JPS63255657A - Manufacture of damper material for probe - Google Patents
Manufacture of damper material for probeInfo
- Publication number
- JPS63255657A JPS63255657A JP8967487A JP8967487A JPS63255657A JP S63255657 A JPS63255657 A JP S63255657A JP 8967487 A JP8967487 A JP 8967487A JP 8967487 A JP8967487 A JP 8967487A JP S63255657 A JPS63255657 A JP S63255657A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- damper material
- melting point
- damper
- acoustic impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 25
- 239000000523 sample Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 47
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims description 28
- 230000008018 melting Effects 0.000 claims description 24
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 239000010937 tungsten Substances 0.000 claims description 10
- 229910052770 Uranium Inorganic materials 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 5
- 238000007596 consolidation process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 15
- 238000001816 cooling Methods 0.000 abstract description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 2
- 239000000314 lubricant Substances 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- HHIQWSQEUZDONT-UHFFFAOYSA-N tungsten Chemical compound [W].[W].[W] HHIQWSQEUZDONT-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超音波探傷装置の探触子用ダンパ材の製造方
法に関し、詳しくは、高分解能を有する探触子に用いる
ダンパ材の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a damper material for a probe of an ultrasonic flaw detection device, and more specifically, a method for manufacturing a damper material for use in a probe with high resolution. Regarding the method.
ダンパは、高分解能の探触子を得るために用いられるも
のである。A damper is used to obtain a high resolution probe.
第4図(A)および<8)はダンパを用いた場合の探触
子の説明図であって、探触子は振動子a1電極b1ダン
パCよりなる。振動子aの背面にダンパCが設けられて
おり、このダンパCの作用によって同図(B)に示すよ
うな振動数の少ないパルス波形dが得られる。FIG. 4(A) and <8) are explanatory diagrams of a probe when a damper is used, and the probe consists of a vibrator a1 electrode b1 damper C. A damper C is provided on the back surface of the vibrator a, and the action of the damper C produces a pulse waveform d with a low frequency as shown in FIG.
なお、ダンパを用いない場合は第3図(A)および(B
)に示すように探触子からの振動波は波数の多い自由振
動波形eとなり、高分解能を得ることはできない。In addition, when a damper is not used, Fig. 3 (A) and (B)
), the vibration wave from the probe becomes a free vibration waveform e with a large number of waves, making it impossible to obtain high resolution.
このように高分解能を有する探触子を得るためには、探
触子にダンパ0を用いることが不可欠である。そして、
ダンパに用いるダンパ材自体の性質としては、音響イン
ピーダンスの値(密度と音速の積)が高く、かつ振動子
の音響インピーダンスの値にできるだけ近いもので、し
かも音の減衰が大きい材質のものが好ましい。In order to obtain a probe with such high resolution, it is essential to use a damper 0 in the probe. and,
The properties of the damper material itself used for the damper are preferably materials that have a high acoustic impedance value (product of density and sound speed), are as close as possible to the acoustic impedance value of the vibrator, and have large sound attenuation. .
以上の如き背景から、より高分解能の探触子を得るため
に、従来のダンパ材としては、音響インピーダンスの値
が高いタングステンの粉末をエポキシ系樹脂に混入し、
プレス等で押し固めて製造されたものがある。Against this background, in order to obtain a probe with higher resolution, conventional damper materials include tungsten powder, which has a high acoustic impedance value, mixed into epoxy resin.
Some are manufactured by compacting with a press or the like.
しかしながら、上記方法にJ:り製造されたダンパ材は
、タングステン粉末の粒子間をエポキシ系樹脂によって
接着・結合し、固化したものであるため、高い密度を得
ることが困難で、ダンパ材の音響インピーダンスを大き
くできなかった。However, the damper material manufactured using the above method is made by bonding and bonding the particles of tungsten powder with epoxy resin and solidifying it, so it is difficult to obtain high density and the damper material's acoustic I couldn't increase the impedance.
