JPS63257652A - Substrate for thermal head - Google Patents

Substrate for thermal head

Info

Publication number
JPS63257652A
JPS63257652A JP9202687A JP9202687A JPS63257652A JP S63257652 A JPS63257652 A JP S63257652A JP 9202687 A JP9202687 A JP 9202687A JP 9202687 A JP9202687 A JP 9202687A JP S63257652 A JPS63257652 A JP S63257652A
Authority
JP
Japan
Prior art keywords
silicon oxide
porous
layer
thermal
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9202687A
Other languages
Japanese (ja)
Inventor
Kenji Kuroki
賢二 黒木
Taiji Tsuruoka
鶴岡 泰治
Susumu Shibata
進 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9202687A priority Critical patent/JPS63257652A/en
Publication of JPS63257652A publication Critical patent/JPS63257652A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head having favorable thermal response characteristics and consuming less electric power, by providing a single-crystal silicon plate, a porous silicon oxide layer and a non-porous insulator layer provided on the silicon oxide layer. CONSTITUTION:This substrate for a thermal head comprises a single crystal silicon plate 1 having high thermal conductivity, a layer of porous silicon oxide 2 provided by subjecting a resistor-forming surface of the plate 1 to anodic electrolysis and then to thermal oxidation, and a non-porous insulator layer 3 provided on the layer of silicon oxide 2. The silicon oxide layer 2 has a film thickness of 5-100 mum and a porosity of 30-70%. The non-porous insulator layer 3 is a silicon oxide film provided by sputtering, which has a film thickness of 0.1-2 mum. The silicon oxide layer 2 has low thermal conductivity and thermal capacity, because of the presence of fine pores. The non-porous insulator layer 3, which functions to seal the pores present at the surface of the silicon oxide layer 2, can be provided in a small thickness because the pores are small in size. Therefore, the overall thermal conductivity and thermal capacity can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、単結晶シリコンを用いたサーマルヘッド用基
板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate for a thermal head using single crystal silicon.

〔従来の技術〕[Conventional technology]

従来より、サーマルヘッド用基板としては、アルミナ基
板上にガラスをコーティングしたいわゆるグレーズドア
ルミナ基板が用いられており、現在もこれが主流である
。しかしながら、近年サーマルヘッドの低消費電力化、
高印字品質化の要求により、低温層(グレーズに相当)
の熱伝導率もしくは熱容量の減少、また放熱層(アルミ
ナに相当)の熱伝導率の増加を求められるようになった
Conventionally, a so-called glazed alumina substrate, which is an alumina substrate coated with glass, has been used as a thermal head substrate, and this is still the mainstream. However, in recent years, the power consumption of thermal heads has been reduced,
Due to the demand for high printing quality, a low temperature layer (equivalent to glaze)
It became necessary to reduce the thermal conductivity or heat capacity of the material, and to increase the thermal conductivity of the heat dissipation layer (equivalent to alumina).

特開昭60−141569号公報においては、保温層を
多気泡ガラスとすることによって、熱伝導率と熱容量を
減少させている。また歩留向上のため、抵抗体膜を形成
する面を平滑化する絶縁層をコーティングしている。
In Japanese Unexamined Patent Publication No. 60-141569, the thermal conductivity and heat capacity are reduced by using multicellular glass as the heat insulating layer. Additionally, to improve yield, the surface on which the resistor film will be formed is coated with an insulating layer to smooth it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記構成のサーマルヘッド基板は、保温
層の空孔率が20〜30%と小ざく、また保温層の上に
1〜10μmの平滑化層があるため、熱伝導率および熱
容量が十分小さくなり、このため消費電力の減少効果が
小さいという問題点があった。
However, the thermal head substrate with the above structure has a small porosity of 20 to 30% in the heat insulating layer and a smoothing layer of 1 to 10 μm on the heat insulating layer, so the thermal conductivity and heat capacity are sufficiently low. Therefore, there was a problem that the effect of reducing power consumption was small.

この発明は以上述ぺた、消費電力が十分に小さくならな
いという問題点を除去し、低消費電力で高印字品質を与
えるサーマルヘッド用基板を提供することを目的とする
As stated above, it is an object of the present invention to provide a thermal head substrate that eliminates the problem that power consumption is not sufficiently reduced and provides high print quality with low power consumption.

