JPS63255332A - Manufacture of magnetic composite material of al or al alloy - Google Patents

Manufacture of magnetic composite material of al or al alloy

Info

Publication number
JPS63255332A
JPS63255332A JP9020087A JP9020087A JPS63255332A JP S63255332 A JPS63255332 A JP S63255332A JP 9020087 A JP9020087 A JP 9020087A JP 9020087 A JP9020087 A JP 9020087A JP S63255332 A JPS63255332 A JP S63255332A
Authority
JP
Japan
Prior art keywords
magnetic
ferromagnetic material
alloy
composite material
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9020087A
Other languages
Japanese (ja)
Other versions
JPH0639643B2 (en
Inventor
Kenichi Aota
健一 青田
Mutsumi Abe
睦 安部
Masahiro Yanagawa
政洋 柳川
Yoshio Asano
浅野 吉男
Takashi Motoda
元田 高司
Yoshiki Takebayashi
慶樹 武林
Koichi Ozaki
幸一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9020087A priority Critical patent/JPH0639643B2/en
Publication of JPS63255332A publication Critical patent/JPS63255332A/en
Publication of JPH0639643B2 publication Critical patent/JPH0639643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a composite material excellent in magnetic properties such as initial magnetic permeability, by subjecting a ferromagnetic material to oxidation by heating before or after precompacting and then by pressing and impregnating molten Al into the resulting preformed body. CONSTITUTION:A powder or fibrous body of ferromagnetic material consisting of Fe or Fe alloy is precompacted. Before or after the above precompacting,the above material is subjected to oxidation by heating in the air at 300-700 deg.C to undergo formation of oxide film on the surface. The resulting preformed body 2 is disposed in a metal mold 3, and molten Al or Al alloy 1 is poured around the preformed body 2. Then, a pressurizing force is impressed by means of a plunger 6, etc., on the poured molten Al 1, and the molten Al 1 is pressed and impregnated into the preformed body 2 so as to form a magnetic composite material. Since this composite material has high magnetic properties, it can contribute toward making magnetic substances, etc., for motor rotor and stator lightweight.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気特性、特に初期透磁率の優れる、Alま之
はAg合金の磁性複合材料の製造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of a magnetic composite material of an Al-Ag alloy that has excellent magnetic properties, particularly excellent initial magnetic permeability.

〔従来の技術〕[Conventional technology]

AIまたはAl合金(以下rAeJと略記する。)゛は
軽量である利点の他に電気伝導性、熱伝導性。
AI or Al alloy (hereinafter abbreviated as rAeJ) has the advantage of being lightweight, as well as electrical and thermal conductivity.

耐蝕性および加工性に優れ、かつ合金化にて強度面の改
善もなされていることよシ、近来、特に軽量化・小型化
が急速に進められている電気製品の分野にて鉄鋼に代替
して多用されている。
It has excellent corrosion resistance and workability, and its strength has also been improved through alloying, so it has recently become a substitute for steel, especially in the field of electrical products, where weight reduction and miniaturization are rapidly progressing. It is widely used.

反面rAIJは非磁性体であって、モータ類等の磁性を
利用する部品には適用し得す、これら部品には1強磁性
体のFeまたはFe合金が使用されるのが通常である。
On the other hand, rAIJ is a non-magnetic material and can be applied to parts that utilize magnetism such as motors, and ferromagnetic material Fe or Fe alloy is usually used for these parts.

しかし、電気製品の分野におhてはとれら磁性部品に関
してもその軽量化が強く望まれておシ、軽量でかつ磁性
を有す材料が必要とされている。
However, in the field of electrical products, there is a strong desire to reduce the weight of magnetic parts, and there is a need for lightweight and magnetic materials.

こうした要請に対応すべく 、rAUの特性を保持しつ
つ更に磁性を付与した磁性複合材料の開発が進められ、
その製造方法についても種々の具体的な提案がなされて
いる。
In order to meet these demands, efforts are being made to develop magnetic composite materials that retain the properties of rAU while adding magnetism.
Various specific proposals have also been made regarding the manufacturing method.

これらrAU磁性複合材料の製造方法としては、大別■
粉末冶金法によるもの、および■浴湯含浸法によるもの
があって、■粉末冶金法による磁性Al1合金の調造方
法としては、例えば、特開昭57−51231号公報に
開示されたものがある。
The manufacturing methods for these rAU magnetic composite materials can be roughly divided into
There are methods for preparing magnetic Al1 alloys by powder metallurgy, and (1) methods for preparing magnetic Al1 alloys by powder metallurgy, such as the one disclosed in JP-A No. 57-51231. .

