JPS6325834B2 - - Google Patents

Info

Publication number
JPS6325834B2
JPS6325834B2 JP55176556A JP17655680A JPS6325834B2 JP S6325834 B2 JPS6325834 B2 JP S6325834B2 JP 55176556 A JP55176556 A JP 55176556A JP 17655680 A JP17655680 A JP 17655680A JP S6325834 B2 JPS6325834 B2 JP S6325834B2
Authority
JP
Japan
Prior art keywords
aeration tank
amount
aeration
variable speed
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55176556A
Other languages
Japanese (ja)
Other versions
JPS57102290A (en
Inventor
Teruhide Kitayama
Tomio Oonishi
Tadashi Hirano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHO KIKI HANBAI KK
NIPPON HORYUUENSU KK
Original Assignee
JOHO KIKI HANBAI KK
NIPPON HORYUUENSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOHO KIKI HANBAI KK, NIPPON HORYUUENSU KK filed Critical JOHO KIKI HANBAI KK
Priority to JP55176556A priority Critical patent/JPS57102290A/en
Publication of JPS57102290A publication Critical patent/JPS57102290A/en
Publication of JPS6325834B2 publication Critical patent/JPS6325834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は活性汚泥法における酸素の補給と溶存
酸素濃度の制御を曝気槽外に設置したオーバーフ
ロー方式による連続採水による検水により行なう
ことにより、酸素供給源であるブロワーの出力を
制御し、動力源に用いられる電力或は燃料を極力
低減させて経済的運転を図り、エネルギーの省力
効果を図ることを目的とする活性汚泥法に於ける
曝気量の調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention replenishes oxygen and controls the dissolved oxygen concentration in the activated sludge method by testing water by continuous water sampling using an overflow system installed outside the aeration tank. This device relates to an aeration amount adjustment device in the activated sludge method, which aims to control the output of the engine and reduce the amount of electricity or fuel used as a power source to achieve economical operation and save energy. It is.

活性汚泥法に於いては、有機物の生物分解及び
生物合成過程において消費する酸素を補給するた
め、曝気槽内の混合液中に空気を送り微細な気泡
を生成し、水中に酸素を溶入させて活性汚泥に酸
素を補給すると共に曝気槽全体を撹拌混合して活
性汚泥を一様に分散させることにより有機廃水と
の接触を図つている。このようにして溶入された
酸素の濃度は通常1〜3mg/になるように操作
される。ここで曝気槽内の溶存酸素濃度が0.5
mg/以下のように極端に低くなると、微生物の
呼吸速度が制約されて臭気を発したり、BOD除
去率が低下する。又、過度の曝気が沈澱槽内で活
性汚泥を浮上させるなど処理効率に及ぼす影響は
大きいので、曝気槽内の溶存酸素濃度を適正(1
〜3mg/)に保つための配慮がなされている。
しかし、原廃水の水量及び水質の変動がなく、
又、これに対する活性汚泥濃度の調整が適切であ
れば、この条件を満たすことは容易であるが、現
実には工場排水、下水のように昼間と夜間の水
量、水質の変動が大きい場合にはその調整が難か
しい。従つて活性汚泥濃度と返送汚泥の管理操作
を十分に行なうには曝気槽の通気量(酸素供給)
を適切に行う必要がある。しかし、実際の運転に
あたつては過度の曝気による活性汚泥の浮上等の
影響がない限り、過剰であつても動力費用が無駄
になるだけとの考えが強く、又、装置においても
単に流入量の変動が激しい時のみ送風量の調節を
行なう程度である。例えば容積型或は遠心型何れ
の形式のブロワーを使用する場合でも台数を加減
するか、空気逃し弁を開いて調節したり、散気管
についているバルブを操作して送風量を調節する
程度のことが多い。このような運転では定格の運
転のみが通常の状態であり、空気量の調節はブロ
ワーの機能に直接影響を及ぼさない方式を採用し
ているため動力側への省力化の配慮は全くなされ
ていない欠点があつた。
In the activated sludge method, in order to replenish the oxygen consumed during the biodegradation and biosynthesis processes of organic matter, air is sent into the mixed liquid in the aeration tank to generate fine bubbles and dissolve oxygen into the water. In addition to supplying oxygen to the activated sludge, the entire aeration tank is stirred and mixed to uniformly disperse the activated sludge, thereby achieving contact with organic wastewater. The concentration of oxygen introduced in this way is usually controlled to be 1 to 3 mg/deg/ml. Here, the dissolved oxygen concentration in the aeration tank is 0.5
When the concentration becomes extremely low, such as below mg/mg, the respiration rate of microorganisms is restricted, causing odor to be emitted and the BOD removal rate to decrease. In addition, excessive aeration has a large effect on treatment efficiency, such as by causing activated sludge to float in the settling tank, so the dissolved oxygen concentration in the aeration tank should be adjusted to an appropriate level (1.
Care has been taken to maintain the concentration at ~3mg/).
However, there was no change in the amount or quality of raw wastewater,
In addition, if the activated sludge concentration is adjusted appropriately, this condition can be easily met, but in reality, in cases where there are large fluctuations in water volume and quality between daytime and nighttime, such as in industrial wastewater and sewage, That adjustment is difficult. Therefore, in order to adequately manage activated sludge concentration and return sludge, the aeration rate (oxygen supply) of the aeration tank must be adjusted.
need to be done appropriately. However, in actual operation, unless there is an effect such as the floating of activated sludge due to excessive aeration, there is a strong belief that even if there is excessive aeration, the power cost will be wasted. The amount of air blown is only adjusted when the amount fluctuates significantly. For example, when using either positive displacement or centrifugal type blowers, the only thing you have to do is increase or decrease the number of blowers, open the air release valve to adjust the amount, or operate the valve attached to the diffuser pipe to adjust the air flow rate. There are many. In this type of operation, only rated operation is the normal state, and the air volume is adjusted in a way that does not directly affect the function of the blower, so no consideration is given to saving labor on the power side. There were flaws.

