JPH064451U - Balance chamber structure of hydraulic piston for continuously variable transmission - Google Patents
Balance chamber structure of hydraulic piston for continuously variable transmissionInfo
- Publication number
- JPH064451U JPH064451U JP4358192U JP4358192U JPH064451U JP H064451 U JPH064451 U JP H064451U JP 4358192 U JP4358192 U JP 4358192U JP 4358192 U JP4358192 U JP 4358192U JP H064451 U JPH064451 U JP H064451U
- Authority
- JP
- Japan
- Prior art keywords
- fixed
- hydraulic
- sheave
- chamber
- movable sheave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transmissions By Endless Flexible Members (AREA)
- Pulleys (AREA)
Abstract
(57)【要約】
【目的】 変速比の切り換え時の応答性を改善できる無
段変速機用油圧ピストンのバランス室構造を提供するこ
とに有る。
【構成】入力軸に固定された第1固定シーブ701及び
第1可動シーブ701からなるプライマリプーリ7と、
第1可動シーブ701を摺動させる第1油圧ピストン1
3と、出力軸9に固定された第2固定シーブ112及び
第2可動シーブ111からなるセカンダリプーリ10
と、第2可動シーブ111及び第2固定シーブ112と
対設された固定壁28により形成された油圧室25から
なる第2油圧ピストン14と、固定壁28及び可動壁3
0により形成されたバランス室27と、両プーリ7,1
0間に巻き掛けられた無端ベルトとを備え、特に、固定
壁28の外周側に油圧室25とバランス室27とを連通
する油連通部26を備え、同油連通部26は、バランス
室27側の小径部261と、油圧室25側の大径部26
2と、同大径部側262内に介装された球体Bとから成
ることを特徴とする。
(57) [Abstract] [Purpose] It is an object of the present invention to provide a balance chamber structure for a hydraulic piston for a continuously variable transmission, which can improve responsiveness at the time of switching a gear ratio. A primary pulley 7 comprising a first fixed sheave 701 and a first movable sheave 701 fixed to an input shaft,
First hydraulic piston 1 for sliding the first movable sheave 701
3, a secondary pulley 10 including a second fixed sheave 112 and a second movable sheave 111 fixed to the output shaft 9.
And the second hydraulic piston 14 including the hydraulic chamber 25 formed by the fixed wall 28 that is opposed to the second movable sheave 111 and the second fixed sheave 112, and the fixed wall 28 and the movable wall 3.
Balance chamber 27 formed by 0 and both pulleys 7, 1
And an endless belt wound between 0. In particular, an oil communication portion 26 that communicates the hydraulic chamber 25 and the balance chamber 27 is provided on the outer peripheral side of the fixed wall 28. The oil communication portion 26 includes the balance chamber 27. Side small diameter portion 261 and the large diameter portion 26 on the hydraulic chamber 25 side
2 and a spherical body B interposed in the large diameter portion side 262.
Description
【0001】[0001]
本考案は、一対のプーリ間に巻装されるベルトの巻き付け径比を各プーリに付 設される油圧ピストンの伸縮作動に応じて変化させ、これに応じて変速比を無段 階に変化させる無段変速機に装着される油圧ピストンの調圧装置、特に、セカン ダリプーリの油圧ピストン内の油圧室とバランス室とが油圧抜き穴によって連通 可能に形成された無段変速機用油圧ピストンのバランス室構造に関する。 The present invention changes the winding diameter ratio of the belt wound between a pair of pulleys according to the expansion and contraction operation of the hydraulic piston attached to each pulley, and accordingly changes the gear ratio continuously. A pressure regulator for a hydraulic piston mounted on a continuously variable transmission, and in particular, a balance of a hydraulic piston for a continuously variable transmission that is formed by a hydraulic pressure relief hole so that the hydraulic chamber inside the hydraulic piston of the secondary pulley and the balance chamber can communicate with each other. Regarding the room structure.
【0002】[0002]
従来、プライマリプーリとセカンダリプーリの間に駆動ベルトを巻装し、両プ ーリに巻装されるベルトの巻き付け径比を変化させて無段変速を行うベルト駆動 式の無段変速機が知られている。この無段変速機はプライマリ及びセカンダリの 両プーリの各固定側シーブと可動側シーブの相対間隔を接離操作する両油圧ピス トンを備えており、車両の運転情報に応じたライン圧となるようレギュレータバ ルブを電磁制御弁で調圧し、同ライン圧をセカンダリプーリ側の油圧ピストンへ 供給し、車両の運転情報に応じた目標変速比となるよう、同変速比制御バルブ用 電磁制御弁により更に調圧して得られた変速比制御油圧をプライマリプーリ側の 油圧ピストンへ供給して変速比を変更させ、無段変速を行うように構成されてい る。 Conventionally, a belt drive type continuously variable transmission is known in which a drive belt is wound between a primary pulley and a secondary pulley, and the winding diameter ratio of the belts wound around both pulleys is changed to perform continuously variable transmission. Has been. This continuously variable transmission is equipped with both hydraulic pistons for operating the relative distance between the fixed sheave and the movable sheave of both the primary and secondary pulleys so that the line pressure will be in accordance with the vehicle operating information. The regulator valve regulates the pressure with an electromagnetic control valve, supplies the same line pressure to the hydraulic piston on the secondary pulley side, and uses the electromagnetic control valve for the same gear ratio control valve to achieve a target gear ratio according to the vehicle operating information. The gear ratio control hydraulic pressure obtained by adjusting the pressure is supplied to the hydraulic piston on the primary pulley side to change the gear ratio, and continuously variable transmission is performed.