この従来技術に係る磁性複合材料の製造方法は、 rA
eJの粉末または切粉と、強磁性の金属もしくは合金の
粉末または切粉とを、重量比で20=1〜1:1の割合
で混合し、圧縮成形した後、 rAl’Jの融点以下の
温度で焼結する。いわゆる粉末冶金法によるもので、必
要に応じて焼結後、前記融点以下の温旋にて鍛造、押出
し等の熱間成形加工が加えられるものである。
The method for manufacturing a magnetic composite material according to this prior art is rA
eJ powder or chips and ferromagnetic metal or alloy powder or chips are mixed at a weight ratio of 20 = 1 to 1:1, compression molded, and then Sinter at temperature. This method is based on a so-called powder metallurgy method, and if necessary, after sintering, hot forming processes such as forging and extrusion at a temperature below the melting point are added.

この従来技術は、上記の粉末冶金法にてrAeJ中に鉄
粉、低炭鋼切粉等の強磁性材料を混合含有させて、両者
の特性を併せ持つrAU磁性複合材料を製造するもので
ある。
This prior art involves mixing and containing ferromagnetic materials such as iron powder and low carbon steel chips in rAeJ using the above-mentioned powder metallurgy method to produce an rAU magnetic composite material that has the characteristics of both.

ま九、■溶湯含浸法によるrAU磁性複合材料の製造方
法としては、例えば、特開昭60−103″141号公
報に開示されたものがある。
(9) As a method for producing an rAU magnetic composite material by a molten metal impregnation method, for example, there is a method disclosed in Japanese Patent Application Laid-open No. 60-103''141.

この従来技術に係るAI!複合材料の製造方法は、A1
合金と、該A1合金の融点よシも高い融点をもつ繊維状
または粒子状の補強材(Fa 、Ni 、C。
AI related to this conventional technology! The manufacturing method of the composite material is A1
alloy and fibrous or particulate reinforcement (Fa, Ni, C) with a melting point higher than that of the A1 alloy.

等の強磁性金属のウィスカー)Kて形成された体積率5
〜70%の予備成形体とを、前記Al合金よシも高い融
点を有す金属カプセル内に充填し、該カプセル内を真空
密封した後、加熱してカプセル内のAI1合金を溶融さ
せると共に、カプセルを圧力媒体を介して等方圧的に加
圧して、カブ七〃を塑性変形させつつ、その内の溶融A
1合金を予備成形体内に含浸させる、いわゆる溶湯含浸
法にてAl合金と強磁性・金属とを複合体化するもので
ある。
Whiskers of ferromagnetic metals such as
~70% of the preformed body is filled into a metal capsule having a higher melting point than the Al alloy, the inside of the capsule is vacuum-sealed, and then heated to melt the AI1 alloy inside the capsule, The capsule is isostatically pressurized via a pressure medium to plastically deform the turnip 7 while melting the molten A inside the capsule.
The Al alloy and the ferromagnetic metal are made into a composite by a so-called molten metal impregnation method in which the Al alloy is impregnated into a preform.

なお、上記Al合金の溶湯含浸に際しては、通常、10
00〜2000気圧の含浸圧力が採用され、また、その
処理時間は15〜60分程度とされている。
In addition, when impregnating the above-mentioned molten Al alloy with molten metal, usually 10
An impregnation pressure of 00 to 2,000 atmospheres is used, and the treatment time is about 15 to 60 minutes.

この従来技術は、上記溶湯含浸法にて強磁性金属からな
る予備成形体内にA1合金の溶湯を圧入含浸させ、真密
度が高く、かつ機械的性質の優れるAg複合材料を製造
するものである。
This prior art involves injecting and impregnating a molten A1 alloy into a preform made of a ferromagnetic metal using the molten metal impregnation method described above to produce an Ag composite material with high true density and excellent mechanical properties.

そしてまた、Ad溶湯を加圧鋳造してAg複合材料を製
造する、いわゆるO溶湯含浸法にてAg複合材料を製造
する方法としては、例えば、特公報60−25222’
号に開示され喪ものがある。
Furthermore, as a method for producing an Ag composite material by pressure casting a molten Ad metal to produce an Ag composite material using the so-called O molten metal impregnation method, for example, Japanese Patent Publication No. 60-25222'
There is a mourning thing disclosed in the issue.

この従来技術に係る複合材料の製造方法は、カーボンフ
ァイバー等の強化用繊維からなる予備成形体を配置し北
金型内に、AlおよびMg等の母相金属溶湯を注入し、
該溶湯を加圧して前記予備成形体に圧入含浸させる。い
わゆる溶湯含浸法によるものであって、溶湯加圧にりい
て、加圧開始時から第1所定時間内にて第1所定圧に急
激に印加した後、直ちに第1所定圧より低い第2所定圧
に低下させて第2所定時間保持するものである。
The method for manufacturing a composite material according to this prior art includes arranging a preform made of reinforcing fibers such as carbon fiber, and injecting a molten matrix metal such as Al and Mg into a north mold.
The molten metal is pressurized and impregnated into the preform. This method is based on the so-called molten metal impregnation method, in which a first predetermined pressure is rapidly applied within a first predetermined time from the start of pressurization, and then a second predetermined pressure lower than the first predetermined pressure is immediately applied. The pressure is then lowered to a second predetermined time period.

