pulley 22. Even when the belt hooking diameter of the secondary variable pulley 34 reaches a design maximum or minimum, the slide member 58 is set so as not to reach its end of movement. In other words, the primary variable pulley 22. Even when the belt hooking diameter of the secondary variable pulley 34 is the maximum or minimum, the transmission belts 28 and 36 are connected to the fixed rotating bodies 50 and 52 based on the belt reaction force of the other transmission belt 36 or 28, respectively. It is designed to be compressed by the

また、中間可変プーリ26および30のベルト掛り径が
相反して増減させられるところから、無段変速機構18
の回転速度比e+  (中間軸24の回転速度NM /
一次側回転軸16の回転速度N+w)、および無段変速
機構20の回転速度比ex  (二次側回転軸32の回
転速度N。IJT /中間軸24の回転速度N14)は
共に同じ変速方向へ変化させられるが、一方の無段変速
機構18または20が設計上の最増速変速状態または最
減速変速状態となったとき、他方の無段変速機構20ま
たは18も最増速変速状態または最減速変速状態となる
ように構成されている。すなわち、一次側可変プーリ2
2のベルト掛り径が最大となったときには二次側可変プ
ーリ34のベルト掛り径は最小になり、一次側可変プー
リ22のベルト掛り径が最小となったときには二次側可
変プーリ34のベルト掛り径は最大になるようになって
いるのである。これにより、無段変速機10の回転速度
比et  (二次側回転軸32の回転速度N。IJT 
/一次側回転輪16の回転速度NIN” el  ’ 
e 1 )の可変範囲は、各々の無段変速機構18およ
び20の可変範囲の積で表されることとなり、無段変速
機構18と20とを直列に接続した場合に得られる最大
の可変範囲となる。
In addition, since the belt hooking diameters of the intermediate variable pulleys 26 and 30 are increased and decreased contradictoryly, the continuously variable transmission mechanism 18
Rotational speed ratio e+ (rotational speed NM of intermediate shaft 24 /
The rotation speed N+w of the primary rotation shaft 16) and the rotation speed ratio ex of the continuously variable transmission mechanism 20 (rotation speed N of the secondary rotation shaft 32. IJT/rotation speed N14 of the intermediate shaft 24) are both in the same shifting direction. However, when one of the continuously variable transmission mechanisms 18 or 20 reaches the designed maximum speed increase or minimum speed change state, the other continuously variable transmission mechanism 20 or 18 also changes to the maximum speed increase or maximum speed change state. It is configured to be in a deceleration speed change state. In other words, the primary variable pulley 2
When the belt hooking diameter of the secondary variable pulley 22 becomes the maximum, the belt hooking diameter of the secondary variable pulley 34 becomes the minimum, and when the belt hooking diameter of the primary variable pulley 22 becomes the minimum, the belt hooking diameter of the secondary variable pulley 34 becomes the minimum. The diameter is set to be maximum. As a result, the rotational speed ratio et of the continuously variable transmission 10 (the rotational speed N of the secondary rotating shaft 32.IJT
/Rotational speed of primary side rotating wheel 16 NIN" el '
The variable range of e1) is expressed as the product of the variable ranges of each of the continuously variable transmission mechanisms 18 and 20, and is the maximum variable range obtained when the continuously variable transmission mechanisms 18 and 20 are connected in series. becomes.