【0003】 図5に示す様に、セカンダリプーリ100の油圧ピストン101は油圧室10 2及びその外側に配設されるバランス室103を備え、油圧室102はセカンダ リプーリ100の回転軸104と一体回転すると共に相対的に摺動する可動シー ブ105及び回転軸104と一体の固定壁106によって形成され、バランス室 103は固定壁106及び可動シーブ105と一体の可動壁107とで形成され る。 この場合、特に、油圧室102とバランス室103の間は、油圧抜き穴108 によって連通され、この穴がその絞り作用によって油圧室102の油圧を所定圧 に保持すると共にバランス室103への油圧供給に利用されている。As shown in FIG. 5, the hydraulic piston 101 of the secondary pulley 100 includes a hydraulic chamber 102 and a balance chamber 103 arranged outside the hydraulic chamber 102, and the hydraulic chamber 102 rotates integrally with a rotary shaft 104 of the secondary pulley 100. In addition, the movable sheave 105 and the rotating shaft 104 which are slidable relative to each other are formed by a fixed wall 106 which is integrated with the rotating shaft 104, and the balance chamber 103 is formed by the fixed wall 106 and the movable sheave 105 which is integrated with a movable wall 107. In this case, in particular, the hydraulic chamber 102 and the balance chamber 103 are communicated with each other by the hydraulic pressure drain hole 108, which holds the hydraulic pressure of the hydraulic chamber 102 at a predetermined pressure by the throttling action and supplies the hydraulic pressure to the balance chamber 103. Is used for.
【0004】 この油圧ピストンの作動時には、油圧源からの油圧は上述した如くレギュレー タバルブ等の油圧制御手段によって適正ライン圧に調圧される。このライン圧が 給油口109より油圧室102に供給排出されると、可動シーブ105は回転軸 104上を摺動し、固定シーブとの間隔を増減させてベルトの区ランプ力を変化 させ、これによってセカンダリプーリ100が目標のクランプ力を発生するよう 切り換えられている。この場合、特に、油圧室の102の油は遠心力を受け、そ の遠心力による油の押圧力(図5に符号fr1で示した)を可動シーブ105に 加え、逆にバランス室103の油が遠心力による油の押圧力(図5に符号fr2 で示した)を可動壁107に加え、両遠心力による油の押圧力は互いに打ち消し あい、これによって可動シーブ105が遠心力による油の押圧力によってずれを 生じることを防いでいる。During operation of the hydraulic piston, the hydraulic pressure from the hydraulic source is regulated to an appropriate line pressure by the hydraulic control means such as the regulator valve as described above. When this line pressure is supplied to and discharged from the hydraulic chamber 102 through the oil supply port 109, the movable sheave 105 slides on the rotary shaft 104, and the spacing between the movable sheave 105 and the fixed sheave is increased or decreased to change the belt ramp force of the belt. The secondary pulley 100 is switched to generate a target clamping force by. In this case, in particular, the oil in the hydraulic chamber 102 receives a centrifugal force, and the pressing force of the oil due to the centrifugal force (indicated by reference numeral fr1 in FIG. 5) is applied to the movable sheave 105, while the oil in the balance chamber 103 is reversed. Applies a pressing force of oil (indicated by reference numeral fr2 in FIG. 5) by the centrifugal force to the movable wall 107, and the pressing forces of the oil by both centrifugal forces cancel each other, whereby the movable sheave 105 presses the oil by the centrifugal force. It prevents the displacement from being caused by pressure.
【0005】 この場合、油圧室102に給油口109より流入した油は徐々に油圧抜き穴1 08よりバランス室103に排出される。この油圧抜き穴108はここから油が 排出されても油圧室102の油圧がほぼライン圧に近い値に保持される程度の絞 り効果が得られるように構成されている。In this case, the oil that has flowed into the hydraulic chamber 102 through the oil supply port 109 is gradually discharged from the hydraulic pressure drain hole 108 into the balance chamber 103. The hydraulic pressure drain hole 108 is configured so as to obtain a throttling effect such that the hydraulic pressure in the hydraulic chamber 102 is maintained at a value close to the line pressure even if the oil is discharged from here.