この従来技術は、上記溶湯含浸法にて%All溶湯の浸
透性が低い強化繊維からなる予備成形体についても比較
的に低い圧力にて、Ags湯を均一に浸透させ得るもの
であって、Alとカーボンファイバー等の強化用繊維と
を強固に結合でき、機材的性質の優れる複合材料、すな
わちAg複合材料を製造するものである。
This prior art is capable of uniformly impregnating Ags molten metal into a preform made of reinforcing fibers with low permeability to %Al molten metal using the molten metal impregnation method at a relatively low pressure. The objective is to manufacture a composite material, that is, an Ag composite material, which can firmly bond a reinforcing fiber such as carbon fiber and has excellent mechanical properties.

なお、この従来方法にしたがい、カーボンファイバーか
らなる体積率18%の予備成形体11CAI溶湯を圧入
含浸するにつ−て、前記の第1所定圧を1000〜20
00 kgloms 、第1所定時間を1秒以内、第2
所定圧を750にしrams、 第2所、定時間を60
秒とする溶湯加圧条件にて良好なるAd溶湯の含浸結果
が得られるとされている。
In addition, according to this conventional method, when press-fitting and impregnating the preformed body 11 CAI molten metal made of carbon fiber with a volume fraction of 18%, the first predetermined pressure was set at 1000 to 20
00 kgloms, the first predetermined time is within 1 second, the second
Set the predetermined pressure to 750 rams, set the 2nd place, and set the predetermined time to 60
It is said that good impregnation results with Ad molten metal can be obtained under the molten metal pressurization conditions of seconds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

rAIJ磁性複合材料の製造においては、その内に添加
・含有される強磁性材料が本来有す磁気特性を十分発揮
し得るようKして、 rAt?Jと複合体化させる必要
があるが、そのなめには、その複合体化の過程にて、■
強磁性材料に歪を付加もしくは残留させないこと、およ
び0強磁性材料とrhj」との熱くよる反応を抑制する
ことが要点となる。
In the production of rAIJ magnetic composite materials, the rAt? It is necessary to make it into a complex with J, but in the process of making it into a complex, ■
The key points are not to add or leave strain on the ferromagnetic material, and to suppress the reaction between the zero ferromagnetic material and rhj due to heat.

これは、■強磁性材料の内部に歪があると、この歪が磁
場を印加した際の磁壁の移動を阻害するがため強磁性体
内の磁化率を低下させる、すなわち、磁性複合材料の製
造過程における成形応力にで、その内に添加された強磁
性材料に歪を付加・残留させたとき、この歪が磁性複合
材料の磁化率、特に初期透磁率を低下させるからである
This is because: ■ If there is strain inside the ferromagnetic material, this strain will inhibit the movement of the domain wall when a magnetic field is applied, thereby reducing the magnetic susceptibility inside the ferromagnetic material.In other words, the manufacturing process of magnetic composite materials This is because, when strain is added to and remains in the ferromagnetic material added therein due to the forming stress, this strain reduces the magnetic susceptibility, particularly the initial magnetic permeability, of the magnetic composite material.

そして、0強磁性材料(FsまたはFe合金)とrAl
!J<Atま之はA1合金)との界面における熱による
拡散・反応があると、この反応によシ脆くて非磁性の金
属間化合物(Als・Fe等)が生成される、すなわち
、磁性複合材料の製造過程において加えられた熱にて、
その内の強磁性材料と1”、xllJ間に非磁性の金属
間化合物を生成させたとき、強磁性材料が磁性体として
の有効体積を減じ、rAIJ磁性複谷材料はその減損分
について単に重量を増すのみで磁気特性の向上が得られ
ないからである。
And 0 ferromagnetic material (Fs or Fe alloy) and rAl
! When there is a thermal diffusion/reaction at the interface with the A1 alloy (J Due to the heat added during the manufacturing process of the material,
When a non-magnetic intermetallic compound is formed between the ferromagnetic material and 1"xllJ, the ferromagnetic material reduces its effective volume as a magnetic material, and the rAIJ magnetic compound valley material simply weighs the amount of loss. This is because the magnetic properties cannot be improved just by increasing the .

しかし、前述の従来技術に係る磁性複合材料およびAd
複合材料の製造方法について、上記の観点より検討した
ところ、これらは、その内に添加された強磁性材料がそ
の本来の磁気特性を十分に発揮し得ないものであること
が判明した。
However, the magnetic composite materials and Ad
When methods for producing composite materials were studied from the above viewpoint, it was found that the ferromagnetic material added thereto could not sufficiently exhibit its original magnetic properties.