本発明はかかる従来の欠点を除去するため、ブ
ロワーの動力源として使用する電動機或は液体燃
料によるエンジンの特性である送風量は回転数
に比例し、圧力は回転数の二乗に比例し、軸
動力は回転数の三乗に比例する。の三要素に基づ
き、活性汚泥法による施設の運転状況に応じて酸
素供給源であるブロワーの回転数を制御すること
により送風量を調節し、その結果から動力源であ
る電動機或はエンジンの電力及び燃料の消費を極
力節約し、経済効果を高めるものである。
In order to eliminate such conventional drawbacks, the present invention aims to eliminate the problems of the electric motor or liquid fuel engine used as the power source for the blower. Power is proportional to the cube of the number of rotations. Based on these three factors, the air flow rate is adjusted by controlling the rotational speed of the blower, which is the oxygen supply source, according to the operating status of the facility using the activated sludge method, and from the result, the electric power of the electric motor or engine, which is the power source, is adjusted. It also saves fuel consumption as much as possible and increases economic efficiency.

本発明の実施例を図面により説明すると、1は
曝気槽5内の活性汚水中の溶存酸素量を隔膜電極
法により計測する溶存酸素測定器で、検出部2と
変換部3と発信部4とから構成してある。原動機
6は可変変速装置7を介してブロワー8に連動
し、このブロワー8に連結した送風管9は前記曝
気槽5内に挿入し、全体に多数の孔を設けて、該
曝気槽5の底部に位置した散気管10を該送気管
の先端に取付けてある。11は曝気槽5外に設置
したフローセルで、内部一側に設けた溜室12内
に前記検出部2の下部を収容設置し、更に曝気槽
5内に設置したポンプ15に連結した導水パイプ
16を前記溜室12の底部に連結する。又、導水
パイプ16に設けた分岐管17にはバルブ18を
取付けてある。13は溜室12の上部からオーバ
ーフローした検水を収容する第2室で、この第2
室13と曝気槽5とをパイプ14で連結する。
An embodiment of the present invention will be described with reference to the drawings. 1 is a dissolved oxygen measuring device that measures the amount of dissolved oxygen in activated sewage in an aeration tank 5 using a diaphragm electrode method; It is composed of The prime mover 6 is interlocked with a blower 8 via a variable speed device 7, and a blower pipe 9 connected to the blower 8 is inserted into the aeration tank 5, and a large number of holes are provided throughout the bottom of the aeration tank 5. An air diffuser pipe 10 located at is attached to the tip of the air supply pipe. Reference numeral 11 denotes a flow cell installed outside the aeration tank 5, in which the lower part of the detection unit 2 is housed in a reservoir 12 provided on one side of the interior, and a water guide pipe 16 connected to a pump 15 installed inside the aeration tank 5. is connected to the bottom of the reservoir chamber 12. Further, a valve 18 is attached to a branch pipe 17 provided in the water guide pipe 16. Reference numeral 13 denotes a second chamber that accommodates the test water that overflows from the upper part of the reservoir chamber 12;
The chamber 13 and the aeration tank 5 are connected by a pipe 14.

