JPS63259039A - Manufacture of metal-base composite material - Google Patents

Manufacture of metal-base composite material

Info

Publication number
JPS63259039A
JPS63259039A JP9201687A JP9201687A JPS63259039A JP S63259039 A JPS63259039 A JP S63259039A JP 9201687 A JP9201687 A JP 9201687A JP 9201687 A JP9201687 A JP 9201687A JP S63259039 A JPS63259039 A JP S63259039A
Authority
JP
Japan
Prior art keywords
preform
reinforcement
composite material
preformed body
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9201687A
Other languages
Japanese (ja)
Inventor
Yutaka Ishiwatari
裕 石渡
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9201687A priority Critical patent/JPS63259039A/en
Publication of JPS63259039A publication Critical patent/JPS63259039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a metal-base composite material in high yield, by previously coating a preformed body consisting ceramics fibers, etc., with a material having a melting point lower than that of the above preformed body and by forming the preformed body by diffusion joining so as to improve strength and also to inhibit shrinkage and prevent breakage at the time of pressure infiltration with molten-metal matrix. CONSTITUTION:The surface of a reinforcement constituting a preformed body and consisting of ceramics fibers, whiskers, or grains is coated with a material having a melting point lower than the melting points of the principal components of the reinforcement. Subsequently, at the time of forming the preformed body out of the coated reinforcement, the reinforcement is subjected to diffusion joining at a relatively low temp. by means of heating at a temp. of the melting point of the above-mentioned material or above. Accordingly, the deformation, shrinkage, cracking, etc., of the preformed body are not caused at the time of subjecting the above-mentioned reinforcement to pressure impregnation with molten-metal matrix, and the metal-base composite material in which the reinforcement is uniformly disposed can be obtained.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明はセラミックス繊維、ウィスカ、または粒子から
なる予備成形体に溶融金属を加圧、含浸させて金属基複
合材料を製造する方法に係り、特に予備成形体の座屈強
度の向上を図った金属基複合材料の製造方法に関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention is directed to manufacturing a metal matrix composite material by pressurizing and impregnating a preformed body made of ceramic fibers, whiskers, or particles with molten metal. In particular, the present invention relates to a method for manufacturing a metal matrix composite material in which the buckling strength of a preform is improved.

(従来の技術) 従来、例えばS t C,A1203等のセラミックス
繊維、ウィスカまたは粒子を添加したいわゆる繊維強化
金属基複合材料が知られている。この金属基複合材料は
、強度、耐熱性、耐摩耗性等に優れ、中でもアルミニウ
ム(Aj+)基複合材料は宇宙機器、ロボット、自動車
部品などで一部実用化されている。
(Prior Art) So-called fiber-reinforced metal matrix composite materials to which ceramic fibers, whiskers, or particles, such as S t C, A1203, etc. are added, have been known. This metal matrix composite material has excellent strength, heat resistance, wear resistance, etc. Among them, aluminum (Aj+) matrix composite material is partially put into practical use in space equipment, robots, automobile parts, etc.

金属基複合材料の製造方法は溶浸法、粉末法および拡散
接合法に大別でき、特に溶浸法は複雑な形状部材を一度
に多数製造できるので大量生産に適している。
Methods for producing metal matrix composite materials can be roughly divided into infiltration methods, powder methods, and diffusion bonding methods. In particular, infiltration methods are suitable for mass production because they can produce a large number of complex-shaped members at once.

溶浸法はざらにマトリックスとなる溶融金属の中に強化
材を添加し、鋳造する方法と、予め強化材で実製品に近
い形状の予備成形体(プリフォーム)を形成し、これに
高圧で溶融金属を含浸させる方法とに分けられる。前者
は後者に比べて製造工程が単純であるが、強化材と溶融
金属とのぬれ性の問題で高い強化材の体積率(Vf)を
得ることが困難であり、また強化材が溶融金属に接して
いる時間が長くなるため強化材の劣化を生じ、複合材料
の強度が低下し易い。このため、一般には後者の方法が
有力と考えられている。
The infiltration method involves adding a reinforcing material to molten metal, which serves as a matrix, and then casting it.The other method involves forming a preform with the reinforcing material in a shape similar to the actual product, and then applying high pressure to the reinforcing material. It can be divided into methods of impregnation with molten metal. The former has a simpler manufacturing process than the latter, but it is difficult to obtain a high volume fraction (Vf) of the reinforcement due to wettability between the reinforcement and the molten metal. As the contact time increases, the reinforcing material deteriorates and the strength of the composite material tends to decrease. For this reason, the latter method is generally considered to be more effective.