ちなみに、プレス時、タングステン粉末間に大きな摩擦
が生じ、内部に多くの樹脂をとじ込める結果となり、か
つ樹脂の密度は1.2X 103kg/ m3と低いた
めにダンパ材の比重も約8が限度であり、音響インピー
ダンスも約15x106 kg/ll12Sと低い値の
ものしか製造できなかった。By the way, during pressing, a large amount of friction occurs between the tungsten powders, resulting in a large amount of resin being trapped inside, and since the density of the resin is low at 1.2 x 103 kg/m3, the specific gravity of the damper material is limited to about 8. However, it was only possible to manufacture products with a low acoustic impedance of approximately 15x106 kg/112S.
以上から、より高分解能の探触子が得られず、高精度が
要求される薄膜の測定などに応えることができなかった
。また、適用する振動子も比較的音響インピーダンスの
小さいニオブ酸鉛(音響インピーダンス; 16X 1
06 kp/m2S )等に限定される等の不便があっ
た。For these reasons, it has not been possible to obtain a probe with higher resolution, and it has not been possible to meet the needs of measurements of thin films that require high precision. In addition, the applied vibrator is lead niobate (acoustic impedance; 16X 1), which has a relatively low acoustic impedance.
There were inconveniences such as being limited to 0.6 kp/m2S).
本発明は、かかる問題点に鑑みなされたもので、その目
的は高分解能探触子を得るために、音響インピーダンス
が高く、しかも音の減衰が大きい性質の探触子用ダンパ
材の製造方法を提供することにある。The present invention was made in view of these problems, and its purpose is to provide a method for manufacturing a damper material for a probe that has high acoustic impedance and large sound attenuation in order to obtain a high-resolution probe. It is about providing.
〔問題点を解決するだめの手段]
本発明の方法は、タングステンまたはウランを主成分と
する高融点金属粉末と、融点1000℃以下の金属を主
成分とする低融点金属粉末とを混合する混合工程と、該
低融点金属粉末のみを溶融する温度まで加熱する加熱工
程と、圧密工程とを有することを要旨とする。[Means for solving the problem] The method of the present invention involves mixing a high-melting point metal powder containing tungsten or uranium as a main component and a low-melting point metal powder containing a metal with a melting point of 1000° C. or less as a main component. A heating step of heating only the low melting point metal powder to a temperature that melts it, and a consolidation step.
第2図(A)〜(C)は本発明の混合粉体の圧密・固化
過程を示す模式図で、タングステン(高融点金属)と鉛
(低融点金属)の粉末を用いた場合である。以下図に基
づいて作用を説明覆る。FIGS. 2A to 2C are schematic diagrams showing the consolidation and solidification process of the mixed powder of the present invention, in which powders of tungsten (a high melting point metal) and lead (a low melting point metal) are used. The operation will be explained below based on the figures.
高融点金属粉末1と低下融点金属粉末2とを混合した混
合粉体3は、第2図(A)に示づように、空洞がかなり
残された状態にある。The mixed powder 3, which is a mixture of the high melting point metal powder 1 and the low melting point metal powder 2, has a considerable amount of cavities left as shown in FIG. 2(A).
次いで混合粉体3を粉末2の融点まで加熱することによ
って、第2図(B)に示すように粉末2のみが溶融し、
流出した粉末2によって粉末2が占有した場所は空洞化
すると共に、溶融した粉末2は毛細管現象によって、粉
末1の相互間の狭隘部に流れ込む結果となる。Next, by heating the mixed powder 3 to the melting point of the powder 2, only the powder 2 melts as shown in FIG. 2(B).
The space occupied by the powder 2 is hollowed out by the outflowing powder 2, and the molten powder 2 flows into the narrow space between the powders 1 by capillary action.
また、粉末1間に流入した粉末2は、プレス等による外
力によって矢印で示す如く圧縮された時、あたかも潤滑
油のような役割を果し、粉末1同志が容易にすべりを生
じて、第2図(C)に示すように高い密度で圧密され、
空冷まIζは水冷等によって、冷Ml・固化されて、素
材すなわちダンパ材が得られる。In addition, when the powder 2 that has flowed between the powders 1 is compressed as shown by the arrow by an external force such as a press, it acts as if it were a lubricating oil, and the powders 1 easily slide together, causing the second Consolidated with high density as shown in figure (C),
The air-cooled Iζ is cooled and solidified by water cooling or the like to obtain a material, that is, a damper material.