すなわち、前述の■粉末冶金法による従来技術(特開昭
57−51231号の提案)においては、 rANJ磁
性複合材料は圧縮成形・焼結、およびその後の熱間成形
加工の温度をrAeJの融点(約480〜650℃)以
下とされてあり、これら比較的に低温なる温度域にて固
化成形ないしは熱間成形加工されたrAIJ磁性複合材
料内の強磁性材料は、その成形過程にて付加された歪を
開放し得す、必然的に、内部に残留させたものとなる。
That is, in the prior art (proposed in JP-A No. 57-51231) using the powder metallurgy method mentioned above, rANJ magnetic composite materials are produced by adjusting the temperature of compression molding, sintering, and subsequent hot forming processing to the melting point of rAeJ ( The ferromagnetic material in the rAIJ magnetic composite material, which is solidified or hot-formed in these relatively low temperature ranges, is added during the forming process. Although the distortion can be released, it will inevitably remain inside.

例えば、純Ae粉末と純Fe粉末との混合物を純ANの
融点(約660℃)以下の600℃にて圧縮固化するに
ついて、これら粉体間の結合一体化を確実なものとする
には5000〜8000kg/a重8程度の圧力を加え
ることを要すものであって、この圧力にて純Fe粉末に
加えられる応力は、600℃の温度における純Feの降
伏応力(約3 kFV′mnvm 300 kg/am
りを大巾に超えるもので、この圧縮固化過程で加えられ
た応力にて純Fa内部に歪が付加され、また、この歪は
600℃程度の温度にては短時間で開放・除去し得ない
ものである。
For example, when compressing and solidifying a mixture of pure Ae powder and pure Fe powder at 600°C, which is below the melting point of pure AN (approximately 660°C), in order to ensure the integration of these powders, it is necessary to It is necessary to apply a pressure of ~8000 kg/a weight 8, and the stress applied to pure Fe powder at this pressure is equivalent to the yield stress of pure Fe at a temperature of 600°C (approximately 3 kFV'mnvm 300 kg/am
The stress applied during this compression and solidification process creates strain inside pure Fa, and this strain can be released and removed in a short time at a temperature of about 600°C. It's something that doesn't exist.

従って、これら粉末冶金法によるrAIJ磁性複合材料
は、その製造過程の加熱温度が比較的に低温であって、
金属間化合物(Als・F′8)の生成を抑制する面で
は有効なるものであっても、その内に添加され九強性材
料内部に成形過程における応力にて付加された歪が残留
するもので、添加された強磁性材料の量よシ期待される
磁気特性が得られないものである。
Therefore, these rAIJ magnetic composite materials produced by powder metallurgy require relatively low heating temperatures during the manufacturing process.
Even if it is effective in suppressing the formation of intermetallic compounds (Als/F'8), the strain added by stress during the forming process remains inside the nine-strength material. However, the expected magnetic properties cannot be obtained depending on the amount of ferromagnetic material added.

例えば、純鉄は100エルステツド(0りの低磁場内に
おいて、約2万ガウス(G)の磁束密度を示すものであ
って、この純鉄を純人l中に体積率にて30!A混合添
付してなる磁性複合材料は、混合剤に従うと仮定して計
算すると、上記の磁場内において約6千ガウス(G)の
磁束密度を示すことが期待される。
For example, pure iron exhibits a magnetic flux density of about 20,000 gauss (G) in a low magnetic field of 100 oersted (0), and this pure iron is mixed at a volume ratio of 30! The attached magnetic composite material is expected to exhibit a magnetic flux density of about 6,000 Gauss (G) in the above magnetic field, calculated assuming compliance with the mixture.

しかしながら1例えば、純AN粉末中に純鉄を体積率で
30%添加した混合物を、600℃、7000気圧(相
当する変形応力◆70kgAnrnりにて熱間圧縮成形
した磁性複合材料は、100工〜ステツド(Oe)の磁
場内における磁束密度が3500ガウス(G)と、期待
値に対し大巾に低い値を示し次。
However, 1. For example, a magnetic composite material obtained by hot compression molding a mixture of pure AN powder and pure iron at a volume ratio of 30% at 600°C and 7000 atm (corresponding deformation stress ◆ 70 kg Anrn) takes 100 to The magnetic flux density in the magnetic field of Stead (Oe) is 3500 Gauss (G), which is significantly lower than the expected value.

なお、上記従来技術によるrAIJ磁性複合材料内の強
磁性材料内部の歪は、それぞれ成形完了後において、適
切な温度・時間の焼鈍を加えることで除去可能なるもの
であるが、しかし、この焼鈍温度は磁性複合材料の形態
を維持するため、該磁性複合材料内0rAIJのメルト
ダウン温度、すなわちrAIJの融点以下の温度しか適
用し得す、また、この比較的に低温(約450〜650
℃)なる温度にて強磁性体内部の歪を除去するKはその
所要時間が実用上適用し難い長時間なものとなる。
Note that the strain inside the ferromagnetic material in the rAIJ magnetic composite material according to the above-mentioned conventional technology can be removed by annealing at an appropriate temperature and time after completion of molding. However, this annealing temperature In order to maintain the morphology of the magnetic composite material, only a temperature below the meltdown temperature of 0rAIJ in the magnetic composite material, that is, the melting point of rAIJ, can be applied;
The time required for K to remove strain inside a ferromagnetic material at a temperature of 0.degree. C.) is too long to be practically applicable.