この後者の製造工程を第10図(a)〜(e)によって
説明する。
This latter manufacturing process will be explained with reference to FIGS. 10(a) to (e).

まず、セラミックス4!維、ウィスカ等の強化材1に調
整液として水2を所定量添加し、撹拌機3でこれらを十
分に混合させる(第10図(a))。
First, ceramics 4! A predetermined amount of water 2 is added as an adjustment liquid to the reinforcing material 1 such as fibers and whiskers, and the mixture is thoroughly mixed with a stirrer 3 (FIG. 10(a)).

この混合液4を型5に収容し、ピストン6で加圧して水
1友き、圧縮成形することにより予備成形体7を得る(
同図(b))。この時、強化材の体積率は成形圧ツノを
調整することで任意のものを得ることができる。この予
備成形体7を十分乾燥した後、金型8内にセットし、ヒ
ータ9で400〜700℃に加熱しく同図(C))、そ
の後金型8内にマトリックスとしての溶融金属10を注
渇し、ピストン11で加圧することにより予備成形体7
に含浸させ(同図(d))、複合材料12を得る(同図
(e))。
This mixed liquid 4 is placed in a mold 5, pressurized with a piston 6 to remove water, and compression molded to obtain a preformed body 7 (
Figure (b)). At this time, the volume fraction of the reinforcing material can be adjusted to any desired value by adjusting the molding pressure angle. After sufficiently drying this preform 7, it is set in a mold 8 and heated to 400 to 700°C with a heater 9 (FIG. 2(C)), after which molten metal 10 as a matrix is poured into the mold 8. The preformed body 7 is dried and pressurized with the piston 11.
((d) in the same figure) to obtain a composite material 12 ((e) in the same figure).

この場合、予備成形体7に溶融金属10を含浸させるた
めの加圧力は、強化材の体積率や金型8、溶湯温度等に
応じて、100〜1000気圧に設定される。なお、気
孔等の発生による材料欠陥を低減させるためには300
気圧以上が望ましい。
In this case, the pressing force for impregnating the preform 7 with the molten metal 10 is set to 100 to 1000 atmospheres depending on the volume ratio of the reinforcing material, the mold 8, the temperature of the molten metal, and the like. In addition, in order to reduce material defects due to the occurrence of pores, etc., 300
Atmospheric pressure or higher is desirable.

ところで、予備成形体7中の繊維形態を見ると、第11
図(a)、(b)に模式的に示したように、48M7a
、7b、7cは互いに接触しているだけで、繊維間に特
別の結合力が無く、予備成形体7の圧縮荷重に対する変
形抵抗は!a維同士の「摩擦力」および「からみ」のみ
に依存している。
By the way, looking at the fiber morphology in the preformed body 7, the 11th
As schematically shown in Figures (a) and (b), 48M7a
, 7b, and 7c are only in contact with each other, and there is no special bonding force between the fibers, and the deformation resistance of the preform 7 against the compressive load is! It depends only on the ``frictional force'' and ``entanglement'' between the a-fibers.

このような予備成形体7の座屈強度を調べたところ、5
〜80気圧程度しかなく、前記の望ましい溶浸圧力(3
00気圧)に比べて著しく低い。
When the buckling strength of such a preformed body 7 was investigated, it was found that it was 5.
The pressure is only about 80 atm, which is below the desired infiltration pressure (3
00 atm).

このため第10図に示した製造工程により金属基複合材
料を製造した場合、溶浸時に予備成形体7が加圧により
収縮し、収縮が著しい場合には予備成形体が割れること
が多々あった。さらに、溶浸時に予備成形体が収縮する
ことは、強化材の体積率の調整を困難にするだけでなく
、実製品に近い形の予備成形体をつくり、溶浸、複合化
するという理想的な部品°製造が不可能となる。
For this reason, when a metal matrix composite material was manufactured by the manufacturing process shown in FIG. 10, the preform 7 would shrink due to pressure during infiltration, and if the shrinkage was significant, the preform would often crack. . Furthermore, shrinkage of the preform during infiltration not only makes it difficult to adjust the volume fraction of the reinforcing material, but also makes it difficult to create a preform with a shape close to the actual product, which is ideal for infiltration and compounding. It becomes impossible to manufacture such parts.

