JPS6325756B2 - - Google Patents

Info

Publication number
JPS6325756B2
JPS6325756B2 JP13684981A JP13684981A JPS6325756B2 JP S6325756 B2 JPS6325756 B2 JP S6325756B2 JP 13684981 A JP13684981 A JP 13684981A JP 13684981 A JP13684981 A JP 13684981A JP S6325756 B2 JPS6325756 B2 JP S6325756B2
Authority
JP
Japan
Prior art keywords
terminal
signal
receiving
circuit
interface device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13684981A
Other languages
Japanese (ja)
Other versions
JPS5839196A (en
Inventor
Hidemi Murakami
Toshihiko Nakayama
Shinichiro Yoshida
Yukio Hashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13684981A priority Critical patent/JPS5839196A/en
Publication of JPS5839196A publication Critical patent/JPS5839196A/en
Publication of JPS6325756B2 publication Critical patent/JPS6325756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分散制御形時分割交換機における交換
接続処理方式に関するものである。 第1図は分散制御形時分割交換機の構成例を示
すブロツク図である。同図において、交換機Ex
は、端末101,10oおよび端末111,11n
を、それぞれインタフエース装置10および11
を介して収容し、他の交換機と接続するトランク
201,20kとインタフエース装置20を介して
接続されている。各インタフエース装置10,1
1,20は、時分割通話路1と通話ハイウエイ1
00によつて接続され、中央制御装置2とは各イ
ンタフエース装置内の制御装置10c,11c,2
cおよびシステムバス101を介して接続され
ている。また、時分割通話路1は、制御線102
を介して中央制御装置2より制御される。 第2図は、端末相互接続における交換機と端末
間の信号シーケンスの一例を示すものであり、交
換機端末間でやりとりする信号は、端末の状態を
交換機に通知する監視信号(第2図ではSi1,Si2
Si3,Sj1,Sj2,Sj3)と、それ以外の信号(以下接
続制御信号と呼ぶ。第2図ではC11,C12,C13
C14,C21,C31,C32,C33,C34)に分類できる。
これらの信号名および信号の意味を次表に示す。
The present invention relates to a switching connection processing system in a distributed controlled time division switch. FIG. 1 is a block diagram showing an example of the configuration of a distributed control type time division switch. In the same figure, the exchange E x
are terminals 10 1 , 10 o and terminals 11 1 , 11 n
are interface devices 10 and 11, respectively.
It is connected via an interface device 20 to trunks 20 1 and 20 k that accommodate the switch and connect it to other exchanges. Each interface device 10,1
1 and 20 are time division communication path 1 and communication highway 1
00, and the central control device 2 is connected to the control devices 10 c , 11 c , 2 in each interface device.
0c and a system bus 101. Further, the time division communication path 1 has a control line 102.
It is controlled by the central control device 2 via. Figure 2 shows an example of a signal sequence between an exchange and a terminal in terminal interconnection, and the signals exchanged between exchange terminals include a monitoring signal (in Figure 2, S i1 , S i2 ,
S i3 , S j1 , S j2 , S j3 ) and other signals (hereinafter referred to as connection control signals. In Fig. 2, C 11 , C 12 , C 13 ,
C 14 , C 21 , C 31 , C 32 , C 33 , C 34 ).
The following table shows the signal names and their meanings.