【0006】[0006]
しかし、このような油圧室102とバランス室103を結ぶ油圧抜き穴108 の内径は一定であり、このため、車速の上昇と共にセカンダリプーリの回転数が 上昇すると、次のような問題を生じる。 無段変速機の駆動時において、プライマリプーリの回転数は最大5000rp m程度で達するのに対して、セカンダリプーリの回転数は最大10000rpm 程度にまで達し、このため、きわめて油の受ける遠心力による影響を受け易い状 態となる。すなわち、油圧抜き穴108の内径は低回転時の油圧室102の油圧 をライン圧に保持すべく設定されており、このため無段変速機の変速比が高変速 比(低変速段)より低変速比(高変速段)に切り換わると、セカンダリプーリの 油圧室102の油をバランス室103に速やかに排出する必要がある。しかしこ の時、油圧抜き穴108は低回転時の定常状態においてライン圧を保持できるよ うに内径が設定されており、油の急速排除は出来ず、結果として油圧室102の 油がバランス室103に十分に排除されないままで、高回転に切り替わる。この ため、可動シーブ105に加わる押圧力fr1が可動壁107に加わる押圧力f r2より過度に大きくなり、可動シーブ105が遠心力による油の押圧力によっ てずれを生じ易くなり、適正なクランプ力を得ることが出来ず、ベルト耐久性が 低下したり、切り換え応答性が低下することとなる。 However, the inner diameter of the hydraulic pressure drain hole 108 connecting the hydraulic pressure chamber 102 and the balance chamber 103 is constant, and therefore, if the rotation speed of the secondary pulley increases as the vehicle speed increases, the following problems occur. When the continuously variable transmission is driven, the rotation speed of the primary pulley reaches a maximum of about 5000 rpm, while the rotation speed of the secondary pulley reaches a maximum of about 10,000 rpm. Therefore, the influence of centrifugal force exerted by oil is extremely high. It is in a state where it is easy to receive That is, the inner diameter of the hydraulic pressure drain hole 108 is set so as to maintain the hydraulic pressure of the hydraulic chamber 102 at the time of low rotation at the line pressure, so that the gear ratio of the continuously variable transmission is lower than the high gear ratio (low gear). When the gear ratio is switched to a high gear, the oil in the hydraulic chamber 102 of the secondary pulley needs to be quickly discharged to the balance chamber 103. However, at this time, the oil pressure drain hole 108 has an inner diameter set so as to maintain the line pressure in a steady state at low rotation speed, and the oil cannot be rapidly removed. As a result, the oil in the oil pressure chamber 102 cannot be removed. It is switched to high rotation without being sufficiently eliminated. Therefore, the pressing force fr1 applied to the movable sheave 105 becomes excessively larger than the pressing force fr2 applied to the movable wall 107, and the movable sheave 105 is apt to be displaced due to the oil pressing force due to the centrifugal force, so that the proper clamping is performed. The force cannot be obtained, and the belt durability is reduced and the switching responsiveness is reduced.
【0007】 本考案の目的は、最適なクランプ力を得るとともに変速比の切り換え時の応答 性を改善できる無段変速機用油圧ピストンのバランス室構造を提供することにあ る。An object of the present invention is to provide a balance chamber structure of a hydraulic piston for a continuously variable transmission, which can obtain an optimum clamping force and can improve the responsiveness at the time of switching a gear ratio.
【0008】[0008]
上述の目的を達成するために、本考案は入力軸に固定された第1固定シーブ、 上記入力軸上を摺動可能に上記第1固定シーブに対向して配設された第1可動シ ーブからなるプライマリプーリと、上記第1可動シーブを摺動させる第1油圧ピ ストンと、出力軸に固定された第2固定シーブ、上記出力軸上を摺動可能に上記 第2固定シーブに対向して配設された第2可動シーブからなるセカンダリプーリ と、上記第2可動シーブ、及び上記出力軸に固定されると共に上記第2可動シー ブを挾んで上記第2固定シーブと対設された固定壁により形成された油圧室から なり、上記第2可動シーブを摺動させる第2油圧ピストンと、上記固定壁及び上 記第2可動シーブと一体的に形成され上記固定壁を挾んで上記油圧室と対設され た可動壁により形成されたバランス室と、両プーリ間に巻き掛けられた無端ベル トと、からなる無段変速機において、上記固定壁外周側に上記油圧室と上記バラ ンス室とを連通する油連通部を備え、同油連通部は、上記バランス室側の小径部 と、上記油圧室側の大径部と、同大径部側内に介装された球体とから成ることを 特徴とする。 In order to achieve the above-mentioned object, the present invention provides a first fixed sheave fixed to an input shaft, and a first movable sheave slidably disposed on the input shaft and opposed to the first fixed sheave. Primary pulley consisting of a sleeve, a first hydraulic piston for sliding the first movable sheave, a second fixed sheave fixed to the output shaft, and a second fixed sheave slidably on the output shaft. Fixed to the secondary movable sheave, the second movable sheave, and the output shaft and arranged opposite to the second fixed sheave sandwiching the second movable sheave. A second hydraulic piston, which is composed of a hydraulic chamber formed by a fixed wall, and slides the second movable sheave, and the hydraulic pressure across the fixed wall formed integrally with the fixed wall and the second movable sheave. The movable wall opposite the room In a continuously variable transmission including a balance chamber formed between the two pulleys and an endless belt wound between both pulleys, an oil communication portion that communicates the hydraulic chamber and the balance chamber is provided on the outer peripheral side of the fixed wall. The oil communication portion is characterized by comprising a small diameter portion on the balance chamber side, a large diameter portion on the hydraulic chamber side, and a sphere interposed in the large diameter portion side.
【0009】[0009]
油連通部の小径部が油圧室の油圧を受ける球体で閉鎖可能であり、しかもこの 球体が小径部を開放可能に構成されているので、油圧室をライン圧に保持出来る と共に切り換え時には小径部を開放して、油圧室の油をバランス室に排出出来る The small diameter part of the oil communication part can be closed by a sphere that receives the hydraulic pressure of the hydraulic chamber, and this sphere is configured to open the small diameter part, so that the hydraulic chamber can be maintained at the line pressure and the small diameter part can be switched when switching. It can be opened to discharge the oil in the hydraulic chamber to the balance chamber.