そこでこれまで、予備成形体の圧縮強度を向上させる方
法が種々試みられ、例えば金属系のバインダーを添加す
る方法等が考えられている。しかし、この方法では、得
られる複合材料の強度を低下させる難点がある。
Therefore, various methods have been attempted to improve the compressive strength of the preform, such as adding a metal binder. However, this method has the disadvantage of reducing the strength of the resulting composite material.

(発明が解決しようとする問題点) 従来の金属基複合材料の製造方法においては予備成形体
の構成強化材同士を単に重合接触させるだけであるため
、その予備成形体の圧縮強度が低く、′t8融マトリッ
クスの加圧溶浸時に収縮または破損して歩留りの低下、
製品品質の劣化等の問題があった。
(Problems to be Solved by the Invention) In the conventional manufacturing method of metal matrix composite materials, the constituent reinforcing materials of the preform are simply brought into polymeric contact with each other, so the compressive strength of the preform is low; Shrinkage or breakage during pressurized infiltration of the t8 melt matrix, resulting in a decrease in yield;
There were problems such as deterioration of product quality.

本発明はこのような事情に鑑みてなされたもので、金属
基複合材料の強度を低下させることなく、予備成形体の
強度を向上させ、溶浸時の予備成形体の収縮、破損を防
止し、歩留り良く、8品質の金属基複合材料を@l迄で
きる金属基複合材料の製造方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and it improves the strength of the preform without reducing the strength of the metal matrix composite material, and prevents shrinkage and damage of the preform during infiltration. It is an object of the present invention to provide a method for manufacturing metal matrix composite materials that can produce metal matrix composite materials of up to 8 quality with good yield.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、セラミックス1Jli eft、ウィスカま
たは粒子からなる強化材を圧縮して製品近似形状の予備
成形体を形成し、この予備成形体にマトリックスとなる
溶融金属を加圧含浸させて繊維強化金属基複合材料を得
る金属基複合材料の製造方法において、前記強化材の表
面にその素材段階で予めその強化材成分よりも融点の低
い物質からなる被覆を施し、その強化材を予備成形体形
成用圧縮時に、前記被覆物質の融点以上の温度で加熱す
ることを特徴とする。
(Means for Solving the Problems) The present invention involves compressing a reinforcing material made of ceramics, whiskers, or particles to form a preformed body having a shape similar to that of a product, and adding molten metal as a matrix to this preformed body. In a method for producing a metal matrix composite material in which a fiber-reinforced metal matrix composite material is obtained by pressure impregnation of the reinforcing material, the surface of the reinforcing material is coated with a substance having a melting point lower than that of the reinforcing material components in advance at the material stage, The reinforcing material is heated at a temperature equal to or higher than the melting point of the coating material during compression for forming the preform.

(作用) 発明者らは予備成形体の座屈強度向上について種々検討
した結果、予備成形体を真空中もしくは不活性ガス雰囲
気中で1300〜2000℃に加熱し、強化材同士の接
点を拡散接合することにより、座屈強度を著しく向上で
きることを見い出した。しかし、1500℃近い温度で
焼成することは作業性の面で問題があり、より低い温度
で、より高い圧縮強度を得ることをさらに検討した。
(Function) As a result of various studies on improving the buckling strength of the preform, the inventors found that the preform was heated to 1300 to 2000°C in a vacuum or an inert gas atmosphere, and the contact points between the reinforcing materials were diffusion bonded. It has been found that buckling strength can be significantly improved by doing so. However, firing at a temperature close to 1500°C poses a problem in terms of workability, and we further investigated obtaining higher compressive strength at a lower temperature.

本発明によれば、予備成形体を構成する強化材表面をそ
の強化材主成分よりも融点が低い物質で被覆し、この強
化材を予備成形体の形成時に、その物質の融点以上の温
度で加熱するので、比較的低温度で強化材を拡散接合す
ることができる。
According to the present invention, the surface of the reinforcing material constituting the preform is coated with a substance having a melting point lower than that of the main component of the reinforcing material, and the reinforcing material is heated at a temperature equal to or higher than the melting point of the material when forming the preform. Because of the heating, the reinforcement can be diffusion bonded at relatively low temperatures.

即ち、強化材表面が低融点の被覆物質によって焼結し易
くなり、一般に高い融点を持つ強化材自体を焼結する場
合に比べて拡散接合が低温、短時間で行なえるようにな
り、かつ座屈強度も十分に向上する。
In other words, the surface of the reinforcing material is easily sintered by the coating material with a low melting point, and diffusion bonding can be performed at a lower temperature and in a shorter time than in the case of sintering the reinforcing material itself, which generally has a high melting point. The bending strength is also sufficiently improved.