一方、ポンプ60によりオイルタンク62から汲み上げ
られた作動油は、圧力制御弁64によってライン油圧に
調圧され、二次側油圧シリンダ48に供給されるととも
に、方向流量制御弁66を介して一次側油圧シリンダ4
6に供給される。圧力制御弁64および方向流量制御弁
66は、それ等の作動を制御する制御機構と共に制御手
段を成すものであり、圧力制御弁64は、伝動ベルト2
8.36に滑りが生じることなく且つ動力損失を生じる
ことがない必要かつ充分なベルト張力を与えるために必
要な推力が二次側可変プーリ34に付与されるように、
伝達トルク等を考慮してライン油圧を調圧する。また、
方向流量制御弁66は、回転速度比eアを大きくする増
速変速時にはライン油圧を一次側油圧シリンダ46に供
給する一方、回転速度比eアを小さくする減速変速時に
は一次側油圧シリンダ46内の作動油をオイルタンク6
2ヘトレインさせることにより、車両の運転状態に応じ
て最適な回転速度比e、が得られるように一次側油圧シ
リンダ46によって一次側可変プーリ22に付与される
推力を制御するとともに、作動油の流量を調節して回転
速度比e?の変化速度を制御する。一次側油圧シリンダ
46の受圧面積は二次側油圧シリンダ48の受圧面積よ
りも大きいため、一次側油圧シリンダ46にライン油圧
が供給されることにより、無段変速機10は回転速度比
eTが大きくなる増速変速側へ変化させられる。
On the other hand, the hydraulic oil pumped up from the oil tank 62 by the pump 60 is regulated to line oil pressure by the pressure control valve 64, and is supplied to the secondary side hydraulic cylinder 48, and is also supplied to the primary side via the directional flow rate control valve 66. hydraulic cylinder 4
6. The pressure control valve 64 and the directional flow rate control valve 66 constitute a control means together with a control mechanism that controls their operation.
8.36 so that the necessary thrust is applied to the secondary variable pulley 34 to provide the necessary and sufficient belt tension without causing slippage or power loss.
Adjust the line oil pressure taking into consideration transmission torque, etc. Also,
The directional flow rate control valve 66 supplies line hydraulic pressure to the primary side hydraulic cylinder 46 during an increasing speed change to increase the rotational speed ratio eA, and supplies line oil pressure within the primary side hydraulic cylinder 46 during a deceleration change to reduce the rotation speed ratio eA. Hydraulic oil to oil tank 6
2, the thrust applied to the primary variable pulley 22 by the primary hydraulic cylinder 46 is controlled so that the optimum rotational speed ratio e can be obtained depending on the operating condition of the vehicle, and the flow rate of the hydraulic oil is controlled. Adjust the rotation speed ratio e? control the rate of change. Since the pressure receiving area of the primary hydraulic cylinder 46 is larger than the pressure receiving area of the secondary hydraulic cylinder 48, the continuously variable transmission 10 has a large rotational speed ratio eT by supplying the line hydraulic pressure to the primary hydraulic cylinder 46. The speed is changed to the speed increasing side.

そして、以上のように構成されたベルト式無段変速機l
Oにおいて、前記中間可変プーリ26の可動回転体54
に作用する伝動ベルト28のベルト反力は、一次側油圧
シリンダ46によって一次側可変プーリ22に付与され
る推力と、その時の無段変速機構18の回転速度比e1
とによって決定される一方、中間可変プーリ30の可動
回転体56に作用する伝動ベルト36のベルト反力は、
二次側油圧シリンダ48によって二次側可変プーリ34
に付与される推力と、その時の無段変速機構20の回転
速度比e!とによって決定され、それ等の反力が等しく
なる位置までスライドメンバ58が移動して静止させら
れることにより、所定の回転速度比eアが得られる。し
たがって、車両の運転状態に応じて両袖圧シリンダ46
.48の油圧がそれぞれ制御されることにより、その運
転状態における最適な回転速度比eTが実現されるので
ある。
And the belt type continuously variable transmission configured as above
At O, the movable rotating body 54 of the intermediate variable pulley 26
The belt reaction force of the transmission belt 28 acting on the transmission belt 28 is determined by the thrust applied to the primary variable pulley 22 by the primary hydraulic cylinder 46 and the rotational speed ratio e1 of the continuously variable transmission mechanism 18 at that time.
On the other hand, the belt reaction force of the transmission belt 36 acting on the movable rotating body 56 of the intermediate variable pulley 30 is determined by:
The secondary side variable pulley 34 is controlled by the secondary side hydraulic cylinder 48.
The thrust force applied to and the rotational speed ratio e of the continuously variable transmission mechanism 20 at that time. By moving the slide member 58 to a position where these reaction forces are equal and stopping it, a predetermined rotational speed ratio ea is obtained. Therefore, depending on the driving condition of the vehicle, both sleeve pressure cylinders 46
.. By controlling each of the 48 oil pressures, the optimum rotational speed ratio eT for that operating state is achieved.