【表】【table】

【表】 ところで、以上のような交換接続処理を行なう
従来の分散制御形時分割交換機では、監視信号を
受信する監視機能および接続制御信号を送受信す
る信号送受信機能は端末対応に配置し、例えば第
3図のような構成を採つている。即ち、第3図に
おいて、第1図と同一符号は同一部分を示し、1
f,11fは多重分離回路、KTi,KTjは発端末の
監視回路、CHTi,CHTjは発端末との信号送受信
回路、ITi,ITjは発端末への挿入回路、Gi,Gjはゲ
ート回路であり、端末10iおよび11jは、それ
ぞれ、当該端末を収容したインタフエース装置1
0または11で常時監視され、また該端末との接
続制御信号の送受信も当該インタフエース装置で
実行されている。 第4図は、第3図の構成における各ブロツク間
の情報の流れを説明する信号シーケンス図であ
り、以下同図を参照して、第2図の信号シーケン
スを例に、交換接続処理動作を説明する。 第3図において、端末10iが発呼した場合、
インタフエース装置10内の制御装置10cは発
呼要求信号Si1を監視回路KTiより受信し、発信の
可否を確認するため、発呼者情報とともに発信分
析要求信号p1をシステムバス101を介して中央
制御装置2へ送る。中央制御装置2では、該発信
者情報をもとに分析を行い、その結果を発信分析
応答信号p2として制御装置10cへ返す。該制御
装置10cは信号送受信回路CHTiにより、選択信
号送出可信号C11を端末10iへ送る。その後、該
制御装置10cは選択信号C21を信号送受信回路
CHTiを介して受信すると、中央制御装置2へ着
信先を識別するため、受信した選択信号とともに
数字分析要求信号p3を送出する。中央制御装置2
は、該選択信号を分析し、時分割通話路1を制御
線102を介して制御し、通話パスを設定すると
ともに、着端末が収容されているインタフエース
装置11にシステムバス101を介して、着端末
の収容位置とともに着信要求信号p4を送出する。 該インタフエース装置11は、該着信要求信号
p4を受信し、端末11jに対して着呼信号C31を信
号送受信回路CHTjにより送出する。端末11jが、
応答して着呼受付信号Sj1を送出すると、該イン
タフエース装置11は監視回路KTjを介して受信
し、着信応答信号p6をシステムバス101を経由
してインタフエース装置10に送出する。また、
端末11jに対して、発ID信号C32を送り、送出完
了後、制御装置11cは発ID送出完了信号p7をイ
ンタフエース装置10に送出するとともに、ゲー
ト回路Gjおよび挿入回路ITjを切替えて、時分割
通話路1と端末11jを接続する。 一方、インタフエース装置10の制御装置10
は、該着信応答信号p6を受信すると、端末10i
に着ID信号C12を送出する。さらに、該発ID送出
完了信号p7を受信すると、ゲート回路Giおよび挿
入回路ITiを切替えて、端末10iと時分割通話路
1を接続する。この結果、端末相互間が接続さ
れ、通信中状態になる。 通信中状態では、端末10iおよび11jを、そ
れぞれ、インタフエース装置10の監視回路KTi
およびインタフエース装置11の監視回路KTj
常時監視している。端末11jからの復旧要求信
号Sj2を、制御装置11cが監視回路KTjを介して
受信すると、復旧要求信号p11をインタフエース
装置10に送るとともに、ゲート回路Gjと挿入
回路ITjを切替えて、元の状態に復旧し、端末1
jに復旧確認信号C33およびレデイ信号C34を信
号送受信回路CHTjから送出する。また、端末1
jが復旧し、着端末レデイ信号Sj3を返送してく
ると、中央制御装置2に着端末復旧通知信号p14
を送出する。一方、インタフエース装置10の制
御装置10cは、復旧要求信号p11を受信すると、
ゲート回路Giおよび挿入回路ITiを切替えるととも
に、端末10iに切断指示信号C13を送出し、中央
制御装置2に通話路復旧要求信号p12を送出する。
中央制御装置2は該通話路復旧要求信号p12を受
信すると時分割通話路1を制御し、通話パスを復
旧する。さらに、制御装置10cは、端末10i
ら切断確認信号Si2を受信すると、レデイ信号C14
を端末10iに返送する。該端末が発端末レデイ
信号Si3を返送すると、制御装置10cは、中央制
御装置2に発端末復旧信号p13を送る。 以上説明したように、インタフエース装置間の
信号送受信は、すべてシステムバス経由で行われ
るため、システムバスの通信量が多くなり、ま
た、通信中状態でも、端末の状態監視を該端末を
収容したインタフエース装置で監視しているた
め、発着両端末の状態変化の検出時間のずれによ
る交換処理の競合が生じることが多く、そのため
の無効処理があつた。 本発明はこのような従来の欠点を改善したもの
であり、その目的は、発着両端末の状態変化の検
出時間のずれを極力小さくし、それに起因する交
換接続処理の競合を少なくすることにある。 また本発明の他の目的は、システムバスの通信
量を減少させることにある。以下実施例について
詳細に説明する。 第5図は、本発明方式を実施する分散制御形時
分割交換機の一例を表わす要部ブロツク図であ
り、第3図と同一符号は同一部分を示し、KNi
KNjは着端末の監視回路であつて、端末10i,1
j対応に、それぞれ多重分離回路10f,11f
らの出力にこの監視回路KNi,KNjが接続されてい
る。また第6図は第2図のシーケンスを行なつた
際の第5図の構成における各ブロツク間の信号の
流れを示すものであり、以下同図を参照して本実
施例方式の動作を説明する。 端末10iが発呼し、第3図及び第4図で説明
した従来方式と同様にして着端末が収容されたイ
ンタフエース装置11にシステムバス101を介
して着信要求信号p4が送られると、制御装置11
は着端末11jに着呼信号C31を送るとともにゲ
ート回路Gjを閉じ、端末11jからの信号が時分
割通話路1に伝達されるようにする。該端末11
が応答し、着呼受付信号Sj1を返送すると、この
信号Sj1はインタフエース装置10の監視回路KNi
で検出できる。そのため、従来のシステムバス1
01を介して、着信応答信号p6を発信側のインタ
フエース装置10で受信するのに比べて、制御装
置10cで応答検出するまでの時間が短縮される。 制御装置10cは、着呼受付信号Sj1を受信する
と端末10iに着ID信号C12を送出するとともに、
システムバス101を介してインタフエース装置
11に発ID信号送出指示信号p9を送る。インタ
フエース装置11の制御装置11cは、該発ID信
号送出指示信号p9を受信すると端末11jに発ID
信号C32を送出し、インタフエース装置10に発
ID送出完了信号p7を返送する。さらに、挿入回
路ITjを切替えて、通話ハイウエイ100からの
信号を端末11jに送るようにする。インタフエ
ース装置10の制御装置10cは該発ID送出完了
信号p7を受信するとゲート回路Giおよび挿入回路
ITiを切替えて、端末10iと通話ハイウエイ10
0を接続する。この結果、端末相互が接続され、