(問題点を解決するための手段〕 この発明のサーマルヘッド用基板は、単結晶シリコン板
と、該単結晶シリコン板の抵抗体形成面をフッ化水素酸
によって陽橘電解し、続いて熱酸化することによって形
成される多孔質酸化ケイ素の層と、この多孔質酸化ケイ
素の層上に形成された無孔質絶縁層とを有するものであ
る。
(Means for Solving the Problems) The thermal head substrate of the present invention includes a single-crystal silicon plate and a resistor-forming surface of the single-crystal silicon plate subjected to electrolysis using hydrofluoric acid, followed by thermal oxidation. It has a porous silicon oxide layer formed by this method, and a nonporous insulating layer formed on the porous silicon oxide layer.

(作 用〕 上記の構成では、多孔質酸化ケイ素の層は、細孔を有す
るため、熱伝導率および熱容量が小さい。
(Function) In the above configuration, since the porous silicon oxide layer has pores, its thermal conductivity and heat capacity are low.

また、多孔質酸化ケイ素の層上の無孔質絶縁層は、多孔
質酸化ケイ素の層の表面の細孔をふざぐ間隙を有するが
、多孔質酸化ケイ素の層の細孔の寸法が小さいため該無
孔質絶縁層を薄くすることができる。従って、これら2
つの層の総合的な熱伝導率および熱容量を小さくするこ
とができる。また、単結晶シリコン基板は熱伝導率が高
い。従って、この基板を用いてナーマルヘッドを形成し
た場合、熱応答性が良好で、電力消費の少ないサーマル
ヘッドを得ることができる。
In addition, the nonporous insulating layer on the porous silicon oxide layer has gaps that block the pores on the surface of the porous silicon oxide layer, but since the pore size of the porous silicon oxide layer is small, The non-porous insulating layer can be made thin. Therefore, these two
The overall thermal conductivity and heat capacity of the two layers can be reduced. Furthermore, single crystal silicon substrates have high thermal conductivity. Therefore, when a thermal head is formed using this substrate, a thermal head with good thermal response and low power consumption can be obtained.

(実施例〕 第1図はこの発明の一実施例のサーマルヘッド用基板を
用いたサーマルヘッドを示している。同図で1はシリコ
ン基板、2はシリコン基板1の表面に形成された多孔質
酸化ケイ素(SiO2)膜、3は多孔質SiO2膜2上
に形成された無孔質絶縁層、例えばSiO2膜である。
(Embodiment) Fig. 1 shows a thermal head using a thermal head substrate according to an embodiment of the present invention. A silicon oxide (SiO2) film 3 is a non-porous insulating layer formed on the porous SiO2 film 2, for example, a SiO2 film.

4は、抵抗体としてのTaN膜、5は導体としてのNi
Cr−Au膜、6および7は保護膜としての5i02膜
およびTa205膜である。
4 is a TaN film as a resistor, and 5 is a Ni film as a conductor.
Cr-Au films 6 and 7 are a 5i02 film and a Ta205 film as protective films.

シリコン基板1は放熱層となってあり、従来用いられる
アルミナより5倍以上熱伝導率が大ぎい。
The silicon substrate 1 serves as a heat dissipation layer and has a thermal conductivity five times higher than that of conventionally used alumina.

多孔質SiO2膜2は空孔率が50%程度であり、熱伝
導率は、石英ガラスの1/2以下、熱容量は石英ガラス
の172程度であり、良好な保温層を形成している。S
iO2膜3は例えばスパッタリングにより形成されたも
ので、1μm以下であり、保温層の低熱容量性を損なう
ことなく、多孔質SiO2膜2の細孔を密閉している。
The porous SiO2 film 2 has a porosity of about 50%, a thermal conductivity of 1/2 or less that of quartz glass, and a heat capacity of about 172 that of quartz glass, forming a good heat insulating layer. S
The iO2 film 3 is formed by sputtering, for example, and has a thickness of 1 μm or less, and seals the pores of the porous SiO2 film 2 without impairing the low heat capacity of the heat insulating layer.