また、方向流量制御弁66によって一次側油圧シリンダ
46の油圧が下降させられると、一次側可変プーリ22
の推力が減少して伝動ベルト28のベルト反力が小さく
なり、スライドメンバ58は第1図において左方向へ移
動させられる。このため、無段変速機構18.20の回
転速度比el+82は共に減少させられ、それ等の積に
よって表される無段変速機10の回転速度比e7も減少
する。第2図は回転速度比e7が最も小さくなった最減
速変速状態を示す図であり、この時、無段変速機構18
.20は共に最減速変速状態となっている。
Furthermore, when the hydraulic pressure of the primary hydraulic cylinder 46 is lowered by the directional flow rate control valve 66, the primary variable pulley 22
The thrust force of the transmission belt 28 decreases, and the belt reaction force of the transmission belt 28 decreases, and the slide member 58 is moved to the left in FIG. Therefore, the rotational speed ratio el+82 of the continuously variable transmission mechanism 18 and 20 are both decreased, and the rotational speed ratio e7 of the continuously variable transmission 10, which is represented by the product thereof, is also decreased. FIG. 2 is a diagram showing the lowest speed reduction state where the rotational speed ratio e7 is the smallest, and at this time, the continuously variable transmission mechanism 18
.. 20 are both in the lowest speed change state.

一方、方向流量制御弁66によって一次側油圧シリンダ
46の油圧が上昇させられると、一次側可変プーリ22
の推力が増加して伝動ベルト28のベルト反力が大きく
なり、スライドメンバ58は第1図において右方向へ移
動させられる。このため、無段変速機構18.20の回
転速度比eInetは共に増加させられ、それ等の積に
よって表される無段変速機10の回転速度比eTも増加
する。第3図は回転速度比eTが最も大きくなった最増
速変速状態を示す図であり、この時、無段変速機構18
.20は共に最増速変速状態となっている。
On the other hand, when the hydraulic pressure of the primary side hydraulic cylinder 46 is increased by the directional flow rate control valve 66, the primary side variable pulley 22
As the thrust force increases, the belt reaction force of the transmission belt 28 increases, and the slide member 58 is moved to the right in FIG. Therefore, the rotational speed ratios eInet of the continuously variable transmission mechanisms 18 and 20 are both increased, and the rotational speed ratio eT of the continuously variable transmission 10, which is represented by their product, also increases. FIG. 3 is a diagram showing the maximum speed increase state where the rotational speed ratio eT is the largest, and at this time, the continuously variable transmission mechanism 18
.. 20 are both in the maximum speed increasing state.

ここで、本実施例のベルト式無段変速機10は、2つの
無段変速機構18.20を直列に備えているため、特開
昭52−98861号公報等に記載されている1つの無
段変速機構から成るベルト式無段変速機に比較して、可
変プーリの径寸法を小さく維持しつつ回転速度比e?の
可変範囲が大幅に拡大される。
Here, since the belt type continuously variable transmission 10 of this embodiment is equipped with two continuously variable transmission mechanisms 18 and 20 in series, one Compared to a belt-type continuously variable transmission consisting of a step change mechanism, the rotation speed ratio e? is maintained while keeping the variable pulley diameter small. The variable range of is greatly expanded.

また、このベルト式無段変速機10には一対の油圧シリ
ンダ46.48が設けられ、それ等に供給される油圧が
圧力制御弁64および方向流量制御弁66によってそれ
ぞれ制御されるようになっているため、怜開昭60−1
84758号公報に記載されているように中間可変プー
リの可動回転体を駆動して回転速度比を変化させる無段
変速機に比較して、単に回転速度比e?を無段階で変更
し得るのみならず、伝動ベルト28.36のベルト張力
が必要かつ充分な大きさとなるように制御され、それ等
の伝動ベルト28.36の滑りを防止しつつ、過大なベ
ルト張力による動力損失が低減されるのである。
The belt-type continuously variable transmission 10 is also provided with a pair of hydraulic cylinders 46 and 48, and the hydraulic pressure supplied to these cylinders is controlled by a pressure control valve 64 and a directional flow rate control valve 66, respectively. Because of this, Reikai 60-1
Compared to the continuously variable transmission which changes the rotational speed ratio by driving a movable rotating body of an intermediate variable pulley as described in Japanese Patent No. 84758, the rotational speed ratio e? Not only can the belt tension of the transmission belt 28.36 be changed steplessly, but also the belt tension of the transmission belt 28.36 can be controlled to a necessary and sufficient magnitude, and while preventing the transmission belt 28.36 from slipping, it can also prevent excessive belt tension. Power loss due to tension is reduced.