一方、前述のO溶湯含浸法による従来技術(特開昭60
−103141号の提案)においては。
On the other hand, the conventional technology using the O molten metal impregnation method mentioned above (Japanese Patent Laid-open No. 60
In the proposal of No.-103141).

rA(IJは強磁性材料の予備成形体と共にカプセル内
に充填された状態にて加熱溶融され、しかる後、該カプ
セルの圧縮変形に伴い予備成形体内に圧入含浸されるも
ので、その加熱溶融、圧入含浸の過程において溶湯であ
るrAUと強磁性材料との界面にて、必然的に反応が起
シ、金属間化合物(AJs・Fe)が生成される。しか
も、rAIJの加熱溶融のための昇温過程においても強
磁性材料と混在するとの従来技術においては%rAI!
Jと強磁性材料(F・またはF・合金)との界面におけ
る反応(ある時間を与えた場合550℃よ〕認められる
AjとF・との反応)時間を比較的に長く与えるもので
、金属間化合物の生成を助長して、その内に添加された
強磁性材料が磁性体としての有効体積を大きく減損する
ものである。
rA (IJ is heated and melted while being filled in a capsule with a preformed body of a ferromagnetic material, and then press-fitted into the preformed body as the capsule is compressed and deformed; During the press-in impregnation process, a reaction inevitably occurs at the interface between the molten rAU and the ferromagnetic material, producing intermetallic compounds (AJs/Fe). In the conventional technology, %rAI! is mixed with ferromagnetic material even in a hot process.
The reaction at the interface between J and a ferromagnetic material (F or F alloy) (the reaction between Aj and F, which can be observed at 550°C for a certain amount of time) is given a relatively long time, and the The ferromagnetic material added therein greatly reduces the effective volume of the magnetic material by promoting the formation of intermediate compounds.

また、前述後者の0溶湯含浸法による従来技術(特公昭
60−25222号の提案)においては、カーボンファ
イバー等の強化繊維体KAjを含浸させて複合体化する
ものとされてあシ、この複合体化にて母相金属なるAj
の強化、すなわち機械的特性の改善について言及されて
いるものの。
In addition, in the latter prior art (proposed in Japanese Patent Publication No. 60-25222) using the zero molten metal impregnation method mentioned above, a reinforcing fiber body KAj such as carbon fiber is impregnated to form a composite. Aj becomes the matrix metal in the embodiment
Although mention is made of strengthening, i.e. improving mechanical properties.

Adと強磁性材料との複合化とか、複合体化による強磁
性材料の磁気特性への影響等については一切言及ないし
は示唆されていない、。
There is no mention or suggestion of the composite of Ad and a ferromagnetic material, or the influence of the composite on the magnetic properties of the ferromagnetic material.

そしてまた、この従来技術にしたがい1強化繊維を強磁
性材料に代替して、rAUと強磁性材料(F・またはF
e合金)の複合体なる磁性複合材料を裏遺せんとすると
き、含浸圧力は■粉末冶金法による固化成形圧力より比
較的に低く、強磁性材料内部に付加もしくは残留させる
歪の面では格段に有利であるとはいえ、また、その含浸
・固化時間は比較的に短時間なるとはいえ、溶湯含浸・
凝固の過程におけるAdとFeとの反応、すなわち金属
間化合物(Aes・Fa)の生成は避は難く1強磁性材
料はrAUとの複合体化の過程にて磁性体としての有効
体積を減損する。    − 従って、これら溶湯含浸法による磁性複合材料は、その
製造過程において強磁性材料と溶湯なるrAUとの界面
において金属間化合物(Ags・Fa)の生成を伴い、
その内に添加した強磁性材料が磁性体としての有効体積
を減損する欠点がある。
Also, according to this prior art, one reinforcing fiber is replaced with a ferromagnetic material, and rAU and a ferromagnetic material (F or F
When using a magnetic composite material (composite of e-alloy) as a backing, the impregnation pressure is comparatively lower than the solidification and compacting pressure by powder metallurgy, and it is much more effective in terms of strain added or remaining inside the ferromagnetic material. Although it is advantageous, and although the impregnation and solidification time is relatively short, molten metal impregnation and
The reaction between Ad and Fe during the solidification process, that is, the generation of intermetallic compounds (Aes/Fa), is unavoidable, and the effective volume of the ferromagnetic material as a magnetic material is reduced in the process of complexing with rAU. . - Therefore, in the manufacturing process of these magnetic composite materials produced by the molten metal impregnation method, intermetallic compounds (Ags/Fa) are generated at the interface between the ferromagnetic material and the molten metal rAU.
There is a drawback that the ferromagnetic material added therein reduces the effective volume as a magnetic body.