尚、無孔質SiO2膜3の代りに、1000 ’C程度
の高温に耐える耐熱性がある絶縁膜でおれば、他の材料
、例えばSi3 N4 、S!O,Al103の膜でも
よい。
Incidentally, instead of the non-porous SiO2 film 3, other materials such as Si3 N4, S! A film of O, Al103 may also be used.

以下、上記基板の作製方法の一例を説明する。An example of a method for manufacturing the above substrate will be described below.

まず、シリコン基板としては、固有抵抗が0.01Ωc
m、(iii)面のP型鏡面基板を用いる。
First, the silicon substrate has a specific resistance of 0.01Ωc.
A P-type mirror substrate with m and (iii) planes is used.

次に白金板を陰極とした電解槽に’lQwt%のフッ化
水素酸(フッ酸)水溶液を入れ、上記基板を陽極として
白金板と対向させ、直流で50mA/cmの電流密度で
15分間電解する。これで約50μmの多孔質シリコン
層が形成される。この厚さは、電解時間で自由に制御す
ることができる。
Next, a 1Qwt% hydrofluoric acid (hydrofluoric acid) aqueous solution was placed in an electrolytic cell with the platinum plate as the cathode, and the above substrate was used as the anode to face the platinum plate, and electrolysis was carried out for 15 minutes at a current density of 50 mA/cm with direct current. do. This forms a porous silicon layer of approximately 50 μm. This thickness can be freely controlled by changing the electrolysis time.

次に、上記の基板を十分洗浄した後、熱酸化炉に入れ1
000 ’Cで20分間、ドライ酸素中で熱酸化する。
Next, after thoroughly cleaning the above substrate, it is placed in a thermal oxidation furnace for 1
Thermal oxidation is carried out in dry oxygen at 000'C for 20 minutes.

これにより50t1mの多孔質シリコン層かすべで50
μmの多孔質SiO2@2になる。この多孔質SiO2
@2は細孔の寸法が100〜300A程度である。 次
にRFスパッタ法により厚さ0.5μ771の無孔質の
SiO2膜3を形成する。
This results in a porous silicon layer of 50 t1m, or 50 m of porous silicon layer.
It becomes porous SiO2@2 of μm. This porous SiO2
@2 has a pore size of about 100 to 300A. Next, a non-porous SiO2 film 3 having a thickness of 0.5μ771 is formed by RF sputtering.

以上により多孔質SiO2膜3の、細孔が無孔質SiO
2膜3で密閉された構造を持つ基板か得られる。
As a result of the above, the pores of the porous SiO2 film 3 are made of non-porous SiO2.
A substrate having a structure sealed with two films 3 can be obtained.

以下、上記の基板を用いてサーマルヘッドを形成する方
法の一例を述べる。以下の例は、薄膜4ノーマルヘツド
である。
An example of a method for forming a thermal head using the above substrate will be described below. The following example is a thin film 4 normal head.

まず、抵抗体4としてTa2Nをスパッタにより形成し
、続いて導体5としてN1cr−Auを蒸着する。次に
フォトリソグラフィーによって導体5および抵抗体4を
同時にエツチングする。ざらにフォトリソグラフィーに
よって発熱抵抗体部上の導体5をエツチング除去し、抵
抗体4を露出させ、抵抗体が両側部(図面上左右の端部
)でのみ導体5に接続された@造を得る。次に保護膜と
してSiO2膜6、Ta205膜7をスパッタによって
形成する。これによりサーマルヘッドが完成する。尚、
上記実施例の基板は、厚膜サーマルヘッドの形成にも用
い得る。
First, Ta2N is formed as the resistor 4 by sputtering, and then N1cr-Au is deposited as the conductor 5. Next, the conductor 5 and the resistor 4 are etched simultaneously by photolithography. The conductor 5 on the heating resistor part is roughly etched away by photolithography to expose the resistor 4, and a @ structure is obtained in which the resistor is connected to the conductor 5 only on both sides (left and right ends in the drawing). . Next, a SiO2 film 6 and a Ta205 film 7 are formed as protective films by sputtering. This completes the thermal head. still,
The substrate of the above embodiment can also be used to form a thick film thermal head.

上記のようにして形成したサーマルヘッドは、次のよう
な特徴を有する。
The thermal head formed as described above has the following characteristics.