また、本実施例では、一次側回転軸16および二次側回
転軸32が同一の軸線上に配設され、1本の中間軸24
との間に設けられた2つの無段変速機構18.20によ
って接続されているため、ベルト式無段変速機10が小
型かつコンパクトに構成され、車両に搭載する上で極め
て好都合なのである。
Further, in this embodiment, the primary rotation shaft 16 and the secondary rotation shaft 32 are arranged on the same axis, and one intermediate shaft 24
Since the belt-type continuously variable transmission 10 is small and compact, it is extremely convenient to be mounted on a vehicle.

また、2つの無段変速機構18.20は、互いに同じ変
速状態となるように構成されているため、回転速度比e
7の可変範囲が効率的に拡大される利点がある。
Furthermore, since the two continuously variable transmission mechanisms 18 and 20 are configured to be in the same speed change state, the rotational speed ratio e
There is an advantage that the variable range of 7 is efficiently expanded.

次に、本発明の他の実施例を説明する。なお、以下の実
施例において前記実施例と共通する部分には同一の符号
を付して説明を省略する。
Next, another embodiment of the present invention will be described. In the following embodiments, parts common to those in the above embodiments are designated by the same reference numerals, and explanations thereof will be omitted.

第4図に示されているベルト式無段変速機68は、前記
ベルト式無段変速機10に比較して中間可変プーリ70
および72の構成が異なるのみであり、それ等の中間可
変プーリ70および72は、中間軸74の両端に固設さ
れた固定回転体76および78と、その中間軸74の軸
心を相対回転不能かつ軸方向の移動可能に挿通させられ
たシャフト80の両端に固設され、固定回転体76およ
び78との間に■溝を形成する可動回転体82および8
4とから構成されている。かかるベルト式無段変速機6
8においても、可動回転体82および84が一体的に移
動させられることにより、前記ベルト式無段変速機10
と全く同様な作用効果が得られる。
The belt type continuously variable transmission 68 shown in FIG.
The intermediate variable pulleys 70 and 72 differ only in the configuration of the intermediate variable pulleys 70 and 72, and the fixed rotary bodies 76 and 78 fixedly attached to both ends of the intermediate shaft 74 cannot rotate relative to the axis of the intermediate shaft 74. Movable rotating bodies 82 and 8 are fixed to both ends of a shaft 80 that is inserted through the shaft 80 so as to be movable in the axial direction, and form grooves between them and the fixed rotating bodies 76 and 78.
It is composed of 4. Such a belt type continuously variable transmission 6
8, the movable rotating bodies 82 and 84 are moved integrally, so that the belt type continuously variable transmission 10
Exactly the same effect can be obtained.

以上、本発明の実施例を図面に基づいて詳細に説明した
が、本発明は他の態様で実施することもできる。
Although the embodiments of the present invention have been described above in detail based on the drawings, the present invention can also be implemented in other embodiments.

例えば、前記実施例のベルト式無段変速機10゜68は
何れも2つの無段変速機構18.20を直列に接続した
ものであるが、3つ以上の無段変速機構を直列に接続す
ることも可能である。なお、無段変速機構18.20の
諸元、すなわちベルト挟角や軸間距離1回転速度比’3
++e12の可変範囲等は必ずしも同一である必要はな
い。
For example, the belt-type continuously variable transmission 10°68 of the above embodiments has two continuously variable transmission mechanisms 18 and 20 connected in series, but three or more continuously variable transmission mechanisms are connected in series. It is also possible. In addition, the specifications of the continuously variable transmission mechanism 18.20, namely the belt included angle and the center distance 1 rotation speed ratio '3
The variable range etc. of ++e12 do not necessarily have to be the same.

また、前記実施例では車両用のベルト式無段変速機10
.68について説明したが、工作機械等に用いられる他
のベルト式無段変速機にも本発明は同様に適用され得る
Further, in the above embodiment, the belt type continuously variable transmission 10 for a vehicle
.. 68, the present invention can be similarly applied to other belt-type continuously variable transmissions used in machine tools and the like.

また、前記実施例では圧力制御弁64および方向流量制
御弁66によって油圧シリンダ46.48の油圧が制御
されるようになっているが、例えば特開昭56−862
58号公報、特願昭61−37571号等に記載されて
いるような四方向流量制御弁を用いた油圧回路、油圧制
御方法等を採用することも可能である。
Further, in the above embodiment, the hydraulic pressure of the hydraulic cylinders 46 and 48 is controlled by the pressure control valve 64 and the directional flow rate control valve 66.
It is also possible to employ a hydraulic circuit, a hydraulic control method, etc. using a four-way flow control valve as described in Japanese Patent Application No. 58, Japanese Patent Application No. 61-37571, and the like.