したがって、溶融金属マトリックスを加圧・含浸させる
際、予備成形体の変形、収縮、割れ等が発生せず、強化
材が均一に配置された金属基複合材料を容易に得ること
ができる。
Therefore, when pressurizing and impregnating the molten metal matrix, deformation, shrinkage, cracking, etc. of the preform do not occur, and a metal matrix composite material in which the reinforcing material is uniformly arranged can be easily obtained.

(実施例) 以下、本発明の一実施例としてSiCウィスカ強化A1
合金複合材料を製造する方法について第1図〜第9図を
参照して説明する。
(Example) Hereinafter, as an example of the present invention, SiC whisker reinforced A1
A method for manufacturing an alloy composite material will be described with reference to FIGS. 1 to 9.

まず第1図(a)〜(d)により、予備成形体の製造工
程を説明する。第1図(a)に示すようにSiCウィス
カ21をセラミックス製の器22に入れ、電気炉23中
で600〜1200℃に加熱し、SiCウィスカ表面に
酸化物、即ち、3i02の層を形成する。次いで、この
酸化処理したSiCウィスカ24にアルコール等の溶媒
25を所定量添加し、撹拌機26等により十分に、撹拌
、混合する(同図(b))。こうして得られた混合粉2
7を型28の中に入れ、ブレスIf129を用いて上下
両方向からプレスすると同時に金型28の周りに配した
ヒータ30により加熱する(同図(C))。なお、この
加熱を大気中で行なうとSiCウィスカ表面の5i02
層が過度に成長し、逆に高真空下で行なうと5i02層
が分解するので、この加熱雰囲気は酸素分圧を適宜調整
して行なう。
First, the manufacturing process of the preform will be explained with reference to FIGS. 1(a) to 1(d). As shown in FIG. 1(a), SiC whiskers 21 are placed in a ceramic container 22 and heated to 600 to 1200°C in an electric furnace 23 to form a layer of oxide, that is, 3i02, on the surface of the SiC whiskers. . Next, a predetermined amount of a solvent 25 such as alcohol is added to the oxidized SiC whiskers 24, and the mixture is thoroughly stirred and mixed using a stirrer 26 or the like (FIG. 2(b)). Mixed powder 2 thus obtained
7 is put into the mold 28 and pressed from both the upper and lower directions using the press If129, and at the same time heated by the heater 30 disposed around the mold 28 (FIG. 2(C)). Note that when this heating is performed in the air, 5i02 on the SiC whisker surface
Since the 5i02 layer will grow excessively and the 5i02 layer will decompose if the heating is carried out under high vacuum, the oxygen partial pressure of the heating atmosphere should be appropriately adjusted.

このようにして所定時間加熱、加圧後、冷却し、所望の
形状、繊維体積率を有する予備成形体31を得る(同図
(d))。
In this way, after heating and pressurizing for a predetermined period of time, it is cooled to obtain a preformed body 31 having a desired shape and fiber volume ratio (FIG. 3(d)).

第2図はSiCウィスカ表面に形成される5i02のり
と加熱時間との関係を示したものである。
FIG. 2 shows the relationship between the 5i02 glue formed on the SiC whisker surface and the heating time.

600℃の加熱でもSiO2の形成が認められ、100
0℃を超えると急激に上昇する。また、生成速度は非常
に速く、1000℃×10分で約10%である。
Formation of SiO2 was observed even when heated to 600°C, and 100°C
It rises rapidly when it exceeds 0°C. Moreover, the production rate is very fast, about 10% at 1000° C. for 10 minutes.

第3図は1000℃で加熱した場合の5i02分と予備
成形体の座屈強度を示したもので、3i02が多い程、
予備成形体の座屈強度は向上するが、SiO2が10%
以上ではほぼ一定となる。
Figure 3 shows the 5i02 min and the buckling strength of the preform when heated at 1000°C; the more 3i02, the more
The buckling strength of the preform is improved, but with 10% SiO2
Above, it becomes almost constant.

SiCウィスカ表面に形成するSiO2が過剰になると
SiCウィスカの断面積が減少し、強度が低下するので
、SiO2はSiCウィスカ表面を薄く被う程度が良い
。具体的なS i 02 fflとしては、10%以下
が望ましい。
If too much SiO2 is formed on the SiC whisker surface, the cross-sectional area of the SiC whisker decreases and the strength decreases, so it is preferable that the SiO2 cover the SiC whisker surface thinly. Specifically, S i 02 ffl is desirably 10% or less.