(イ)多孔質SiO2膜2の細孔のため、熱伝導率およ
び熱容量が小さい。
(a) Due to the pores of the porous SiO2 film 2, the thermal conductivity and heat capacity are low.

(ロ)多孔質SiO2膜2の細孔は寸法が小さいため、
無孔質SiO2膜3の厚さを小さくすることができ、保
温層の熱容量を小さくできる。
(b) Since the pores of the porous SiO2 film 2 are small in size,
The thickness of the non-porous SiO2 film 3 can be reduced, and the heat capacity of the heat insulating layer can be reduced.

(ハ)シリコン基板1の熱伝導率が大きいので熱応答性
が良好である。
(c) Since the thermal conductivity of the silicon substrate 1 is high, the thermal responsiveness is good.

(ニ)シリコン基板1上にサーマルヘッドを形成してい
るため、ドライバICや、マトリクス駆動用ダイオード
などをシリコン基板上に組み込むことが可能である。
(iv) Since the thermal head is formed on the silicon substrate 1, it is possible to incorporate a driver IC, a matrix driving diode, etc. on the silicon substrate.

第2図に多孔質5i02膜2の空孔率とサーマルヘッド
による印字エネルギーの関係を示す。Aは、細孔を密閉
するための無孔質のSiO2膜3の膜厚が2μmの場合
、Bは0.5μmの場合である。また、多孔質SiO2
膜2の膜厚はA、B。
FIG. 2 shows the relationship between the porosity of the porous 5i02 film 2 and the printing energy by the thermal head. In A, the thickness of the nonporous SiO2 film 3 for sealing the pores is 2 μm, and in B, the thickness is 0.5 μm. In addition, porous SiO2
The film thicknesses of film 2 are A and B.

ともに50μmである。同図から高空孔率化とSiO2
膜2の薄膜化によって印字エネギーが減少することが分
かる。多孔質5102膜2の空孔率は膜形成時の電解条
件で変えることができる。
Both are 50 μm. From the same figure, high porosity and SiO2
It can be seen that printing energy decreases as the film 2 becomes thinner. The porosity of the porous 5102 membrane 2 can be changed by changing the electrolytic conditions during membrane formation.

空孔率が約70%を超える多孔質5102膜2は機械的
強度が低く、サーマルヘッド用として不向きである。一
方、約30%以下の空孔率では、熱伝導率および熱容量
が大きすぎて本発明の効果が得られない。
The porous 5102 membrane 2 with a porosity exceeding about 70% has low mechanical strength and is unsuitable for use in thermal heads. On the other hand, if the porosity is about 30% or less, the thermal conductivity and heat capacity are too high and the effects of the present invention cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、多孔質酸化ケイ素の層と
、その上に形成された無孔質絶縁層とを設けたので、こ
れら2つの層の総合的な熱伝導率および熱容量を小ざく
することができ、熱応答性が良好で、電力消費の少ない
サーマルヘッドを得ることかできる。
As described above, according to the present invention, the porous silicon oxide layer and the nonporous insulating layer formed thereon reduce the overall thermal conductivity and heat capacity of these two layers. It is possible to obtain a thermal head that can be made smaller in size, has good thermal response, and consumes less power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例のサーマルヘッド用基板を備え
たサーマルヘッドを示す断面図、第2図は空孔率と印字
エネルギーの関係を示す線図である。 1・・・シリコン基板、2・・・多孔質酸化ケイ素の層
、3・・・無孔質酸化ケイ素の層。 −9ざ施イ列 第 I 国 空孔率(〃) 空孔率ヒ理字エネルギー 第 2 図
FIG. 1 is a sectional view showing a thermal head equipped with a thermal head substrate according to an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between porosity and printing energy. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Porous silicon oxide layer, 3... Nonporous silicon oxide layer. -9 Column I National porosity (〃) Porosity graph Energy Figure 2

Claims (1)