特にタングステンと鉛の粉体とを混合して製造されたダ
ンパ材は音響インピーダンスが各々に大きく異なる金属
の混合体であるため、音の減衰も大きく、優れたダンパ
材が得られる。ちなみに、音響インピーダンスは、タン
グステンが104x106 kg/Tl12s 、鉛が
25X106 kq/+n2sである。In particular, a damper material manufactured by mixing tungsten and lead powder is a mixture of metals with greatly different acoustic impedances, so that the sound attenuation is large and an excellent damper material can be obtained. Incidentally, the acoustic impedance of tungsten is 104 x 106 kg/Tl12s, and that of lead is 25 x 106 kq/+n2s.
本発明の好適な一実施例を図面に基づいて説明する。 A preferred embodiment of the present invention will be described based on the drawings.
第1図は本発明の方法を示す一実施例の工程図である。FIG. 1 is a process diagram of an embodiment of the method of the present invention.
第1図において、高融点金属粉末にタングステンの粉末
を用い、また低融点金属粉末に鉛の粉末を用いた場合を
例として説明する。In FIG. 1, an example will be explained in which tungsten powder is used as the high melting point metal powder and lead powder is used as the low melting point metal powder.
タングステン粉末に体積比で10〜40%の鉛の粉末を
混入し、均一に分布するように混合して混合粉体とする
。圧密は、ダイスとポンチからなる圧密装置を用いて該
混合粉体を荷重5,000に!If /cm2にて押し
固めた。Lead powder of 10 to 40% by volume is mixed into tungsten powder and mixed to be uniformly distributed to form a mixed powder. Consolidation is performed using a compaction device consisting of a die and a punch, and the mixed powder is subjected to a load of 5,000! It was compacted at If/cm2.
次いで混合粉体をダイスに充填し荷重を解放した状態で
アルゴン雰囲気の加熱炉に入れ、炉内湿度600℃にお
いて、約30分間加熱し、粉体中の鉛のみを溶融させた
。Next, the mixed powder was filled into a die, and with the load released, it was placed in a heating furnace in an argon atmosphere, and heated for about 30 minutes at a furnace humidity of 600° C., so that only the lead in the powder was melted.
6一
次にダイスを炉外に取り出し自然冷却しながら、再びダ
イスにポンチを挿入し、荷重15,000kgr /c
m2にて押し固め、常温まで冷却し、固化させタングス
テンと鉛の粉末からなるダンパ材を製造した。6. First, take the die out of the furnace and while cooling it naturally, insert the punch into the die again and apply a load of 15,000 kgr/c.
m2, cooled to room temperature, and solidified to produce a damper material made of tungsten and lead powder.
このダンパ材の性質を測定したところ、密度ρ−12X
103k(]/TI3、音速υ−2100m/sであっ
た。When we measured the properties of this damper material, we found that the density ρ-12X
103k(]/TI3, sound velocity υ-2100m/s.
従って、音響インピーダンスIは、■−ρ×)) =1
2X103 X2100=25.2X106 kg/r
r?s 、 −)まり音響インピーダンスの値は25.
2x106 kg/Tl12Sとなり、従来のものに比
べて、非常に高い音響インピーダンスの値を示すことが
確認された。Therefore, the acoustic impedance I is ■−ρ×)) = 1
2X103X2100=25.2X106 kg/r
r? s, -), the value of acoustic impedance is 25.
It was confirmed that the acoustic impedance value was 2x106 kg/Tl12S, which is much higher than that of the conventional one.
このダンパ材は振動子と組合せた場合、例えば、ジルコ
ン酸鉛系の振動子(音響インピーダンス28X 106
kQ/vS’ )にも使用でき高分解能な探触子が得
られる。When this damper material is combined with a vibrator, for example, a lead zirconate vibrator (acoustic impedance 28X 106
kQ/vS'), and a high-resolution probe can be obtained.