以上の結果から、SiC表面に酸化物を形成させる条件
としては1000℃×10分程麿の酸化物処理が望まし
い。第4図はこのような条件で酸化処理したSiCウィ
スカど酸化処理無しのSICウィスカとを用いて予備成
形体を製作し、それぞれ焼結温度と予備成形体の座屈強
度とを測定した結果を示す。予め酸化処理したウィスカ
を用い、1000〜1200℃で焼結した予備成形体の
、座屈強度は、酸化処理無しのウィスカを用い場合に比
べて20倍程度向上することが認められる。
From the above results, it is desirable to perform oxide treatment at 1000° C. for about 10 minutes as the conditions for forming oxides on the SiC surface. Figure 4 shows the results of fabricating preforms using SiC whiskers oxidized under these conditions and SIC whiskers without oxidation treatment, and measuring the sintering temperature and buckling strength of the preforms. show. It is recognized that the buckling strength of a preformed body sintered at 1000 to 1200° C. using whiskers that have been oxidized in advance is about 20 times higher than when whiskers that have not been oxidized are used.

なお、酸化処理無しの場合でも予備成形体形成時に加熱
すれば焼結により強度は向上するが、酸化処理したもの
の1/4程度しかないことがわかる。
It can be seen that even in the case without oxidation treatment, the strength is improved by sintering if heated at the time of forming the preform, but the strength is only about 1/4 of that with oxidation treatment.

以上の実施例の方法によって製作した予備成形体におい
ては、第5図(a)に模式的に示すように、各構成繊l
ff31a、31b、31cが互イニ表面の酸化物層3
2を介して拡散反応することにより一体化し、予備成形
体強度が向上する。これに対し、酸化処理をしないで焼
結した場合には、同図(b)に示すように、各構成m1
ff131’ a。
In the preformed body manufactured by the method of the above example, each constituent fiber l is shown schematically in FIG. 5(a).
ff31a, 31b, 31c are the same oxide layer 3 on the surface
They are integrated by a diffusion reaction via 2, and the strength of the preform is improved. On the other hand, when sintering is performed without oxidation treatment, as shown in FIG.
ff131' a.

31’  b、31’ Cの接点部には酸化層がなく、
接点以外の部分にのみ酸化層32′が形成され、その部
分で焼結反応が起こるだけであるため、その圧縮強度は
低い。
There is no oxide layer at the contact points of 31'b and 31'C,
Since the oxide layer 32' is formed only in areas other than the contact points and the sintering reaction only occurs in those areas, its compressive strength is low.

第6図はSiCウィスカ体積率を変え、1000℃で酸
化処理J3よび焼結を行なった予備成形体と、従来方法
によって圧縮成形だけを行なった予備成形体との座屈強
度を測定した結果を示している。積層接合される従来方
法による場合に比べて、本発明方法の場合は座屈強度が
4〜8倍向上していることがわかる。
Figure 6 shows the results of measuring the buckling strength of a preform that was subjected to oxidation treatment J3 and sintering at 1000°C with varying SiC whisker volume fractions, and a preform that was only compression molded using the conventional method. It shows. It can be seen that the buckling strength of the method of the present invention is 4 to 8 times higher than that of the conventional method of laminating and bonding.

また、第7図は前記実施例により焼結した3iCウイス
力子猫成形体と従来方法による未焼結予婦成形体とを用
い、溶融A1合金と溶浸、複合化した場合の予備成形体
の収縮度合を測定した結果を示している。横軸にSiC
ウィスカ体積率、縦軸に収縮率、即ち溶浸前の予備成形
体の高さに対して溶浸により収縮しに予備成形体の高さ
の割合をとったものである。この結果から、予備成形体
を焼結する本実施例の方法によれば、溶浸時の予備成形
体の収縮を従来の未焼結の場合に比べていずれのm雄体
積率においても1/3以下に減少できることが認められ
る。また、収縮率が小さくなったことから溶浸の際、予
備成形体に割れが入ることもなくなり、多回りが向上す
るとともに、予備成形体を実製品形状に近似させる、い
わゆる”Near Net 5hape” テの望まし
い部品製作も行なえるようになる。
FIG. 7 shows a preform obtained by infiltrating and compounding with molten A1 alloy using the 3iC Wiss-forced compact sintered according to the above embodiment and the unsintered preform formed by the conventional method. The results of measuring the degree of shrinkage are shown. SiC on the horizontal axis
The whisker volume fraction is plotted on the vertical axis as the shrinkage rate, that is, the ratio of the height of the preform shrunk due to infiltration to the height of the preform before infiltration. From this result, according to the method of this example for sintering the preform, the shrinkage of the preform during infiltration is reduced to 1/1/2 at any m-male volume fraction compared to the conventional unsintered case. It is recognized that it can be reduced to 3 or less. In addition, because the shrinkage rate has been reduced, there will be no cracking in the preform during infiltration, improving the number of turns and making the preform approximate the shape of the actual product, so-called "Near Net 5hape". It will also be possible to manufacture the desired parts.