【特許請求の範囲】 1、単結晶シリコン板と、 該単結晶シリコン板の抵抗体形成面をフッ化水素酸によ
つて陽極電解し、続いて熱酸化することによつて形成さ
れる多孔質酸化ケイ素の層と、この多孔質酸化ケイ素の
層上に形成された無孔質絶縁層と を有するサーマルヘッド用基板。 2、前記酸化ケイ素の層は膜厚が5〜100μmで、空
孔率が30〜70%であることを特徴とする特許請求範
囲第1項記載のサーマルヘッド用基板。 3、前記無孔質絶縁層は、スパッタリングによって形成
された酸化ケイ素膜であることを特徴とする特許請求の
範囲第1項記載のサーマルヘッド用基板。 4、前記無孔質絶縁層は膜厚が0.1〜2μmであるこ
とを特徴とする特許請求の範囲第1項または第3項記載
のサーマルヘッド用基板。
[Claims] 1. A single-crystal silicon plate, and a porous material formed by anodic electrolyzing the resistor-forming surface of the single-crystal silicon plate with hydrofluoric acid, followed by thermal oxidation. A thermal head substrate comprising a silicon oxide layer and a nonporous insulating layer formed on the porous silicon oxide layer. 2. The thermal head substrate according to claim 1, wherein the silicon oxide layer has a thickness of 5 to 100 μm and a porosity of 30 to 70%. 3. The thermal head substrate according to claim 1, wherein the non-porous insulating layer is a silicon oxide film formed by sputtering. 4. The thermal head substrate according to claim 1 or 3, wherein the nonporous insulating layer has a thickness of 0.1 to 2 μm.
JP9202687A 1987-04-16 1987-04-16 Substrate for thermal head Pending JPS63257652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9202687A JPS63257652A (en) 1987-04-16 1987-04-16 Substrate for thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9202687A JPS63257652A (en) 1987-04-16 1987-04-16 Substrate for thermal head

Publications (1)

Publication Number Publication Date
JPS63257652A true JPS63257652A (en) 1988-10-25

Family

ID=14043024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9202687A Pending JPS63257652A (en) 1987-04-16 1987-04-16 Substrate for thermal head

Country Status (1)

Country Link
JP (1) JPS63257652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156896A (en) * 1989-08-03 1992-10-20 Alps Electric Co., Ltd. Silicon substrate having porous oxidized silicon layers and its production method
JPH05147248A (en) * 1991-10-30 1993-06-15 Alps Electric Co Ltd Thermal head and preparation thereof
US7390078B2 (en) 2005-06-30 2008-06-24 Lexmark International, Inc. Reduction of heat loss in micro-fluid ejection devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156896A (en) * 1989-08-03 1992-10-20 Alps Electric Co., Ltd. Silicon substrate having porous oxidized silicon layers and its production method
JPH05147248A (en) * 1991-10-30 1993-06-15 Alps Electric Co Ltd Thermal head and preparation thereof
US7390078B2 (en) 2005-06-30 2008-06-24 Lexmark International, Inc. Reduction of heat loss in micro-fluid ejection devices

Similar Documents

Publication Publication Date Title
US5156896A (en) Silicon substrate having porous oxidized silicon layers and its production method
JPS63257652A (en) Substrate for thermal head
US4737799A (en) Thermal head
JP2000286432A (en) Solar battery element, substrate therefor and its manufacture
JPH04107155A (en) Manufacturing of thermal head
JP3873753B2 (en) Gas sensor
SU1071456A1 (en) Method of producing a thermoprinting head
JP2514591B2 (en) Limit current type oxygen sensor
JPH0482749A (en) Silicon substrate having porous silicon oxide layer
JPS5891431A (en) Electrochromic display element
JPS63202465A (en) Thermal head with cavity
JPS60225770A (en) Thernal head
JP3846313B2 (en) Gas sensor
JPH0267150A (en) Substrate for thermal head and preparation thereof
JP2004170230A (en) Co2 sensor and its manufacturing method
JPH0482750A (en) Silicon substrate having porous silicon oxide layer
JPH0493261A (en) Thermal head
JPS6334601B2 (en)
JPH10100458A (en) Thermal head and production thereof
JP2003222607A (en) Gas sensor
JPH05312771A (en) Oxigen sensor and its production
JP2003050223A (en) Gas sensor
JPS58216224A (en) Production of electrochromic display element
JPS63224971A (en) Thermal head
JPS61296380A (en) Manufacture of electrolytic acid thin film