また、前記実施例では一次側油圧シリンダ46の受圧面
積が二次側油圧シリンダ48の受圧面積よりも大きくさ
れているが、油圧回路によっては同等の受圧面積を有す
る油圧シリンダを用いることもできる。
Further, in the above embodiment, the pressure receiving area of the primary side hydraulic cylinder 46 is made larger than the pressure receiving area of the secondary side hydraulic cylinder 48, but depending on the hydraulic circuit, a hydraulic cylinder having an equivalent pressure receiving area may be used.

その他−々例示はしないが、本発明はその精神を逸脱す
ることなく当業者の知識に基づいて種々の変更、改良を
加えた態様で実施することができる。
Although other examples are not given, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるベルト式無段変速機の
構成図である。第2図は第1図のベルト式無段変速機の
最減速変速状態を示す図である。 第3図は第1図のベルト式無段変速機の最増速変速状態
を示す図である。第4図は本発明の他の実施例を説明す
る構成図である。 10.68:ベルト式無段変速機 16二一次側回転軸 18.20:無段変速機構 22ニ一次側可変プーリ 24.14:中間軸26.3
0,70,72:中間可変プーリ28.36:伝動ベル
ト 32:二次側回転軸46二一次側油圧シリンダ 48:二次側油圧シリンダ
FIG. 1 is a block diagram of a belt type continuously variable transmission which is an embodiment of the present invention. FIG. 2 is a diagram showing the maximum deceleration speed change state of the belt type continuously variable transmission shown in FIG. FIG. 3 is a diagram showing the maximum speed increasing speed change state of the belt type continuously variable transmission shown in FIG. FIG. 4 is a block diagram illustrating another embodiment of the present invention. 10.68: Belt type continuously variable transmission 16 2 Primary side rotating shaft 18.20: Continuously variable transmission mechanism 22 2 Primary side variable pulley 24.14: Intermediate shaft 26.3
0, 70, 72: Intermediate variable pulley 28. 36: Transmission belt 32: Secondary rotation shaft 46 2 Primary hydraulic cylinder 48: Secondary hydraulic cylinder

Claims (3)