通信中状態になる。 通信中状態ではインタフエース装置10で端末
10iおよび11jを常時監視している。端末11j
が復旧要求信号Sj2を送出すると、インタフエー
ス装置10は監視回路KNiで検出しゲート回路Gi
および挿入回路ITiを復旧するとともにインタフエ
ース装置11に対してシステムバス101を介し
て、復旧要求信号p11を送出する。また、中央制
御装置2に対して通話路復旧要求信号p12を送出
する。以下第3図および第4図と同様の動作が行
なわれる。 このように、本構成例では、着端末の状態変化
を、時分割通話路を介して発端末インタフエース
装置で監視しているため、従来のシステムバスを
経由して検出するのに比べ、発着両端末の状態変
化の検出が早くなり、発着両端末の状態変化に伴
う交換接続処理の競合を少なくできる。 第7図は本発明方式を実施する分散制御形時分
割交換機の他の例を示す要部ブロツク図であり、
第5図と同一符号は同一部分を示し、CHNi
CHNjは着端末との信号送受信回路、INi,INjは着
端末への挿入回路であつて、端末10i,11j
応に多重分離回路10f,11fの出力に監視回路
KNi,KNjおよび信号送受信回路CHNi,CHNjを接
続し、さらに、挿入回路INi,INjを多重分離回離
10,11の入力に接続し、端末10i,11j
らの信号と信号送受信回路CHNi,CHNjからの出
力を切替えている。第8図は、第7図の構成にお
いて、第2図の信号シーケンスを実現する各ブロ
ツク間の信号の流れを示すものであり、同図を参
照して本実施例方式の動作を以下説明する。 端末10iが発呼し従来方式と同様に着端末が
収容されたインタフエース装置11にシステムバ
ス101を経由して着信要求信号p4が送られてく
ると、制御装置11cは挿入回路ITjおよびINjを切
替え、着端末11jと時分割通話路1を接続し、
接続完了信号p8をインタフエース装置10に返送
する。インタフエース装置10の制御装置10c
は、信号送受信回路CHNiにより着呼信号C31を着
端末11jに送出し、該端末11jが応答して着呼
受付信号Sj1を返送してくると、該制御装置10c
は監視回路KNiにより検出し、端末10iおよび1
jに対し、それぞれ着ID信号C12および発ID信号
C32を、それぞれ信号送受信回路CHTiおよびCHNi
より送出する。さらに、挿入回路ITiおよびINiを切
替えて、端末10iと時分割通話路1とを接続す
る。この結果、端末相互間が接続され、通話中状
態になる。通話中状態では両端末10i,11j
インタフエース装置10で監視し、端末11j
ら復旧要求信号Sj2を受信した後の動作は、前実
施例と同様である。 このように本構成例では、着端末の状態変化
を、時分割通話路を介して発端末インタフエース
装置で監視しているため、従来のシステムバスを
経由して検出するのに比べ、端末状態の変化検出
が早くなり、発着両端末の状態変化検出に伴う交
換接続処理の競合を少なくできる他、発端末を収
容したインタフエース装置の信号送受信回路か
ら、着端末との信号のやりとりが可能であるた
め、従来に比べてシステムバスの信号の数が減少
する。 以上の説明から判るように、本発明に依れば、
時分割通話路の通話パス設定後に該通話パスを介
して着端末と発端末側に設けた着端末監視回路と
を接続し、着端末の状態変化を時分割通話路を介
して発端末インタフエース装置で監視しているた
め、従来のシステムバスを経由して検出するのに
比べ、発着両端末の状態変化検出が早くなり、発
着両端末の状態変化検出に伴う交換接続処理の競
合を少なくできる。また、発端末側に設けた着端
末用信号送受信回路とも接続するようにすれば、
発端末を収容したインタフエース装置の信号送受
信回路から、着端末との信号のやりとりが可能で
あるため、従来に比べてシステムバスの信号の数
が減少する。
[Table] By the way, in conventional distributed control type time division switching equipment that performs the above switching connection processing, the monitoring function for receiving monitoring signals and the signal transmitting and receiving function for transmitting and receiving connection control signals are arranged corresponding to the terminals. The configuration is as shown in Figure 3. That is, in FIG. 3, the same symbols as in FIG. 1 indicate the same parts, and 1
0 f and 11 f are demultiplexing circuits, K Ti and K Tj are monitoring circuits for the originating terminal, CH Ti and CH Tj are signal transmission/reception circuits with the originating terminal, I Ti and I Tj are insertion circuits for the originating terminal, and G i and G j are gate circuits, and terminals 10 i and 11 j are respectively interface devices 1 that accommodate the terminals.
0 or 11, and transmission and reception of connection control signals with the terminal is also executed by the interface device. FIG. 4 is a signal sequence diagram illustrating the flow of information between each block in the configuration of FIG. explain. In FIG. 3, when the terminal 10 i makes a call,