また、第8図は前記実施例の方法で製造した最終製品と
しての金属基複合材料(SiCウィスカで強化した20
24A1合金)について、その引張強さを従来方法によ
るものと比較して示したしのである。前記実施例のもの
は、各種体積率の予備成形体においても従来方法による
ものに比べて引張強ざが向上することが認められる。
Further, FIG. 8 shows a metal matrix composite material (20% reinforced with SiC whiskers) as a final product manufactured by the method of the above example.
24A1 alloy), its tensile strength was compared with that obtained by the conventional method. It is recognized that the tensile strength of the above-mentioned examples is improved compared to that obtained by the conventional method even in preforms having various volume ratios.

なお、前記実施例では、SiCウィスカを予め加熱する
ことにより、被覆物質としてSiM化物である5102
を形成したが、本発明はこれに限らず、各種セラミック
ス!IN、ウィスカ、粒子について、その表面に予め酸
化物、窒化物、炭化物またはケイ化物を形成することで
実施できるものである。その具体的な例を下記の表に示
す。
In the above example, by heating the SiC whiskers in advance, 5102, which is a SiM compound, is used as the coating material.
However, the present invention is not limited to this, and can be applied to various ceramics! This can be carried out by forming an oxide, nitride, carbide, or silicide on the surface of IN, whiskers, and particles in advance. Specific examples are shown in the table below.

〔以下余白〕[Margin below]

なお、被覆物質としては、前記のような強化材成分自体
の反応生成物質に限らず、めっぎ、化学的蒸石(CVD
) 、溶射等により強化材成分または他成分である純金
属、合金または酸化物性ヲコーティングさせることによ
り形成たものでもよい。
The coating material is not limited to the reaction product of the reinforcing material component itself as mentioned above, but also plating, chemical vapor stone (CVD), etc.
), or may be formed by coating the reinforcing material component or other components of pure metal, alloy, or oxide by thermal spraying or the like.

例えば商品名「アトロン」として知られるSi。For example, Si is known under the trade name "Atron".

Ti、Zr、Ta等の金属アルコキシドを主成分とする
溶液にm維を浸し、加水分解することにより、これらの
の酸化物の被覆を形成するこも可能である。−例を挙げ
れば、SiCウィスカを強化材とした場合、その表面に
T i 02の被覆を形成する如くである。
It is also possible to form a coating of oxides of these metals by immersing the m-fibers in a solution containing metal alkoxides such as Ti, Zr, Ta, etc. as main components and hydrolyzing them. - For example, when SiC whiskers are used as a reinforcing material, a coating of T i 02 is formed on the surface thereof.

なお、SiCウィスカの表面にTiO2を形成したよう
な場合、強化すべきマトリックスとなる合金系によって
は、合金成分が強化材表面の酸化物と反応し、得られる
複合材料の強度を低下させる場合がある。そこで、Si
Cウィスカ表面にTio を被覆した場合、これをN2
等の還元性界囲気で加熱処理することにより、SiCウ
ィスカ表面に形成したTiO2を還元し、TiN被覆と
してもよい。第8図は還元処理を施したものとそうでな
いものとを、従来方法によるものと比較して、予備成形
体の座屈強度の測定結果を示したものである。TlO2
を還元した予備成形体の座屈強度aは、未還元の場合す
に比べて若干強度は低下する傾向にあるが、従来方法の
場合Cに比べて3〜7倍の値を示すことが認められる。
In addition, when TiO2 is formed on the surface of SiC whiskers, depending on the alloy system that becomes the matrix to be strengthened, the alloy components may react with oxides on the surface of the reinforcing material, reducing the strength of the resulting composite material. be. Therefore, Si
When Tio is coated on the C whisker surface, it is coated with N2
The TiO2 formed on the surface of the SiC whisker may be reduced by heat treatment in a reducing ambient atmosphere such as the above, thereby forming a TiN coating. FIG. 8 shows the results of measuring the buckling strength of preforms that have been subjected to reduction treatment and those that have not been subjected to reduction treatment, in comparison with those that have been prepared using a conventional method. TlO2
The buckling strength a of the preform obtained by reducing the preform tends to be slightly lower than that of the unreduced material, but it is found that the buckling strength a of the preform obtained by the conventional method is 3 to 7 times that of C. It will be done.