【0010】 。[0010]
図1及び図2の無段変速機用油圧ピストンのバランス室構造は車両のエンジン Eに連結された動力伝達系P上の無段変速機1に付設される。 図2に示すように、ここで動力伝達系P内の無段変速機(CVT)1には図示 しない電子制御手段であるCVTECUが接続され、これによって無段変速機1 の油圧制御手段が駆動制御され、後述の各油圧ピストン13,14の切り換え操 作がなされることによって変速制御が行われている。 ここでエンジンEのクランクシャフトには流体継手4及び遊星歯車式の前後進 切り換え装置5を介して図1の無段変速機1が接続されている。 The balance chamber structure of the hydraulic piston for the continuously variable transmission shown in FIGS. 1 and 2 is attached to the continuously variable transmission 1 on the power transmission system P connected to the engine E of the vehicle. As shown in FIG. 2, a CVT ECU, which is an electronic control means (not shown), is connected to the continuously variable transmission (CVT) 1 in the power transmission system P, which drives the hydraulic control means of the continuously variable transmission 1. The shift control is performed by controlling the hydraulic pistons 13 and 14 which will be described later. Here, the continuously variable transmission 1 of FIG. 1 is connected to the crankshaft of the engine E via a fluid coupling 4 and a planetary gear type forward / reverse switching device 5.
【0011】 ここで、無段変速機1は前後進切り換え装置5の出力軸に一体結合されたプラ イマリシャフト6を有するプライマリプーリ7と減速機8側に回転力を出力する セカンダリシャフト9を有するセカンダリプーリ10を備え、このプライマリプ ーリ7とセカンダリプーリ10とにスチールベルト11が掛け渡される。セカン ダリシャフト9は減速機8やデフ12を介して図示しない駆動輪に回転力を伝達 するように構成されている。 両プーリ7,10は共に2分割に構成され、可動側シーブ701,111は固 定側シーブ702,112に相対回転不可に相対間隔を接離可能に外嵌される。 この可動側シーブ701,111には固定側シーブ702,112との相対間隔 を接離操作する各油圧ピストン13,14が装着される。Here, the continuously variable transmission 1 has a primary pulley 7 having a primary shaft 6 integrally connected to the output shaft of the forward / reverse switching device 5 and a secondary shaft 9 for outputting a rotational force to the speed reducer 8 side. A secondary pulley 10 is provided, and a steel belt 11 is stretched around the primary pulley 7 and the secondary pulley 10. The secondary shaft 9 is configured to transmit a rotational force to a drive wheel (not shown) via the speed reducer 8 and the differential 12. Both of the pulleys 7 and 10 are divided into two parts, and the movable sheaves 701 and 111 are fitted onto the fixed sheaves 702 and 112 so that they can rotate relative to each other and can be separated from each other. The movable sheaves 701 and 111 are provided with respective hydraulic pistons 13 and 14 that are operated to move relative to and away from the fixed sheaves 702 and 112.
【0012】 なおここで、プライマリプーリ7とセカンダリプーリ10の両回転数wp,w sは図示しない回転センサによってCVTECU2に入力されており、そこで実 変速比in(=wp/ws)が算出されている。ここで無段変速機1はプライマ リプーリ7の固定側シーブ702に対し可動側シーブ701を近付けてプライマ リプーリの巻き付け径を大きくし、セカンダリプーリ10の固定側シーブ112 より可動側シーブ111を遠ざけて巻き付け径を小さくし、これによって実変速 比in(プライマリ回転数Wp/セカンダリ回転数Ws)を小さくし、即ち、低 変速比(高変速段)とし、逆に操作して高変速比(低変速段)を達成する様に構 成されている。It should be noted that the rotational speeds wp and ws of both the primary pulley 7 and the secondary pulley 10 are input to the CVTECU 2 by a rotation sensor (not shown), and the actual gear ratio in (= wp / ws) is calculated there. There is. Here, in the continuously variable transmission 1, the movable sheave 701 is moved closer to the fixed sheave 702 of the primary pulley 7 to increase the winding diameter of the primary pulley, and the movable sheave 111 is moved away from the fixed sheave 112 of the secondary pulley 10. The winding diameter is reduced to reduce the actual gear ratio in (primary rotation speed Wp / secondary rotation speed Ws), that is, the low gear ratio (high gear stage), and the reverse operation to operate the high gear ratio (low gear ratio). It is configured to achieve (dan).
【0013】 ここで油圧ピストン13は第1油圧室15、同油圧室に連絡路16を介して連 通する第2油圧室17とを備える。ここで、第1油圧室15は可動シーブ701 及びプライマリシャフト6に固定されたシーブ側可動壁19で形成される。他方 、第2油圧室17はプライマリシャフト6と一体で可動シーブ701にフランジ 201が嵌挿される椀状壁22及び可動シーブ701に固定されフランジ201 の内周壁に摺接するシーブ側固定壁21とで形成されている。Here, the hydraulic piston 13 includes a first hydraulic chamber 15 and a second hydraulic chamber 17 communicating with the hydraulic chamber via a communication path 16. Here, the first hydraulic chamber 15 is formed by the movable sheave 701 and the sheave side movable wall 19 fixed to the primary shaft 6. On the other hand, the second hydraulic chamber 17 is composed of a bowl-shaped wall 22 in which the flange 201 is fitted into the movable sheave 701 integrally with the primary shaft 6 and a sheave side fixed wall 21 fixed to the movable sheave 701 and slidingly contacting the inner peripheral wall of the flange 201. Has been formed.