なお、上記実施例においては、高融点金属粉末にタング
ステンの粉末を用いた場合について述べたが、これに限
定されるものではなく、タングステンに酷似した高比重
で高融点のウランでもよい、要はタングステンまたはウ
ランを主成分とする金属あるいはその合金からなる金属
粉末であればよい。In addition, in the above embodiment, a case was described in which tungsten powder was used as the high melting point metal powder, but the invention is not limited to this, and uranium with high specific gravity and high melting point, which is very similar to tungsten, may also be used. Any metal powder may be used as long as it is a metal whose main component is tungsten or uranium, or an alloy thereof.
低融点金属粉末については鉛に限らずアルミニウムでも
よく、要は前記タングステンまたはウランよりも融点が
低い金属であって、実用的面から融点温度が1ooo℃
以下である金属の粉末であればよい。ただ、音の減衰を
配慮して、好ましくは、高融点金属とは大きく異なる音
響インピーダンスを有する金属が良い。The low melting point metal powder is not limited to lead, but may also be aluminum; in short, it is a metal with a melting point lower than the above-mentioned tungsten or uranium, and from a practical point of view, the melting point temperature is 100°C.
Any metal powder that meets the following requirements may be used. However, in consideration of sound attenuation, it is preferable to use a metal that has an acoustic impedance that is significantly different from that of a high-melting point metal.
混合粉体を圧密した後、加熱する場合について述べたが
、圧密工程を省略して、直ちに混合粉体を加熱してもよ
い。Although the case has been described in which the mixed powder is heated after being compacted, the compacting step may be omitted and the mixed powder may be heated immediately.
混合粉体を低融点金属粉末が溶融する温度まで加熱した
後、混合粉体を自然冷却しながら圧密した場合について
述べたが、混合粉体を加熱した状態あるいは冷却後の状
態において圧密するようにしてもよい。We have described the case where the mixed powder is heated to the temperature at which the low-melting point metal powder melts, and then the mixed powder is naturally cooled and consolidated. It's okay.
冷却については自然冷却によらず、水冷等により強制冷
却によってもよい。Cooling may not be based on natural cooling, but may be forced cooling such as water cooling.
その他、本発明の要旨を逸脱しない範囲内において変更
し得ることは勿論である。It goes without saying that other changes may be made without departing from the gist of the present invention.
以上述べた如く本発明の方法によれば、次のような優れ
た効果を奏する。As described above, the method of the present invention provides the following excellent effects.
(1)高融点と低融点金属粉末の混合粉体を低融点金属
のみ溶融させる温度まで加熱するので、粉体の密度をよ
り高くできる。(1) Since a mixed powder of high melting point and low melting point metal powders is heated to a temperature that melts only the low melting point metal, the density of the powder can be further increased.
(2)混合粉体の低融点金属を溶融させた後、圧密する
ので更に粉体の密度を高くできる。(2) Since the low melting point metal of the mixed powder is melted and then compacted, the density of the powder can be further increased.
(3)上記(1)および(2)項から従来に比して音響
インピーダンスの値が高いダンパ材が得られ、高分解能
な探触子を得ることができる。(3) From the above (1) and (2), a damper material having a higher acoustic impedance value than the conventional damper material can be obtained, and a high-resolution probe can be obtained.