(発明の効果〕 以上のように、本発明に係る金属基複合材料の製造方法
によれば、予備成形体構成用の繊維、粒子またはウィス
カの表面を予めこれよりも融点の低い物質で被覆し、拡
散接合により予備成形体を形成するので、その予備成形
体の強度が向上し、溶融金属マトリックスの加圧、溶浸
時の収縮抑制、破損防止が図れ、その結果、歩留りが著
しく向上できるとともに、実施が比較的低温度で容易に
行なえる等の効果が奏される。
(Effects of the Invention) As described above, according to the method for producing a metal matrix composite material according to the present invention, the surface of fibers, particles, or whiskers for constituting a preform is coated in advance with a substance having a lower melting point than that of the fiber, particle, or whisker. Since the preform is formed by diffusion bonding, the strength of the preform is improved, and the molten metal matrix is pressurized, shrinkage is suppressed during infiltration, and damage is prevented.As a result, the yield can be significantly improved. This method has the advantage that it can be easily carried out at relatively low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程図、第2図はSiC表面のSi酸化物生成量と
加熱条件の関係を示すグラフ、第3図はSiC表面の3
i酸化物生成量と予備成形体の座屈強度を示すグラフ、
第4図は予備成形体の焼結温度と座屈温度の関係を示す
グラフ、第5図(a)、(b)は予備成形体の強化メカ
ニズムを説明するための模式図、第6図は予備成形体の
繊維体積率と座屈強度の関係を示すグラフ、第7図は予
備成形体のl推体積率と溶浸、複合化による収縮率との
関係を示すグラフ、第8図は本発明方法により製造した
複合材料の引張強さを示すグラフ、第9図は焼結後、還
元処理を施した場合の予備成形体の座屈強度を示すグラ
フ、第10図<a)〜(e)は従来法による金属基複合
材料の製造工程を示す図、第11図(a)、(b)は従
来法による予備成形体の強化メカニズムを説明するため
の模式図である。 31.31a、31b、31cm・・強化繊維(SiC
ウィスカ)、32・・・被覆物質(Si02層)。 (0)           (b )■ 廿 cc>          (d) 第1図 第2図 奪3図 第4図 菊5図 体積率(%) 第6図 づ本 f貴 早 (ンくン 第7 図 体 千貫 主 (Vチ〕(5嘔) 第8図 体積*(’/、) 第9図 (G)          (b) 第10図 第11図
Figures 1 (a) to (d) are process diagrams for explaining one embodiment of the present invention, Figure 2 is a graph showing the relationship between the amount of Si oxide produced on the SiC surface and heating conditions, and Figure 3 is a graph showing the relationship between the amount of Si oxide produced on the SiC surface and heating conditions. 3 on the SiC surface
i Graph showing the amount of oxide produced and the buckling strength of the preform,
Figure 4 is a graph showing the relationship between sintering temperature and buckling temperature of the preform, Figures 5 (a) and (b) are schematic diagrams for explaining the strengthening mechanism of the preform, and Figure 6 is a graph showing the relationship between the sintering temperature and buckling temperature of the preform. Graph showing the relationship between the fiber volume fraction and buckling strength of the preform, Figure 7 is a graph showing the relationship between the volume ratio of the preform and the shrinkage rate due to infiltration and compounding, and Figure 8 is the graph showing the relationship between the fiber volume fraction and buckling strength of the preform. A graph showing the tensile strength of the composite material produced by the method of the invention, FIG. 9 is a graph showing the buckling strength of the preform when reduction treatment is performed after sintering, and FIG. 10 <a) to (e) ) is a diagram showing the manufacturing process of a metal matrix composite material by a conventional method, and FIGS. 11(a) and 11(b) are schematic diagrams for explaining the strengthening mechanism of a preform by a conventional method. 31.31a, 31b, 31cm...Reinforced fiber (SiC
whiskers), 32... coating material (Si02 layer). (0) (b) ■ 廿cc> (d) Figure 1 Figure 2 Figure 3 Figure 4 Kiku Figure 5 Volume ratio (%) Figure 6 Zumoto f Kiyoshi (Nkun Figure 7 Body Senkan) Main (Vchi) (5 小) Figure 8 Volume *('/,) Figure 9 (G) (b) Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1、セラミックス繊維、ウィスカまたは粒子からなる強
化材を圧縮して製品近似形状の予備成形体を形成し、こ
の予備成形体にマトリックスとなる溶融金属を加圧含浸
させて繊維強化金属基複合材料を得る金属基複合材料の
製造方法において、前記強化材の表面にその素材段階で
予めその強化材成分よりも融点の低い物質からなる被覆
を施し、その強化材を予備成形体形成用圧縮時に、前記
被覆物質の融点以上の温度で加熱することを特徴とする
金属基複合材料の製造方法。 2、強化材の被覆物質を、その強化材成分の酸化物、窒
化物、炭化物またはケイ化物とする特許請求の範囲1項
記載の金属基複合材料の製造方法。
[Claims] 1. A reinforcing material made of ceramic fibers, whiskers, or particles is compressed to form a preform with a shape approximating the product, and this preform is impregnated with molten metal as a matrix under pressure to form fibers. In the method for producing a metal matrix composite material for obtaining a reinforced metal matrix composite material, the surface of the reinforcement material is coated with a substance having a melting point lower than that of the reinforcement components in advance at the material stage, and the reinforcement material is formed into a preform. A method for producing a metal matrix composite material, which comprises heating at a temperature equal to or higher than the melting point of the coating material during compression for formation. 2. The method for producing a metal matrix composite material according to claim 1, wherein the reinforcing material is coated with an oxide, nitride, carbide, or silicide of the reinforcing material component.
JP9201687A 1987-04-16 1987-04-16 Manufacture of metal-base composite material Pending JPS63259039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9201687A JPS63259039A (en) 1987-04-16 1987-04-16 Manufacture of metal-base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9201687A JPS63259039A (en) 1987-04-16 1987-04-16 Manufacture of metal-base composite material