【0014】 第1油圧室15及び第2油圧室17はプライマリシャフト6の中央油路Sを介 してケーシング23側のプライマリ流入口24に連通し、同部には電磁制御弁3 を介して図示しない油圧源側より制御油圧が供給され、これによって可動シーブ 701及びこれと一体のシーブ側固定壁21が両室の油圧によって応答性良く摺 動変位出来る。 他方、油圧ピストン14は油圧室25、同油圧室に油抜き穴26(図3参照) を介して連通するバランス室27とを備える。ここで、油圧室25は可動シーブ 111及びセカンダリシャフト9と一体の固定壁28とで形成され、両部材間に は互いを離脱方向に付勢するスプリング29が装着されている。バランス室27 は固定壁28及び可動シーブ111と一体の可動壁30とで形成される。The first hydraulic chamber 15 and the second hydraulic chamber 17 communicate with the primary inlet 24 on the casing 23 side through the central oil passage S of the primary shaft 6, and the same portion via the electromagnetic control valve 3. A control hydraulic pressure is supplied from a hydraulic pressure source side (not shown), whereby the movable sheave 701 and the sheave side fixed wall 21 integral with the movable sheave 701 can be slidably displaced by the hydraulic pressures of both chambers with good response. On the other hand, the hydraulic piston 14 includes a hydraulic chamber 25 and a balance chamber 27 that communicates with the hydraulic chamber via an oil drain hole 26 (see FIG. 3). Here, the hydraulic chamber 25 is formed of a movable sheave 111 and a fixed wall 28 that is integral with the secondary shaft 9, and a spring 29 that urges the two members in a detaching direction is mounted between both members. The balance chamber 27 is formed by a fixed wall 28 and a movable wall 30 that is integral with the movable sheave 111.
【0015】 油圧室25はセカンダリ軸9の中央油路31を介してケーシング23側のセカ ンダリ流入口32に連通し、同部には電磁制御弁33を介して図示しない油圧源 側より制御油圧(ライン圧)が供給され、これによってセカンダリプーリ10に 必要なクランプ力が発生する。 ここで、固定壁28の外周側のa部には図3に示すように、油抜き穴26が形 成される。この油抜き穴26はバランス室27側の小径部261と、油圧室25 の大径部262とで成り、特に大径部262には小径部261の内径より大きな 外径の鋼球Bが遊嵌される。この大径部262の開口にはリング状の止め部材4 0が溶接され、同止め部材40はその内径が鋼球の外径より小さく形成され、大 径部262内に遊嵌された鋼球Bが離脱するのを防いでいる。The hydraulic chamber 25 communicates with the secondary inlet port 32 on the casing 23 side via the central oil passage 31 of the secondary shaft 9, and the same portion is controlled via a solenoid control valve 33 from a hydraulic pressure source side (not shown) to control hydraulic pressure. (Line pressure) is supplied, and the necessary clamping force is generated in the secondary pulley 10. Here, as shown in FIG. 3, an oil drain hole 26 is formed in the portion a on the outer peripheral side of the fixed wall 28. The oil drain hole 26 is composed of a small diameter portion 261 on the balance chamber 27 side and a large diameter portion 262 of the hydraulic chamber 25. In particular, the large diameter portion 262 is provided with a steel ball B having an outer diameter larger than the inner diameter of the small diameter portion 261. Be fitted. A ring-shaped stop member 40 is welded to the opening of the large-diameter portion 262, and the stop member 40 has an inner diameter smaller than the outer diameter of the steel ball, and the steel ball loosely fitted in the large-diameter portion 262. Prevents B from leaving.
【0016】 ここでは特に、大径部262及び小径部261はその共通中心線L3が固定壁 28の、即ちセカンダリプーリの回転中心線Lsに対して所定の傾斜角αを保つ 様に形成されている。更に大径部262の小径部261との連結部がコーン面2 63に形成され、このコーン面262を鋼球Bが転動して小径部261を開閉出 来る。 ここで油圧源の図2に示したオイルポンプOPはエンジンに連動して駆動し、 その油圧を変化させるが、図示しないレギュレータバルブ(電磁制御弁33に制 御される)の調圧作動によって油圧源からの圧油がライン圧に調圧されて、セカ ンダリ流入口32に供給され、そのライン圧が変速比制御バルブ(電磁制御弁3 に制御される)によって変速比制御油圧に調圧されてプライマリ流入口24に供 給されるように構成されている。Here, in particular, the large-diameter portion 262 and the small-diameter portion 261 are formed such that their common center line L3 maintains a predetermined inclination angle α with respect to the fixed wall 28, that is, the rotation center line Ls of the secondary pulley. There is. Further, a connecting portion of the large diameter portion 262 with the small diameter portion 261 is formed on the cone surface 263, and the steel ball B rolls on the cone surface 262 to open / close the small diameter portion 261. The oil pump OP shown in FIG. 2, which is a hydraulic pressure source, is driven in conjunction with the engine to change the hydraulic pressure, but the hydraulic pressure is adjusted by a regulator valve (controlled by the electromagnetic control valve 33) (not shown). The pressure oil from the source is regulated to the line pressure and supplied to the secondary inlet 32, and the line pressure is regulated to the gear ratio control hydraulic pressure by the gear ratio control valve (controlled by the electromagnetic control valve 3). And is supplied to the primary inlet 24.