The control device 10 c in the interface device 10 receives the call request signal S i1 from the monitoring circuit K Ti , and sends the call analysis request signal p 1 along with caller information to the system bus 101 in order to confirm whether or not the call is possible. The data is sent to the central control device 2 via the host computer. The central control device 2 performs analysis based on the caller information and returns the result to the control device 10c as a call analysis response signal p2. The control device 10 c sends a selection signal sending enable signal C 11 to the terminal 10 i through the signal transmitting/receiving circuit CH Ti . Thereafter, the control device 10c transmits the selection signal C21 to the signal transmitting and receiving circuit.
When received via CH Ti , it sends a numeric analysis request signal p 3 together with the received selection signal to the central control unit 2 in order to identify the destination. Central control device 2
analyzes the selection signal, controls the time division communication path 1 via the control line 102, sets a communication path, and sends the communication to the interface device 11 in which the destination terminal is accommodated via the system bus 101. An incoming call request signal p4 is sent along with the accommodation location of the called terminal. The interface device 11 receives the incoming call request signal.
p 4 is received, and the signal transmitting/receiving circuit CH Tj sends an incoming call signal C 31 to the terminal 11 j . Terminal 11 j is
When an incoming call acceptance signal S j1 is sent in response, the interface device 11 receives it via the monitoring circuit K Tj and sends an incoming call response signal p 6 to the interface device 10 via the system bus 101. Also,
The control device 11 c sends the originating ID signal C 32 to the terminal 11 j, and after completion of sending, the control device 11 c sends the originating ID sending completion signal p 7 to the interface device 10, and also sends the originating ID signal C 32 to the gate circuit G j and the insertion circuit I Tj. to connect the time division communication path 1 and the terminal 11j . On the other hand, the control device 10 of the interface device 10
When c receives the incoming call response signal p 6 , terminal 10 i
The destination ID signal C12 is sent to the destination. Further, upon receiving the caller ID transmission completion signal p7 , the gate circuit G i and the insertion circuit I Ti are switched to connect the terminal 10 i and the time division communication path 1. As a result, the terminals are connected to each other and enter a communicating state. In the communicating state, the terminals 10 i and 11 j are connected to the monitoring circuit K Ti of the interface device 10, respectively.
and is constantly monitored by the monitoring circuit K Tj of the interface device 11. When the control device 11 c receives the recovery request signal S j2 from the terminal 11 j via the monitoring circuit K Tj , it sends the recovery request signal p 11 to the interface device 10, and also sends the recovery request signal p 11 to the gate circuit G j and the insertion circuit I Tj. , restore the original state, and switch to terminal 1.