本発明は上記問題点に鑑み、その製造過程において、そ
の内に添加する強磁性材料(FeまたはFe合金)とr
AIJ (A # −* タけAt1合金)とO界面に
おける反応、すなわち非磁性の金属間化合物(Ajs・
Fe)の生成を抑制し得、かつ1強磁性材料内部に歪を
付加ないしは残留させることを軽減し得て、もってその
内に添加された強磁性材料に本来の磁気特性を十分に発
揮させ得るAdまたはAl合金の磁性複合材料の製造方
法を提供することを目的とするものである。
In view of the above-mentioned problems, the present invention has been developed in such a way that the ferromagnetic material (Fe or Fe alloy) added thereto and the r
The reaction at the interface between AIJ (A # - * Bamboo At1 alloy) and O, that is, the nonmagnetic intermetallic compound (Ajs
It is possible to suppress the generation of Fe), and it is possible to reduce the addition or residual strain inside the ferromagnetic material, thereby allowing the ferromagnetic material added therein to fully exhibit its original magnetic properties. The object of the present invention is to provide a method for manufacturing a magnetic composite material of Ad or Al alloy.

□  〔問題点を解決するための手段〕上記問題点を解
決するための本発明に係るA#またはAl合金の磁性複
合材料の製造方法は、Feま九はF・合金からなる粉体
または繊維体を予備成形した後、該予備成形体KAlf
またはA7合金の溶湯を圧入含浸させることによシ、前
記強磁性材料を体積率で15〜80%含有する磁性複合
材料を製造する方法において、前記強磁性材料を予備成
形の前、もしくは後に、大気中にて300〜700℃の
温度で加熱酸化させ、しかる後%核加熱酸化された強磁
性材料からなる予備成形体に前記溶湯を圧入含浸させる
ことを特徴とするものである。
□ [Means for solving the problem] In order to solve the above problem, the method for producing a magnetic composite material of A# or Al alloy according to the present invention is a method of manufacturing a magnetic composite material of A# or Al alloy. After preforming the body, the preform body KAlf
Alternatively, in a method for manufacturing a magnetic composite material containing 15 to 80% by volume of the ferromagnetic material by injecting and impregnating a molten metal of A7 alloy, the ferromagnetic material is applied before or after preforming, The method is characterized in that the molten metal is press-fitted and impregnated into a preform made of a ferromagnetic material which has been oxidized by heating at a temperature of 300 to 700° C. in the atmosphere and then oxidized by heating.

〔作 用〕[For production]

本発明に係るAl?またはA1合金の磁性複合材料の製
造方法は、Faま九はFe合金からなる強磁性材料の粉
体または繊維体にて形成された予備成形体に、AIまた
はAl合金の溶湯を圧入含浸させる。いわゆる溶湯含浸
法にて、rhttJと強磁性材料とを複合体化させるも
のであって、その複合体化に要す圧力、すなわちrAe
J溶湯の含浸圧力はいわゆる粉末冶金法による複合体化
に要す圧力、すなわちrAJJの固相温度域にて圧縮拳
結合させる圧力に比較して低く;その複合体化の過程に
て、その内に添加された強磁性材料内部に歪の付加ない
しは残留させることを軽減し得るものである。
Al according to the present invention? Alternatively, in a method for producing a magnetic composite material of A1 alloy, a molten metal of AI or Al alloy is press-fitted and impregnated into a preform formed of powder or fiber of a ferromagnetic material made of Fe alloy. The so-called molten metal impregnation method is used to make rhttJ and a ferromagnetic material into a composite, and the pressure required to make the composite, that is, rAe
The impregnation pressure of J molten metal is lower than the pressure required for composite formation by the so-called powder metallurgy method, that is, the pressure for compression fist bonding in the solidus temperature range of rAJJ; This can reduce the addition or residual strain inside the ferromagnetic material added to the ferromagnetic material.

また1本発明方法においては、前記強磁性材料は予備成
形の前、もしくは後に、大気中にて加熱酸化され、その
表面に酸化被膜を形成させたものであって、この酸化被
膜を有す強磁性材料からなる予備成形体は前記rAU溶
湯の圧入含浸に際して非磁性表る金属間化合物(AJs
・Fe)の生成を抑制するものである。
In addition, in the method of the present invention, the ferromagnetic material is heated and oxidized in the atmosphere before or after preforming to form an oxide film on its surface, and the ferromagnetic material has an oxide film formed on its surface. The preformed body made of magnetic material contains intermetallic compounds (AJs) that appear non-magnetic during press-in impregnation with the rAU molten metal.
・Fe) is suppressed from being produced.