【0017】 このような無段変速機用油圧ピストンのバランス室構造は動力伝達系P内の無 段変速機1の駆動と共に駆動する。 ここでエンジン側の油圧源よりの圧油は電磁制御弁33に制御されてライン圧 に調圧されて、セカンダリ流入口32に供給され、そのライン圧が電磁制御弁3 に制御されて制御油圧に調圧されてプライマリ流入口24に供給される。 ここで、車両が低速運転時にあるとセカンダリプーリ10は低回転に有り、セ カンダリプーリ10の固定壁28の鋼球Bは油圧室25とバランス室27の差圧 Fpを受けて、第4図(a)に示すように小径部261を閉鎖する状態を保つ。Such a balance chamber structure of the hydraulic piston for a continuously variable transmission is driven together with the drive of the continuously variable transmission 1 in the power transmission system P. Here, the pressure oil from the hydraulic pressure source on the engine side is controlled by the electromagnetic control valve 33 to be adjusted to the line pressure and supplied to the secondary inlet 32, and the line pressure is controlled by the electromagnetic control valve 3 to control the hydraulic pressure. And is supplied to the primary inlet 24. Here, when the vehicle is operating at a low speed, the secondary pulley 10 is in a low rotation speed, the steel ball B of the fixed wall 28 of the secondary pulley 10 receives the differential pressure Fp between the hydraulic chamber 25 and the balance chamber 27, and the secondary pulley 10 shown in FIG. As shown in a), the small diameter portion 261 is kept closed.
【0018】 この第4図(a)に示すような低回転時に固定壁28がある場合、鋼球Bには 差圧Fpと遠心力F1が加わる。差圧Fpと遠心力F1は方向が異なり、低回転 時にあると、差圧Fpのコーン面の方向の各分力Fpsが,遠心力のコーン面の 方向の各分力F1sより大きく、この結果、鋼球Bは小径部261を遮断する。 この状態では、セカンダリ流入口32より油圧室25に供給された油は油抜き穴 26より排除されず、ライン圧を確保出来、他方のプライマリプーリ7も適正制 御油圧を受けて、所定の巻き付け径を確保出来、これによって実変速比in(プ ライマリ回転数Wp/セカンダリ回転数Ws)を目標変速比に切り換え制御出来 る。When there is the fixed wall 28 at the time of low rotation as shown in FIG. 4 (a), the differential pressure Fp and the centrifugal force F1 are applied to the steel ball B. The directions of the differential pressure Fp and the centrifugal force F1 are different, and at low speed, each component force Fps of the differential pressure Fp in the direction of the cone surface is larger than each component force F1s of the centrifugal force in the direction of the cone surface. The steel ball B blocks the small diameter portion 261. In this state, the oil supplied from the secondary inlet 32 to the hydraulic chamber 25 is not removed from the oil drain hole 26, and the line pressure can be secured, and the other primary pulley 7 also receives the proper control hydraulic pressure, and the predetermined winding is performed. The diameter can be secured, and by this, the actual speed ratio in (primary speed Wp / secondary speed Ws) can be switched to the target speed ratio.
【0019】 これに対して車両が高速運転時に切り換わると、高変速比(低変速段)より低 変速比(高変速段)への切り換え指令が図示しないCVTECUより発せられ、 特に、セカンダリプーリ10は高回転に切り換わることとなる。このため、セカ ンダリプーリ10の油圧室25の油をバランス室27に所定量だけ排除する必要 が生じる。 この時、まず、セカンダリプーリ10の回転数が急増し、図4図(b)に示す ように、固定壁28の鋼球Bは油圧室25とバランス室27の差圧Fp1を受け 、しかも、鋼球Bは急増した遠心力F2をうける。このため、遠心力のコーン面 の方向の分力F2sが大きくなって差圧Fpのコーン面の方向の各分力Fp1s を上回ることとなる。この結果、鋼球Bは小径部261を開放し、これによって 油圧室25の油をバランス室27に速やかに排除でき、油圧室25の可動シーブ 111に加わる遠心力による油の押圧力fr1とバランス室27の可動壁30に 加わる遠心力による油の押圧力fr2が互いに打ち消しあって、遠心力による油 の押圧力による可動シーブ111のずれが排除され、適正変速比への切り換えが スムーズに応答性良くなされる。 上述のところにおいて、油抜き穴26は1つ固定壁28に形成されていたが、 これに代えて、複数の油抜き穴26を形成しても良く、この場合、高回転切り換 え時の油の抜けがより促進され、切り換え応答性をより向上させることが出来る 。On the other hand, when the vehicle is switched during high speed operation, a command to switch from a high gear ratio (low gear) to a low gear ratio (high gear) is issued from a CVT ECU (not shown), and particularly, the secondary pulley 10 Will be switched to high rotation. Therefore, it is necessary to remove a predetermined amount of oil in the hydraulic chamber 25 of the secondary pulley 10 into the balance chamber 27. At this time, first, the rotation speed of the secondary pulley 10 rapidly increases, and the steel ball B of the fixed wall 28 receives the differential pressure Fp1 between the hydraulic chamber 25 and the balance chamber 27, as shown in FIG. Steel ball B is subjected to a sudden increase in centrifugal force F2. For this reason, the component force F2s of the centrifugal force in the direction of the cone surface becomes large and exceeds each component force Fp1s of the differential pressure Fp in the direction of the cone surface. As a result, the steel ball B opens the small diameter portion 261 so that the oil in the hydraulic chamber 25 can be promptly removed to the balance chamber 27, and the oil pressing force fr1 due to the centrifugal force applied to the movable sheave 111 of the hydraulic chamber 25 and the oil balance balance. The pressing forces fr2 of the oil due to the centrifugal force applied to the movable wall 30 of the chamber 27 cancel each other out, the displacement of the movable sheave 111 due to the pressing force of the oil due to the centrifugal force is eliminated, and the switching to the appropriate gear ratio is smoothly responsive. Well done In the above description, one oil drain hole 26 was formed in the fixed wall 28, but instead of this, a plurality of oil drain holes 26 may be formed. In this case, in the case of high rotation switching. The oil drainage is further promoted, and the switching response can be further improved.