1j , a recovery confirmation signal C 33 and a ready signal C 34 are sent out from the signal transmitting/receiving circuit CH Tj . Also, terminal 1
1 When j recovers and returns the destination terminal ready signal S j3 , it sends the destination terminal recovery notification signal p 14 to the central controller 2.
Send out. On the other hand, when the control device 10c of the interface device 10 receives the recovery request signal p11 ,
The gate circuit G i and the insertion circuit I Ti are switched, and a disconnection instruction signal C 13 is sent to the terminal 10 i , and a communication path restoration request signal p 12 is sent to the central control unit 2.
When the central control unit 2 receives the communication path restoration request signal p12 , it controls the time division communication path 1 and restores the communication path. Furthermore, upon receiving the disconnection confirmation signal S i2 from the terminal 10 i , the control device 10 c transmits a ready signal C 14
is sent back to terminal 10i . When the terminal returns the originating terminal ready signal S i3 , the control device 10 c sends the originating terminal recovery signal p 13 to the central control device 2. As explained above, all signal transmission and reception between interface devices is performed via the system bus, which increases the amount of communication on the system bus. Since monitoring is performed by an interface device, conflicts in exchange processing often occur due to differences in the detection times of state changes at both the originating and receiving terminals, and invalid processing is therefore performed. The present invention improves these conventional drawbacks, and its purpose is to minimize the difference in detection time of state changes between the originating and receiving terminals, and to reduce conflicts in switching connection processing caused by this. . Another object of the present invention is to reduce the amount of communication on the system bus. Examples will be described in detail below. FIG. 5 is a block diagram of main parts showing an example of a distributed control type time-division switching system implementing the method of the present invention. The same reference numerals as in FIG .
K Nj is a monitoring circuit of the destination terminal, and terminals 10 i , 1
The monitoring circuits K Ni and K Nj are connected to the outputs from the multiplexing and demultiplexing circuits 10 f and 11 f , respectively, corresponding to the number of demultiplexing circuits 10 f and 11 f. Furthermore, FIG. 6 shows the signal flow between each block in the configuration of FIG. 5 when the sequence of FIG. do. When the terminal 10i makes a call and the incoming call request signal p4 is sent via the system bus 101 to the interface device 11 in which the called terminal is accommodated in the same way as in the conventional method explained in FIGS. 3 and 4 . , control device 11
C sends an incoming call signal C 31 to the destination terminal 11 j and closes the gate circuit G j so that the signal from the terminal 11 j is transmitted to the time division communication path 1. The terminal 11
j responds and sends back an incoming call acceptance signal S j1 , this signal S j1 is sent to the monitoring circuit K Ni of the interface device 10.
It can be detected by Therefore, the conventional system bus 1
01, the time required for the control device 10c to detect a response is shortened compared to the case where the interface device 10 on the originating side receives the incoming call response signal p6 via the signal p6. When the control device 10c receives the incoming call acceptance signal Sj1 , it sends out an incoming ID signal C12 to the terminal 10i , and
A sender ID signal sending instruction signal p9 is sent to the interface device 11 via the system bus 101. When the control device 11c of the interface device 11 receives the sender ID signal transmission instruction signal p9 , the control device 11c sends the sender ID to the terminal 11j.
Send signal C 32 to interface device 10.