第1図は本発明の方法を示す一実施例の工程図、第2図
(A>、(B)、(C)は本発明の混合粉体の圧密・固
化過程を示す模式図、第3−〇−
図および第4図は従来の探触子の説明図である。
図中、1は高融点金属粉末、2は低融点金属粉末、3は
混合粉体を示す。
特許出願人 石川島播磨重工業株式会社1N開日HG3
−255G’、+7 (4)(A)
(B) (C)第
2図
第 4 凶FIG. 1 is a process diagram of an example showing the method of the present invention, FIG. -〇- Figures and Figure 4 are explanatory diagrams of conventional probes. In the figures, 1 indicates high melting point metal powder, 2 indicates low melting point metal powder, and 3 indicates mixed powder. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd. 1N Kaichi HG3
-255G', +7 (4) (A)
(B) (C) Figure 2 No. 4
Claims (1)
粉末と、融点1000℃以下の金属を主成分とする低融
点金属粉末とを混合する混合工程と、該低融点金属粉末
のみを溶融する温度まで加熱する加熱工程と、圧密工程
とを有することを特徴とする探触子用ダンパ材の製造方
法。A mixing step of mixing a high melting point metal powder mainly composed of tungsten or uranium and a low melting point metal powder mainly composed of a metal with a melting point of 1000°C or less, and heating to a temperature that melts only the low melting point metal powder. A method for producing a damper material for a probe, comprising a heating step and a consolidation step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8967487A JPS63255657A (en) | 1987-04-14 | 1987-04-14 | Manufacture of damper material for probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8967487A JPS63255657A (en) | 1987-04-14 | 1987-04-14 | Manufacture of damper material for probe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63255657A true JPS63255657A (en) | 1988-10-21 |
Family
ID=13977296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8967487A Pending JPS63255657A (en) | 1987-04-14 | 1987-04-14 | Manufacture of damper material for probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63255657A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990014738A1 (en) * | 1989-05-15 | 1990-11-29 | Hitachi Construction Machinery Co., Ltd. | Ultrasonic probe and method of producing the same |
JPH0327353U (en) * | 1989-07-27 | 1991-03-19 | ||
JPH0327352U (en) * | 1989-07-27 | 1991-03-19 | ||
WO1999023486A1 (en) * | 1997-10-31 | 1999-05-14 | Kawasaki Steel Corporation | Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same |
-
1987
- 1987-04-14 JP JP8967487A patent/JPS63255657A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990014738A1 (en) * | 1989-05-15 | 1990-11-29 | Hitachi Construction Machinery Co., Ltd. | Ultrasonic probe and method of producing the same |
JPH0327353U (en) * | 1989-07-27 | 1991-03-19 | ||
JPH0327352U (en) * | 1989-07-27 | 1991-03-19 | ||
WO1999023486A1 (en) * | 1997-10-31 | 1999-05-14 | Kawasaki Steel Corporation | Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same |
US6341525B1 (en) | 1997-10-31 | 2002-01-29 | Kawasaki Steel Corporation | Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them |
US6446509B1 (en) | 1997-10-31 | 2002-09-10 | Kawasaki Steel Corporation | Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them |
AU752801B2 (en) * | 1997-10-31 | 2002-10-03 | Kawasaki Steel Corporation | Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same |
AU752801C (en) * | 1997-10-31 | 2003-06-12 | Kawasaki Steel Corporation | Method and apparatus for ultrasonically detecting flaw on surface of circular cylinder, and method of grinding roll utilizing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2003952A6 (en) | Method of making metal castings. | |
JPS63255657A (en) | Manufacture of damper material for probe | |
US3383208A (en) | Compacting method and means | |
JP2520638B2 (en) | Molding method for powder cosmetics | |
JPH02185904A (en) | Hot pressing of powder and granule | |
US4690791A (en) | Process for forming ceramic parts | |
US3313007A (en) | Method of making sheet metal forming dies | |
JPS6126703A (en) | Production of amorphous metallic compact | |
EP0157377A3 (en) | Method of and installation for producing free by chosen melt amounts of metallic melts | |
JPS58197202A (en) | Material solidification by pressure transmitter | |
Luo et al. | Micro-ultrasonic powder moulding of Sn–Bi/Cu composite micro parts in semisolid form | |
JPS5945024A (en) | Device for manufacturing stratiform semimanufacture | |
DE1025107B (en) | Process for making molds that can be used repeatedly | |
DE970116C (en) | Shaping process for metal powder (metal-ceramic materials) under the action of ultrasound | |
JPS6146531B2 (en) | ||
JPH02141545A (en) | Manufacture of sintered compact of light metal | |
SU900987A1 (en) | Method of producing sintered bars | |
JPH05140610A (en) | Production of titanium alloy powder-metallurgy material having homogeneous fine structure and its automatic filling machine | |
Fowler | Resonant Frequency Method for Nondestructive Evaluation of Sintered Powder Metal and Investment Cast Products | |
JPS60194700A (en) | Ultrasonic probe | |
JPS55152141A (en) | Hybrid metal material and preparation thereof | |
JP3035756B2 (en) | Nozzle forming method for continuous casting | |
JPH0394031A (en) | Manufacture of amorphous alloy powder-made sintered body | |
JPS62211305A (en) | Aluminum alloy-base composite structure and its production | |
Miller | The production and consolidation of amorphous metal powder |