【0020】[0020]
以上のように、この考案は、プライマリプーリの低回転時には、油圧抜き穴を 油圧室の油圧を受ける球体が閉鎖し、高回転時には、所定値以上の遠心力を受け た球体が小径部を開放できるので、セカンダリプーリの低回転時には油圧室をラ イン圧に容易に保持出来、高回転への切り換え時には、速やかに小径部を開放し て、油圧室の油をバランス室に排出出来、ベルトクランプ力が最適にすることが できるのでベルトの耐久性が向上し、高変速比(低変速段)より低変速比(高変 速段)への切り換え応答性を改善できる。 As described above, according to the present invention, when the primary pulley rotates at a low speed, the sphere that receives the hydraulic pressure in the hydraulic chamber closes the hydraulic pressure relief hole, and at the time of high rotation, the sphere that receives a centrifugal force of a predetermined value or more opens the small diameter portion. As a result, the hydraulic chamber can be easily maintained at the line pressure when the secondary pulley rotates at a low speed, and when switching to a high speed, the small diameter part can be quickly opened to drain the oil in the hydraulic chamber to the balance chamber, and the belt clamp Since the force can be optimized, the durability of the belt is improved, and the responsiveness of switching from a high gear ratio (low gear) to a low gear ratio (high gear) can be improved.
【図1】本考案の一実施例としての無段変速機用油圧ピ
ストンのバランス室構造の要部断面図である。FIG. 1 is a sectional view of an essential part of a balance chamber structure of a hydraulic piston for a continuously variable transmission according to an embodiment of the present invention.
【図2】図1の油圧ピストンのバランス室構造を備えた
無段変速機及び動力伝達系の概略構成図である。FIG. 2 is a schematic configuration diagram of a continuously variable transmission and a power transmission system including the hydraulic piston balance chamber structure of FIG.
【図3】図1の油圧ピストンのバランス室構造内の油抜
き穴を備えた固定壁の断面図である。FIG. 3 is a cross-sectional view of a fixed wall provided with an oil drain hole in the balance chamber structure of the hydraulic piston of FIG.
【図4】(a)は図1のバランス室構造内の油抜き穴の
鋼球の低回転時の作動説明図、(b)は図1のバランス
室構造内の油抜き穴の鋼球の高回転時の作動説明図であ
る。4 (a) is an operation explanatory view of a steel ball of an oil drain hole in the balance chamber structure of FIG. 1 at a low rotation speed, and FIG. It is an operation explanatory view at the time of high rotation.
【図5】従来装置の要部断面図である。FIG. 5 is a cross-sectional view of a main part of a conventional device.