次に、本実施例の作用について説明すると、原
動機6の駆動力は可変速装置7を介してブロワー
8を回転し、空気を曝気槽5内に送気管9を介し
て散気管10から供給して有機廃水中に酸素を溶
解させ、溶存酸素量を高める。曝気槽5の内の有
機廃水をポンプ15によりパイプ16を介してフ
ローセル11内の溜室12の底部に検水として送
るが、該一定速度の流速を有する検水はオーバー
フロー方式による連続採水が行われるため常に正
確に測定出来る。この溜室12内の検水を検出部
2で測定した信号は変換部3に導かれ、曝気槽5
内に存する活性汚泥水中の溶存酸素量が指示され
る。更に変換部3への入力は発信部4に導かれ、
これを発信させて可変速装置7に信号を送る。こ
の可変速装置7は発信部4から送られた信号を選
別する受信装置を内蔵し、選別した結果をもとに
可変速装置7内で必要な回転数に随時変更し、こ
れを原動機6に伝える。原動機6ではこの変速信
号に応じて回転数の増減が行なわれ、その回転数
はそのまま可変速装置7を介してブロワー8に伝
達され、所定の空気量を曝気槽5内に送気管及び
散気管10を通じて送風する。この送風量は回転
数に比例するものであるから、あらかじめ設定さ
れた曝気槽5内の溶存酸素濃度(1〜3ppm)を
維持する送風量を得るため、可変速装置7の作動
により回転数を変えてブロワー8に伝達し、回転
数に応じた送風量を得ることが出来る。
Next, to explain the operation of this embodiment, the driving force of the prime mover 6 rotates the blower 8 via the variable speed device 7, and air is supplied into the aeration tank 5 from the aeration pipe 10 via the air supply pipe 9. to dissolve oxygen in organic wastewater and increase the amount of dissolved oxygen. The organic wastewater in the aeration tank 5 is sent by the pump 15 through the pipe 16 to the bottom of the reservoir chamber 12 in the flow cell 11 as test water, and the test water having a constant flow rate can be continuously sampled by an overflow method. This allows accurate measurements to be taken at all times. A signal obtained by measuring the sample water in the reservoir chamber 12 with the detection section 2 is guided to the conversion section 3, and the signal is sent to the aeration tank 5.
The amount of dissolved oxygen in activated sludge water is indicated. Furthermore, the input to the converter 3 is guided to the transmitter 4,
This signal is transmitted to the variable speed device 7. This variable speed device 7 has a built-in receiving device that selects the signals sent from the transmitter 4, and based on the results of the selection, changes the rotation speed within the variable speed device 7 as needed, and transmits this to the prime mover 6. tell. In the prime mover 6, the rotational speed is increased or decreased according to this speed change signal, and the rotational speed is directly transmitted to the blower 8 via the variable speed device 7, and a predetermined amount of air is sent into the aeration tank 5 through an air supply pipe and an aeration pipe. Air is blown through 10. Since the amount of air blown is proportional to the rotation speed, in order to obtain the amount of air blown that maintains the preset dissolved oxygen concentration (1 to 3 ppm) in the aeration tank 5, the rotation speed is changed by operating the variable speed device 7. By changing the rotation speed and transmitting it to the blower 8, it is possible to obtain an amount of air blown according to the rotation speed.

活性汚泥水中の溶存酸素濃度は曝気槽5内に流
入する活性汚泥水の量及び濃度により変動する
が、特に工場廃水や下水の場合には夜間曝気槽5
内に流入する活性汚泥水の量が激減したり、又、
濃度も薄くなることが多いので、昼間の運転時の
送風量をそのまま維持すれば当然過剰となる。こ
のためあらかじめ夜間の活性汚泥水の量及び濃度
を知り、これに基づいた空気量を算出しておけ
ば、溶存酸素測定器1に連動された可変速装置7
の調整は更に容易になる。尚、可変速装置7は原
動機6の機種に応じて区別される。例えば、可変
速電動機を用いる場合には電動機本体に可変速装
置が組入れられているので、これに溶存酸素測定
器の発信部4より発信する信号を受信させて回転
数の調整を行う。そのほか機械的にギヤ変速を行
なつて回転数を制御することも可能であり、溶存
酸素測手器1の発信部4より発信した信号をギヤ
変速機に受け、必要回転数に増減して送風を行な
うことも出来る。
The dissolved oxygen concentration in activated sludge water varies depending on the amount and concentration of activated sludge water flowing into the aeration tank 5, but especially in the case of factory wastewater or sewage, the concentration of dissolved oxygen in the aeration tank 5 is
The amount of activated sludge water flowing into the interior of the tank is drastically reduced, and
Since the concentration is often low, if the amount of air blown during daytime operation is maintained as it is, it will naturally become excessive. Therefore, if you know the amount and concentration of activated sludge water at night in advance and calculate the amount of air based on this, the variable speed device 7 linked to the dissolved oxygen measuring device 1 can
adjustment becomes easier. Note that the variable speed device 7 is distinguished depending on the model of the prime mover 6. For example, when a variable speed electric motor is used, a variable speed device is incorporated in the motor body, so that the rotation speed is adjusted by having the variable speed device receive a signal transmitted from the transmitter 4 of the dissolved oxygen measuring device. In addition, it is also possible to control the rotation speed by mechanically changing gears, and the gear transmission receives the signal sent from the transmitter 4 of the dissolved oxygen measuring device 1, and increases or decreases the rotation speed to the required value and blows air. You can also do this.