これは、表面に酸化被膜を形成させた強磁性材料からな
る予備成形体に、 rAIJの溶湯を圧入含浸させると
き、溶湯と強磁性材料との界面においてAIIとFeと
が反応せんとするが、この界面、すなわち1強磁性材料
の表面には酸化被膜が介在するもので、この酸化被膜が
ANとFeとの反応を阻害する障壁として作用して金属
間化合物(Aes・Fe)の生成を抑制するからである
This is because when a preform made of a ferromagnetic material with an oxide film formed on its surface is press-impregnated with molten rAIJ, AII and Fe do not react at the interface between the molten metal and the ferromagnetic material. An oxide film exists on this interface, that is, the surface of the ferromagnetic material 1, and this oxide film acts as a barrier to inhibit the reaction between AN and Fe, suppressing the formation of intermetallic compounds (Aes/Fe). Because it does.

上記についてさらに詳しく説明すると、発明者等は磁性
複合材料の製造につδて、溶湯含浸法を用いるとき、そ
の含浸圧力を予備成形体内のガスを排出するに要す程度
の低い圧力まで低下させても「AeJと強磁性材料との
複合体化が可能であシ。
To explain the above in more detail, the inventors have discovered that when using the molten metal impregnation method in the production of magnetic composite materials, the impregnation pressure is reduced to a pressure as low as necessary to exhaust the gas in the preform. However, it is possible to form a composite of AeJ and a ferromagnetic material.

その内に添加した強磁性材料内部の歪による磁気特性の
低下に関しては大巾に改善し得ることを確認したもので
ある。
It has been confirmed that the deterioration of magnetic properties due to strain inside the ferromagnetic material added thereto can be significantly improved.

しかし、上記溶湯含浸法によるとき、rAJJ溶湯と強
磁性材料との界面反応が不可避的に起シ、この反応によ
る非磁性の金属間化合物(Als・Fa)の生成にで強
磁性材料の磁性体としての有効体積を減損するという問
題を伴うなめ1本発明等はこの界面反応について、その
抑制方法を種々検討し念結果1強磁性材料にある条件下
で酸化被膜を形成させたとき、この酸化被膜が有効なる
界面反応の障壁となシ得るとの結論に達したものである
However, when using the above molten metal impregnation method, an interfacial reaction between the rAJJ molten metal and the ferromagnetic material inevitably occurs, and this reaction causes the formation of non-magnetic intermetallic compounds (Als/Fa). 1 The present invention and others investigated various ways to suppress this interfacial reaction, and found that 1. When an oxide film is formed on a ferromagnetic material under certain conditions, this oxidation The conclusion was reached that the coating can act as an effective barrier to interfacial reactions.

rAllJ溶湯と強磁性材料との界面反応を防止するに
は、強磁性材料の粉体ま九は繊維体の表面に界面反応を
阻害する障壁となシ得るものを、例えば蒸着、メッキ等
の方法にて、コーティングすることが考えられるが1表
面積の大なる粉体または繊維体の表面に有効なるコーテ
ィングを施すには製造コストの上昇を不可避的に伴い、
また適切かつ有効なるスーティング材を見いだすのも必
ずしも容易でなかった。
In order to prevent the interfacial reaction between the rAllJ molten metal and the ferromagnetic material, the powder of the ferromagnetic material is coated on the surface of the fiber body with a method such as vapor deposition or plating, which can act as a barrier to inhibit the interfacial reaction. However, applying an effective coating to the surface of a powder or fiber with a large surface area inevitably involves an increase in manufacturing costs.
Furthermore, it has not always been easy to find suitable and effective sooting materials.

そこで1本発明者等は非常に簡単でかつ低コストなる加
熱酸化による被膜形成に着眼したものであるが、一般に
はFe等の酸化物は熱が介在するとAIとの間において
テルミットという激しい反応を起すものとされておシ、
このような組合せはその実用性について期待され難いも
のであった。
Therefore, the present inventors focused on forming a film by thermal oxidation, which is extremely simple and low cost, but in general, oxides such as Fe cause a violent reaction called thermite with AI when heat is involved. It is said to cause
It was difficult to expect such a combination to be practical.

しかし、本発明者等は種々実験の結果、 rAtlJの
溶湯含浸法においては、上記のような激しい反応は認め
られず、しかも適切なる温度範囲にて大気中で加熱酸化
されるとき、F・(またijF’e合金)からなる強磁
性材料の表面に形成された酸化被膜は、溶湯含浸の過程
において、rAIJと強磁性材料との反応を阻害する有
効なる障壁となシ得ることを見いだしたのである。
However, as a result of various experiments, the present inventors have found that in the rAtlJ molten metal impregnation method, such a violent reaction as described above was not observed, and that when heated and oxidized in the air at an appropriate temperature range, F. In addition, we have discovered that the oxide film formed on the surface of the ferromagnetic material made of ijF'e alloy can act as an effective barrier to inhibit the reaction between rAIJ and the ferromagnetic material during the process of impregnation with the molten metal. be.