Returns ID sending completion signal p7 . Furthermore, the insertion circuit I Tj is switched so that the signal from the communication highway 100 is sent to the terminal 11 j . When the control device 10c of the interface device 10 receives the sender ID sending completion signal p7 , the gate circuit Gi and the insertion circuit
Switch I Ti to terminal 10 i and call highway 10
Connect 0. As a result, the terminals are connected to each other,
The state is in communication. During communication, the interface device 10 constantly monitors the terminals 10 i and 11 j . Terminal 11 j
sends out the recovery request signal S j2 , the interface device 10 detects it with the monitoring circuit K Ni and sends out the gate circuit G i
Then, it restores the insertion circuit I Ti and sends a restoration request signal p 11 to the interface device 11 via the system bus 101. It also sends a communication path restoration request signal p12 to the central control device 2. Thereafter, operations similar to those in FIGS. 3 and 4 are performed. In this configuration example, since changes in the status of the destination terminal are monitored by the originating terminal interface device via the time-division communication path, compared to the conventional system bus, Changes in the status of both terminals can be detected more quickly, and conflicts in switching connection processing caused by changes in the status of both originating and receiving terminals can be reduced. FIG. 7 is a block diagram of main parts showing another example of a distributed control type time division switch implementing the method of the present invention.
The same symbols as in FIG. 5 indicate the same parts, CH Ni ,
CH Nj is a signal transmission/reception circuit with the destination terminal, I Ni and I Nj are circuits inserted into the destination terminal, and monitoring circuits are installed at the outputs of the demultiplexing circuits 10 f and 11 f corresponding to the terminals 10 i and 11 j .
K Ni , K Nj and signal transmitting/receiving circuits CH Ni , CH Nj are connected, and insertion circuits I Ni , I Nj are further connected to inputs of multiplexing/demultiplexing circuits 10 and 11, and signals from terminals 10 i and 11 j are connected. and the output from the signal transmitting/receiving circuits CH Ni and CH Nj . FIG. 8 shows the signal flow between the blocks realizing the signal sequence shown in FIG. 2 in the configuration shown in FIG. 7, and the operation of this embodiment will be explained below with reference to the same figure. . When the terminal 10i makes a call and the incoming call request signal p4 is sent via the system bus 101 to the interface device 11 in which the destination terminal is accommodated as in the conventional system, the control device 11c calls the insertion circuit I. Tj and I Nj , connect the destination terminal 11 j and time division communication path 1,
A connection completion signal p8 is sent back to the interface device 10. Control device 10 c of interface device 10
sends an incoming call signal C 31 to the destination terminal 11 j by the signal transmitting/receiving circuit CH Ni , and when the terminal 11 j responds and returns an incoming call acceptance signal S j1 , the control device 10 c
is detected by the monitoring circuit K Ni , and terminals 10 i and 1
1 j , the called ID signal C 12 and the calling ID signal respectively.
C 32 into the signal transmitter/receiver circuits CH Ti and CH Ni , respectively
Send from Furthermore, the insertion circuits I Ti and I Ni are switched to connect the terminal 10 i and the time division communication path 1. As a result, the terminals are connected to each other and enter a talking state. In the busy state, both terminals 10 i and 11 j are monitored by the interface device 10, and the operation after receiving the recovery request signal S j2 from the terminal 11 j is the same as in the previous embodiment. In this configuration example, since changes in the status of the destination terminal are monitored by the originating terminal interface device via the time-sharing communication path, the terminal status is monitored by the originating terminal interface device via the time-sharing communication path. This makes it possible to detect changes in the originating and receiving terminals more quickly, reducing contention in exchange connection processing due to the detection of state changes at both the originating and terminating terminals, and also making it possible to exchange signals with the terminating terminal from the signal transmitting/receiving circuit of the interface device that accommodates the originating terminal. Therefore, the number of system bus signals is reduced compared to the conventional method. As can be seen from the above description, according to the present invention,