【特許請求の範囲】[Claims] (1)一次側回転軸に設けられた一次側可変プーリと、
二次側回転軸に設けられた二次側可変プーリと、ベルト
掛り径が相反して増減させられるように可動回転体が互
いに連結されて連動させられる、1または2以上の中間
軸に一対ずつ設けられた中間可変プーリと、それ等の可
変プーリ間に巻き掛けられて動力を伝達する複数の伝動
ベルトとを備えて、前記一次側回転軸と前記二次側回転
軸との間の動力伝達が前記中間軸を介して行われるよう
に直列に接続された、一対の可変プーリおよびそれ等に
巻き掛けられた1本の伝動ベルトから成る複数の無段変
速機構が構成され、該複数の無段変速機構の変速状態を
変化させることにより前記一次側回転軸と前記二次側回
転軸との回転速度比を無段階で変更するベルト式無段変
速機であって、 前記一次側可変プーリに前記伝動ベルトを挟圧させるた
めの推力を付与する一次側油圧シンリダと、 前記二次側可変プーリに前記伝動ベルトを挟圧させるた
めの推力を付与する二次側油圧シリンダと、 それ等一次側油圧シンリダおよび二次側油圧シリンダに
よる前記推力の大きさをそれぞれ制御して前記無段変速
機構の変速状態を変化させる制御手段と を有し、且つ、前記中間可変プーリの可動回転体は、前
記一次側可変プーリによって挟圧された前記伝動ベルト
のベルト反力と、前記二次側可変プーリによって挟圧さ
れた前記伝動ベルトのベルト反力とが釣り合うように、
前記中間軸の軸線方向へ自由に移動させられるようにな
っていることを特徴とするベルト式無段変速機。
(1) A primary variable pulley provided on the primary rotating shaft,
A secondary variable pulley provided on the secondary rotating shaft and a movable rotary body are connected and interlocked with each other so that the belt hanging diameter is increased or decreased in opposition to each other, one pair each on one or more intermediate shafts. power transmission between the primary rotating shaft and the secondary rotating shaft, comprising an intermediate variable pulley provided and a plurality of transmission belts that are wound between the variable pulleys to transmit power; A plurality of continuously variable transmission mechanisms are constituted by a pair of variable pulleys connected in series so that the A belt-type continuously variable transmission that steplessly changes the rotational speed ratio of the primary rotating shaft and the secondary rotating shaft by changing the speed change state of a step-change transmission mechanism, wherein the primary variable pulley is a primary side hydraulic cylinder that applies a thrust to pinch the transmission belt to the secondary variable pulley; a secondary hydraulic cylinder that applies a thrust to the secondary variable pulley to squeeze the transmission belt; a control means for changing the speed change state of the continuously variable transmission mechanism by respectively controlling the magnitude of the thrust by the hydraulic cylinder cylinder and the secondary side hydraulic cylinder, and the movable rotary body of the intermediate variable pulley is configured to so that the belt reaction force of the transmission belt pinched by the primary variable pulley and the belt reaction force of the transmission belt pinched by the secondary variable pulley are balanced;
A belt-type continuously variable transmission characterized in that the intermediate shaft can be freely moved in the axial direction.
(2)前記一次側回転軸および前記二次側回転軸は、同
一の軸線上に配設され、且つ、該軸線と平行に配設され
た1本の中間軸との間に設けられた2つの無段変速機構
によって接続されているものである特許請求の範囲第1
項に記載のベルト式無段変速機。
(2) The primary rotation shaft and the secondary rotation shaft are arranged on the same axis, and two intermediate shafts are provided between the two intermediate shafts arranged parallel to the axis. Claim 1, which is connected by two continuously variable transmission mechanisms.
The belt-type continuously variable transmission described in .
(3)前記複数の無段変速機構は、それぞれ同じ変速状
態に変化させられるものである特許請求の範囲第1項ま
たは第2項に記載のベルト式無段変速機。
(3) The belt-type continuously variable transmission according to claim 1 or 2, wherein each of the plurality of continuously variable transmission mechanisms is configured to change to the same speed change state.
JP9401287A 1987-04-16 1987-04-16 Belt type continuously variable transmission Pending JPS63259261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9401287A JPS63259261A (en) 1987-04-16 1987-04-16 Belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9401287A JPS63259261A (en) 1987-04-16 1987-04-16 Belt type continuously variable transmission

Publications (1)

Publication Number Publication Date
JPS63259261A true JPS63259261A (en) 1988-10-26

Family

ID=14098561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9401287A Pending JPS63259261A (en) 1987-04-16 1987-04-16 Belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS63259261A (en)

Similar Documents

Publication Publication Date Title
KR0127146B1 (en) Hydraulic control circuit for continuously variable ratio transmission
RU2133895C1 (en) Stepless transmission at probable control of torque
US5099710A (en) Continuously variable transmission system having parallel drive paths with fluid control valve including pressure equalization
JP5058992B2 (en) Ratio limiter
US6447422B1 (en) Dual mode, geared neutral continuously variable transmission
JPH01279156A (en) Device for controlling hydraulic pressure of change gear
JP2001524194A (en) Multi-range belt type continuously variable transmission
EP1154173B1 (en) Speed change control apparatus for continuously variable transmission
US5813933A (en) Continuously variable transmission with bias springs on the drive and driven pulleys for setting a predetermined speed ratio when the cut is in neutral
US4596536A (en) Continuously variable belt transmission device with pulleys axially offset in the unity transmission ratio position
EP0210303B1 (en) Power transmission apparatus
JPH01224562A (en) Continuous variable transmission to which torque converter is installed
JPS63259261A (en) Belt type continuously variable transmission
JPH04321871A (en) Control method for infinite variable transmission
JP2000130548A (en) Vehicular belt type continuously variable transmission
JPH035712Y2 (en)
KR100460903B1 (en) Continuously variable transmission for vehicles
JP3446413B2 (en) Torque transmission force control device for infinitely variable transmission
US2932217A (en) Power transmission
JP6616643B2 (en) Continuously variable transmission
JPH034854Y2 (en)
JP2699331B2 (en) Hydraulic control device for belt-type continuously variable transmission for vehicles
JPS6334363A (en) Double-row type continuously variable transmission
JPH064451U (en) Balance chamber structure of hydraulic piston for continuously variable transmission
KR100313808B1 (en) Belt-type continuously variable transmission