Publications (1)

Publication Number Publication Date
JPS63259039A true JPS63259039A (en) 1988-10-26

Family

ID=14042730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9201687A Pending JPS63259039A (en) 1987-04-16 1987-04-16 Manufacture of metal-base composite material

Country Status (1)

Country Link
JP (1) JPS63259039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085736A (en) * 2008-09-30 2010-04-15 Canon Inc Optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085736A (en) * 2008-09-30 2010-04-15 Canon Inc Optical element
US8338003B2 (en) 2008-09-30 2012-12-25 Canon Kabushiki Kaisha Optical material and optical element

Similar Documents

Publication Publication Date Title
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US5198187A (en) Methods for production of surface coated niobium reinforcements for intermetallic matrix composites
CN114574732B (en) Particle reinforced aluminum-based composite material and preparation method thereof
US8051892B2 (en) Method of manufacturing metal-carbon nanocomposite material
US6521061B1 (en) Preforms, metal matrix composite materials using said preforms, and producing processes thereof
JPS63259039A (en) Manufacture of metal-base composite material
JP3618106B2 (en) Composite material and method for producing the same
JPH1068004A (en) Compacting method for titanium alloy
JP2004250756A (en) Method of producing preform for composite material
JPS6357734A (en) Fiber reinforced metal and its production
US5697421A (en) Infrared pressureless infiltration of composites
JP5880208B2 (en) Method for producing inorganic fibrous ceramic porous body
JPH0920572A (en) Composite material of ceramic-based fiber and its production
JPH11302078A (en) Composite material and its production
JPH0564692B2 (en)
JP3962779B2 (en) Method for producing preform for fiber reinforced composite material and method for producing fiber reinforced composite material
JPS63247323A (en) Aluminum alloy composite material and its production
JPH1150171A (en) Production of titanium-aluminum matrix composite
JPS63137132A (en) Manufacture of metal-base composite material
JP2762520B2 (en) Method for producing TiAl intermetallic compound sintered member
JP2952087B2 (en) Aluminum borate whisker having a nitrided layer on the surface and method for producing preform
JPS60138031A (en) Fibrous molding for composite material
JPH0218364A (en) Fiber reinforced mullite composite material subjected to particle dispersion strengthening and production thereof
JP2792192B2 (en) Method for producing titania whisker reinforced Al-based composite material
JPH01213472A (en) Production of fiber molded product