After setting a call path for a time-division call path, the called terminal is connected to the called terminal monitoring circuit provided on the calling terminal side via the call path, and changes in the status of the called terminal are monitored via the time-shared call path to the calling terminal interface. Because it is monitored by a device, it is faster to detect changes in the status of both originating and receiving terminals than when detecting via the conventional system bus, and it is possible to reduce conflicts in exchange connection processing due to the detection of status changes on both originating and receiving terminals. . In addition, if it is connected to the signal transmission/reception circuit for the destination terminal provided on the originating terminal side,
Since signals can be exchanged with the destination terminal from the signal transmitting/receiving circuit of the interface device that accommodates the originating terminal, the number of signals on the system bus is reduced compared to the conventional system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分散制御形時分割交換機の構成例を示
すブロツク図、第2図は端末相互接続における交
換機と端末間の信号シーケンスの一例を示す図、
第3図は従来の分散制御形時分割交換方式を実施
する装置の構成図、第4図は第3図の構成におけ
る端末相互接続時の交換機と端末間の信号シーケ
ンスの一例を示す図、第5図及び第7図は本発明
方式を実施する装置のそれぞれ異なる実施例を表
わす要部ブロツク図、第6図は第5図の実施例に
おける端末相互接続時の交換機と端末間の信号シ
ーケンスの一例を示す図、第8図は第7図の実施
例における端末相互接続時の交換機と端末間の信
号シーケンスの一例を示す図である。 Ex…交換機、1…時分割通話路、2…中央制
御装置、10,11,20…インタフエース装
置、10f,11f…多重分離回路、10c,11c
20c…制御装置、KTi,KTj…発端末の監視回路、
KNi,KNj…着端末の監視回路、CHTi,CHTj…発
端末との信号送受信回路、CHNi,CHNj…着端末
との信号送受信回路、Gi,Gj…ゲート回路、ITi
ITj…発端末への挿入回路、INi,INj…着端末への
挿入回路、101,10i,10o,111,11j
11n…端末、201,20k…トランク、100
…通話ハイウエイ、101…システムバス、10
2…制御線。
FIG. 1 is a block diagram showing an example of the configuration of a distributed control type time division switch; FIG. 2 is a diagram showing an example of a signal sequence between a switch and a terminal in terminal interconnection;
FIG. 3 is a block diagram of a device implementing a conventional distributed control type time-division switching system. 5 and 7 are main block diagrams showing different embodiments of the apparatus implementing the system of the present invention, and FIG. 6 shows the signal sequence between the exchange and the terminal when terminals are interconnected in the embodiment of FIG. 5. FIG. 8 is a diagram showing an example of a signal sequence between an exchange and a terminal when terminals are interconnected in the embodiment of FIG. 7. Ex ... exchange, 1... time division communication path, 2... central control unit, 10, 11, 20... interface device, 10 f , 11 f ... demultiplexing circuit, 10 c , 11 c ,
20 c ...control device, K Ti , K Tj ...monitoring circuit of originating terminal,
K Ni , K Nj ...Monitoring circuit for the destination terminal, CH Ti , CH Tj ...Signal transmission/reception circuit with the originating terminal, CH Ni , CH Nj ...Signal transmission/reception circuit with the destination terminal, G i , G j ...Gate circuit, I Ti ,
I Tj ...Insertion circuit to the originating terminal, I Ni , I Nj ...Insertion circuit to the destination terminal, 10 1 , 10 i , 10 o , 11 1 , 11 j ,
11 n ...terminal, 20 1 ,20 k ...trunk, 100
...Call highway, 101...System bus, 10
2...Control line.

Claims (1)

【特許請求の範囲】 1 時分割通話路、該時分割通話路に接続され複
数の端末またはトランクを接続するインタフエー
ス装置、および交換機全体の制御を行なう中央制
御装置から構成され、各インタフエース装置内の
制御装置と前記中央制御装置により交換接続処理
を分散制御する分散制御形時分割交換方式におい
て、各インタフエース装置内に、発端末と信号の
送受を行なう発端末用信号送受信回路と、発端末
からの監視信号を受信する発端末監視回路と、着
端末からの監視信号を受信する着端末監視回路と
を各端末毎に設け、前記時分割通話路の通話パス
設定後に該通話パスを介して着端末と発端末側の
前記着端末監視回路とを接続し、前記時分割通話
路内を通話信号のほか一部の監視信号を通過させ
て交換接続制御を行なうようにしたことを特徴と
する分散制御形時分割交換方式。 2 時分割通話路、該時分割通話路に接続され複
数の端末またはトランクを接続するインタフエー
ス装置、および交換機全体の制御を行なう中央制
御装置から構成され、各インタフエース装置内の
制御装置と前記中央制御装置により交換接続処理
を分散制御する分散制御形時分割交換方式におい
て、各インタフエース装置内に、発端末と信号の
送受を行なう発端末用信号送受信回路と、発端末
からの監視信号を受信する発端末監視回路と、着
端末からの監視信号を受信する着端末監視回路
と、着端末と信号の送受を行なう着端末用信号送
受信回路とを各端末毎に設け、前記時分割通話路
の通話パス設定後に該通話パスを介して着端末と
発端末側の前記着端末監視回路及び前記着端末用
信号送受信回路とを接続し、前記時分割通話路内
を通話信号のほか一部の監視信号および接続制御
信号を通過させて交換接続制御を行なうようにし
たことを特徴とする分散制御形時分割交換方式。