以上の如く、本発明は曝気槽と別なフローセル
内に於いて、曝気槽内からの連続採水によるフロ
ーセル方式で採水された検水中の溶存酸素量を溶
存酸素測定器の検出部で正確に検出し、発信部か
ら発信された信号が可変速装置に伝達されて直ち
に原動機の回転数を制御することにより、曝気槽
内の溶存酸素濃度に応じた送風量で送風すること
が出来るため、夜間に活性汚泥水が急激に減るよ
うな場合でも、これに対応する溶存酸素濃度を維
持しながら適正な送風による軸動力の軽減を図る
ことができ、且つ、曝気槽内に空気を供給して
も、DO値の測定は別のところで行つているた
め、該測定値には誤差を生ずることはなく、酸素
の補給と溶存酸素濃度の制御によつて活性汚泥法
による曝気槽の管理を容易にし、あわせて通気量
の調整による動力消費量を極力低減させて経済的
運転を図り省力効果を得ることが出来る。
As described above, in the present invention, in a flow cell separate from the aeration tank, the amount of dissolved oxygen in the water sampled using the flow cell method by continuous water sampling from the aeration tank can be accurately measured using the detection unit of the dissolved oxygen measuring device. The signal sent from the transmitter is transmitted to the variable speed device and the rotational speed of the prime mover is immediately controlled, allowing air to be blown at an amount that corresponds to the dissolved oxygen concentration in the aeration tank. Even when activated sludge water decreases rapidly at night, it is possible to reduce the shaft power by appropriate air blowing while maintaining the corresponding dissolved oxygen concentration, and to supply air into the aeration tank. However, since the DO value is measured at a separate location, there are no errors in the measured value, and the aeration tank using the activated sludge method can be easily managed by supplementing oxygen and controlling the dissolved oxygen concentration. In addition, by adjusting the ventilation amount, power consumption can be reduced as much as possible to achieve economical operation and a labor-saving effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示した配管図である。 1は溶存酸素測定器、2は検出部、3は変換
部、4は発信部、5は曝気槽、6は原動機、7は
可変速装置、8はブロワー、9は送気管、10は
散気管、11はフローセル、15はポンプ、16
は導水パイプ。
The drawing is a piping diagram showing an embodiment of the present invention. 1 is a dissolved oxygen measuring device, 2 is a detection unit, 3 is a conversion unit, 4 is a transmission unit, 5 is an aeration tank, 6 is a prime mover, 7 is a variable speed device, 8 is a blower, 9 is an air supply pipe, 10 is an aeration pipe , 11 is a flow cell, 15 is a pump, 16
is a water pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ブロワー8を可変速装置7を介して原動機6
に連結し、このブロワー8に連結した送気管9の
先端に連結した散気管10を曝気槽5内の底部に
設置し、この曝気槽5内に設置したポンプ15と
曝気槽5外に設置したフローセル11とを導水パ
イプ16で連結し、検出部2と変換部3と発信部
4からなる溶存酸素測定器1の該検出部2をフロ
ーセル11内の溜室12内に設置すると共に該発
信部4を前記可変速装置7に連結してなり、フロ
ーセル11内に於いて、曝気槽内からの連続採水
によるオーバーフローセル方式で採水された検水
中の溶存酸素量を前記検出部12で検出した信号
を、変換器3を介して発信部4に伝え、この発信
部4から発信する信号で可変速装置7を制御する
ことによりブロワー8の送風量を制御することを
特徴とする活性汚泥法に於ける曝気量の調整装
置。
1 The blower 8 is connected to the prime mover 6 via the variable speed device 7.
An aeration pipe 10 connected to the tip of an air supply pipe 9 connected to the blower 8 was installed at the bottom of the aeration tank 5, and a pump 15 was installed inside the aeration tank 5 and a pump 15 was installed outside the aeration tank 5. The detecting section 2 of the dissolved oxygen measuring device 1, which is composed of a detecting section 2, a converting section 3, and a transmitting section 4, is connected to the flow cell 11 by a water guide pipe 16, and the detecting section 2 is installed in the reservoir chamber 12 in the flow cell 11, and the transmitting section 4 is connected to the variable speed device 7, and in the flow cell 11, the detection unit 12 detects the amount of dissolved oxygen in the sample water sampled by an overflow cell method by continuously sampling water from the aeration tank. The activated sludge method is characterized in that the signal sent from the transmitter 3 is transmitted to the transmitter 4, and the variable speed device 7 is controlled by the signal transmitted from the transmitter 4, thereby controlling the amount of air blown by the blower 8. Aeration amount adjustment device.
JP55176556A 1980-12-16 1980-12-16 Regulating device for rate of aeration in activated sludge method Granted JPS57102290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55176556A JPS57102290A (en) 1980-12-16 1980-12-16 Regulating device for rate of aeration in activated sludge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55176556A JPS57102290A (en) 1980-12-16 1980-12-16 Regulating device for rate of aeration in activated sludge method