1 無段変速機 6 プライマリ軸 7 プライマリプーリ 9 セカンダリ軸 10 セカンダリプーリ 11 スチールベルト 13 油圧ピストン 14 油圧ピストン 15 第1油圧室 17 第2油圧室 111 可動シーブ 112 固定シーブ 25 油圧室 26 油抜き穴 27 バランス室 28 固定壁 B 鋼球 261 小径部 262 大径部 263 コーン面 1 continuously variable transmission 6 primary shaft 7 primary pulley 9 secondary shaft 10 secondary pulley 11 steel belt 13 hydraulic piston 14 hydraulic piston 15 first hydraulic chamber 17 second hydraulic chamber 111 movable sheave 112 fixed sheave 25 hydraulic chamber 26 oil drain hole 27 Balance chamber 28 Fixed wall B Steel ball 261 Small diameter part 262 Large diameter part 263 Cone surface
Claims (1)
入力軸上を摺動可能に上記第1固定シーブに対向して配
設された第1可動シーブからなるプライマリプーリと、 上記第1可動シーブを摺動させる第1油圧ピストンと、 出力軸に固定された第2固定シーブ、上記出力軸上を摺
動可能に上記第2固定シーブに対向して配設された第2
可動シーブからなるセカンダリプーリと、 上記第2可動シーブ、及び上記出力軸に固定されると共
に上記第2可動シーブを挾んで上記第2固定シーブと対
設された固定壁により形成された油圧室からなり、上記
第2可動シーブを摺動させる第2油圧ピストンと、 上記固定壁及び上記第2可動シーブと一体的に形成され
上記固定壁を挾んで上記油圧室と対設された可動壁によ
り形成されたバランス室と、 両プーリ間に巻き掛けられた無端ベルトと、 からなる無段変速機において、 上記固定壁外周側に上記油圧室と上記バランス室とを連
通する油連通部を備え、同油連通部は、上記バランス室
側の小径部と、上記油圧室側の大径部と、同大径部側内
に介装された球体とから成ることを特徴とする無段変速
機用油圧ピストンのバランス室構造。1. A primary pulley comprising a first fixed sheave fixed to an input shaft, a first movable sheave slidably disposed on the input shaft so as to face the first fixed sheave, and a first pulley. 1st hydraulic piston which slides 1 movable sheave, 2nd fixed sheave fixed to the output shaft, 2nd provided so as to be slidable on the said output shaft facing the said 2nd fixed sheave
From a secondary pulley composed of a movable sheave, the second movable sheave, and a hydraulic chamber formed by a fixed wall fixed to the output shaft and sandwiching the second movable sheave and facing the second fixed sheave. And a second hydraulic piston that slides the second movable sheave, and a movable wall that is integrally formed with the fixed wall and the second movable sheave and that faces the hydraulic chamber across the fixed wall. A continuously variable transmission including: a balanced chamber and an endless belt wound between both pulleys; and an oil communicating portion that communicates the hydraulic chamber with the balance chamber on the outer peripheral side of the fixed wall. The oil communication portion is composed of a small diameter portion on the balance chamber side, a large diameter portion on the hydraulic chamber side, and a sphere interposed in the large diameter portion side. Balance chamber structure of the piston.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4358192U JPH064451U (en) | 1992-06-23 | 1992-06-23 | Balance chamber structure of hydraulic piston for continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4358192U JPH064451U (en) | 1992-06-23 | 1992-06-23 | Balance chamber structure of hydraulic piston for continuously variable transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH064451U true JPH064451U (en) | 1994-01-21 |
Family
ID=12667739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4358192U Pending JPH064451U (en) | 1992-06-23 | 1992-06-23 | Balance chamber structure of hydraulic piston for continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH064451U (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5118041Y1 (en) * | 1970-10-15 | 1976-05-14 | ||
JP2007263243A (en) * | 2006-03-28 | 2007-10-11 | Toyota Motor Corp | Flow control valve, rotor, and belt type continuously variable transmission |
US8733995B2 (en) | 2009-08-18 | 2014-05-27 | Mitsubishi Electric Corporation | Light source device with reduced optical part clouding |
JP2022092483A (en) * | 2020-12-10 | 2022-06-22 | 本田技研工業株式会社 | Continuously variable transmission |
-
1992
- 1992-06-23 JP JP4358192U patent/JPH064451U/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5118041Y1 (en) * | 1970-10-15 | 1976-05-14 | ||
JP2007263243A (en) * | 2006-03-28 | 2007-10-11 | Toyota Motor Corp | Flow control valve, rotor, and belt type continuously variable transmission |
JP4618179B2 (en) * | 2006-03-28 | 2011-01-26 | トヨタ自動車株式会社 | Flow control valve and belt type continuously variable transmission |
US8733995B2 (en) | 2009-08-18 | 2014-05-27 | Mitsubishi Electric Corporation | Light source device with reduced optical part clouding |
JP2022092483A (en) * | 2020-12-10 | 2022-06-22 | 本田技研工業株式会社 | Continuously variable transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3989565B2 (en) | Drive unit | |
JP3961039B2 (en) | Torque sensor and conical pulley winding type transmission device | |
US4716791A (en) | Infinitely variable transmission utilizing hydraulic fluid pressure to vary velocity ratio between driving and driven pulleys | |
JPS6327592B2 (en) | ||
JP5170255B2 (en) | Sheave positioning device | |
EP0289025B1 (en) | Belt-and-pulley type continuously variable transmission | |
JP2661346B2 (en) | Hydraulic control device for continuously variable transmission for vehicles | |
JPH0554576B2 (en) | ||
JP2757304B2 (en) | Transmission hydraulic control device | |
US5908367A (en) | Flow rate control valve and continuously variable automatic transmission provided with same | |
JP4333390B2 (en) | Hydraulic control device for continuously variable transmission | |
US6800044B2 (en) | Speed change control apparatus for continuously variable transmission | |
JPS6252175B2 (en) | ||
JPH0563660B2 (en) | ||
JPH064451U (en) | Balance chamber structure of hydraulic piston for continuously variable transmission | |
JP2699344B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2699330B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2699339B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2625747B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2625745B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2022092483A (en) | Continuously variable transmission | |
JP2625748B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JP2699331B2 (en) | Hydraulic control device for belt-type continuously variable transmission for vehicles | |
JPS6188064A (en) | Hydraulic control device for belt stepless speed change gear | |
JPH10252878A (en) | Torque transmitting force control device of change gear ratio infinite continuously variable transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19981020 |