[Scope of Claims] 1 Consists of a time division communication path, an interface device connected to the time division communication path and connecting a plurality of terminals or trunks, and a central control device that controls the entire exchange, and each interface device In a distributed control type time-division switching system in which exchange connection processing is distributed and controlled by a control device within the interface device and the central control device, each interface device includes a signal transmitting/receiving circuit for the originating terminal and a signal transmitting/receiving circuit for transmitting and receiving signals with the originating terminal. A calling terminal monitoring circuit for receiving a monitoring signal from a terminal and a receiving terminal monitoring circuit for receiving a monitoring signal from a terminating terminal are provided for each terminal, and after setting a call path for the time-division call path, a calling terminal monitoring circuit for receiving a monitoring signal from a terminal is provided. The terminating terminal is connected to the terminating terminal monitoring circuit on the originating terminal side, and exchange connection control is performed by passing a part of the monitoring signal in addition to the call signal within the time-division communication path. Distributed controlled time division switching system. 2 Consists of a time-division communication path, an interface device connected to the time-division communication path and connecting a plurality of terminals or trunks, and a central control device that controls the entire exchange. In a distributed control type time division switching system in which exchange connection processing is distributed and controlled by a central controller, each interface device includes a signal transmitting/receiving circuit for the originating terminal, which sends and receives signals to and from the originating terminal, and a monitoring signal from the originating terminal. A calling terminal monitoring circuit for receiving signals, a receiving terminal monitoring circuit for receiving monitoring signals from a receiving terminal, and a signal transmitting/receiving circuit for the receiving terminal for transmitting and receiving signals with the receiving terminal are provided for each terminal, and the time-division communication path is After setting a call path, the called terminal is connected to the called terminal monitoring circuit and the called terminal signal transmitting/receiving circuit on the calling terminal side via the call path, and the time-division call path is used to transmit call signals and some other signals. A distributed control time division switching system characterized in that switching connection control is performed by passing a monitoring signal and a connection control signal.
JP13684981A 1981-08-31 1981-08-31 Decentralized control-type time division switching system Granted JPS5839196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13684981A JPS5839196A (en) 1981-08-31 1981-08-31 Decentralized control-type time division switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13684981A JPS5839196A (en) 1981-08-31 1981-08-31 Decentralized control-type time division switching system

Publications (2)

Publication Number Publication Date
JPS5839196A JPS5839196A (en) 1983-03-07
JPS6325756B2 true JPS6325756B2 (en) 1988-05-26

Family

ID=15184936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13684981A Granted JPS5839196A (en) 1981-08-31 1981-08-31 Decentralized control-type time division switching system

Country Status (1)

Country Link
JP (1) JPS5839196A (en)

Also Published As

Publication number Publication date
JPS5839196A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
JPS6325756B2 (en)
JPS61281664A (en) Data telephone terminal testing device
JP3033103B2 (en) Exchange processing method
JPS592223B2 (en) Line switching method
JPS6322748B2 (en)
JPH0311870A (en) Data transmitter
JPH0537574Y2 (en)
JP2752497B2 (en) Telephone line switching device
JPS62239643A (en) Automatic line switching system
JPS6256061A (en) Channel continuity test method in inter-station common line signal system
JPS6161595B2 (en)
JPS63236442A (en) Communication equipment
JPS6017278B2 (en) Selection signal transmission method in electronic exchange
JPH0124458B2 (en)
JPH0378017B2 (en)
JPS60146566A (en) Exchange processing method of bothway circuit
JPH0323750A (en) Fault detecting system
JPS60235542A (en) Connecting system of radio channel
JPH01209857A (en) Inter-station busy state display system
JPH0140542B2 (en)
JPH05316256A (en) Broadcast communication switching device
JPS6380661A (en) Control information transmitting system
JPS61278262A (en) System for connecting outgoing relay line in telephone exchange system
JPS6046584B2 (en) Multi-address communication control method
JPS61166257A (en) Remote supervisory and controlling equipment