Publications (2)

Publication Number Publication Date
JPS57102290A JPS57102290A (en) 1982-06-25
JPS6325834B2 true JPS6325834B2 (en) 1988-05-26

Family

ID=16015641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55176556A Granted JPS57102290A (en) 1980-12-16 1980-12-16 Regulating device for rate of aeration in activated sludge method

Country Status (1)

Country Link
JP (1) JPS57102290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021587B4 (en) 2009-05-29 2022-01-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Electric charging socket with lighting feature

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179196A (en) * 1984-02-27 1985-09-13 Toyota Motor Corp Device for controlling aeration blower in waste water treating equipment
CN101795982A (en) * 2007-07-02 2010-08-04 莱因哈德·伯勒 Method for determining the amount of oxygen introduced into a process tank of a biological treatment works during a ventilation process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122248A (en) * 1977-03-31 1978-10-25 Kubota Ltd Method of controlling suction air for aeration tank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122248A (en) * 1977-03-31 1978-10-25 Kubota Ltd Method of controlling suction air for aeration tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010021587B4 (en) 2009-05-29 2022-01-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Electric charging socket with lighting feature

Also Published As

Publication number Publication date
JPS57102290A (en) 1982-06-25

Similar Documents

Publication Publication Date Title
US3557954A (en) Sewage treatment apparatus and method
JP2010196843A (en) Flow control device and water treatment system with flow control device incorporated therein
CN218435225U (en) Multistage bubble quantity aeration control device
JPS6325834B2 (en)
NZ505939A (en) Aerator with pump and venturi, with air inlet pipe being adjustably fixed to float(s)
CN203866159U (en) Nitrogen and phosphorus removal sewage treatment system adopting constant water level sequencing batch type activated sludge method
CN113307365B (en) Device and method for automatically determining optimal adding ratio and continuous adding stabilization time of denitrification carbon source
EP0891301B1 (en) Waste water treatment apparatus
CN219217732U (en) AOA sewage treatment system for accurately controlling aeration quantity
US4324655A (en) Apparatus for treating wastewater with oxygen
KR20030074359A (en) Apparatus for treating waste water
JP2009165959A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
CN219440787U (en) Air control water outlet weir
CN218767923U (en) Dissolved oxygen content adjusting device based on AOA technology
JPH0229398B2 (en)
KR102442896B1 (en) Circulation type oxygen supply apparatus
CN220867200U (en) Carbon source adding early warning and monitoring system for CASS pool
JP2952282B1 (en) Wastewater treatment control method
CN217996881U (en) Gas-lift biofilm reactor
CN219194662U (en) BOD aeration device with function of improving aeration uniformity
HU189376B (en) Process and apparatus for the supply of oxygen in regulated quantity into the active sludge reactor of biological sewage purifying equipment, as well as auxiliary reactor for the determination of the variation of the relative oxygen concentration of sewage sample containing active sludge, particularly for the execution of the process
JPS608880B2 (en) Wastewater treatment method
JP2574723B2 (en) Automatic sludge concentration adjustment method and apparatus in sewage treatment tank
JP2515257B2 (en) Automatic adjustment device for sludge concentration in sewage treatment tank
JPS5898085A (en) Cultivation method of microorganism in high yield