これら実験例の内、(LOI〜α02rywn径、1〜
5mm長さの低炭素鋼(815C)短繊維体にて成形さ
れた体積率50%の予備成形体を大気中にて種々の温度
・時間で加熱酸化したる後、純Ajの溶湯を300気圧
にて圧入含浸することで製造した磁性複合材料について
、!00工〜ステッド(Oe)磁湯内での磁束密度(ガ
ウス)を測定し念結果を第1図のグラフに示す。
Among these experimental examples, (LOI~α02rywn diameter, 1~
A preform with a volume ratio of 50% made of short fibers of low carbon steel (815C) with a length of 5 mm was heated and oxidized in the atmosphere at various temperatures and times, and then a molten metal of pure Aj was heated to 300 atm. Regarding magnetic composite materials manufactured by press-in impregnation in! The magnetic flux density (Gauss) in the 00~Stead (Oe) porcelain was measured and the tentative results are shown in the graph of Figure 1.

なお、第1図のグラフ中に記入した数字は、それぞれの
加熱時間を示すものであシ、また、△印およびx印でプ
ロットしたものは対比のために行りた実験結果を示すも
ので、Δ印のものはNzガス雰囲気下で、x印のものは
Arガス雰囲気下でそれぞれ加熱処理したものである。
The numbers written in the graph in Figure 1 indicate the respective heating times, and the plotted △ and x marks indicate the results of experiments conducted for comparison. , those marked with Δ were heat treated under a Nz gas atmosphere, and those marked x were heat treated under an Ar gas atmosphere.

これら大気下での磁性材料の加熱温度・時間と磁性複合
材料の磁気特性との関係を示す第1図のグラフで明らか
なように、300〜700℃の加熱温度で加熱酸化され
た強磁性材料からなるものは、それ以外の温度域のもの
よシ、その磁気特性が遥かに優れている。
As is clear from the graph in Figure 1, which shows the relationship between the heating temperature and time of magnetic materials in the atmosphere and the magnetic properties of magnetic composite materials, ferromagnetic materials are heated and oxidized at heating temperatures of 300 to 700°C. The magnetic properties of materials in other temperature ranges are far superior to those in other temperature ranges.

そして、その加熱時間は上記温度範囲内では、通常の加
熱処理に適用される範囲(1〜8時間間抜)であれば、
効果において大きな差をもたらさないことがわかる。
If the heating time is within the above temperature range and is within the range applied to normal heat treatment (1 to 8 hours in between),
It can be seen that there is no significant difference in effectiveness.

これは、300℃未満の温度にて強磁性材料の表面に形
成され九酸化被膜は、溶湯含浸に際しAIとの反応を阻
害する有効なる障壁として作用し得す、反面700℃を
超す温度域では強磁性材料表面における酸化作用が激し
くなシ過ぎ1強磁性材料が酸化損耗するからである。
This is because the nonaqueous oxide film formed on the surface of ferromagnetic materials at temperatures below 300°C can act as an effective barrier to inhibit the reaction with AI during impregnation with molten metal, but on the other hand, at temperatures above 700°C, This is because the oxidation effect on the surface of the ferromagnetic material is too strong, causing oxidation loss of the ferromagnetic material.

なお、前記予備成形体は強磁性材料を予じめ15〜80
%の体積率となるよう成形してなるものとし念のは、予
備成形体は溶湯の流入圧力に耐える必要があシ、15%
未満でけ溶湯の流入圧力に耐えてその形状を維持し得な
いからであシ、また、これが80%を超えるとき、予備
成形体の空隙の連続性が途絶え溶湯が十分く浸透し得な
いからである。
In addition, the preformed body is made of a ferromagnetic material with a concentration of 15 to 80
Please note that the preform must withstand the inflow pressure of the molten metal, so that the volume ratio is 15%.
If it is less than 80%, it will not be able to withstand the inflow pressure of the molten metal and maintain its shape, and if it exceeds 80%, the continuity of the voids in the preform will be interrupted and the molten metal will not be able to penetrate sufficiently. It is.

途上のように、その表面に酸化被膜を形成させたる強磁
性材料よシなる予備成形体に、rAllJ溶湯を圧入含
浸させる本発明AIまたはA1合金の磁性複合材料の製
造方法は、粉末冶金法によるものよシ比較的に低一応力
にて複合体化されるもので、その内に添加され九強磁性
材料内部に歪を付加ないしは残留させることを軽減し得
、かつF’eまたはFe合金から々る強磁性材料とAt
t7’hはA2合金の溶湯との界面反応、す々わち非磁
性の金属間化合物(Ajm・Fりの生成を抑制し得、も
ってその内に添加され九強磁性材料に本来の磁気特性を
十分に発揮させ得るものである。
The method for manufacturing the magnetic composite material of the AI or A1 alloy of the present invention involves press-impregnating rAllJ molten metal into a preform made of a ferromagnetic material on which an oxide film is formed on the surface, as described above, by a powder metallurgy method. It can be made into a composite with relatively low stress, and it can reduce the addition or residual strain inside the ferromagnetic material, and it can be made from F'e or Fe alloy. ferromagnetic materials and At
t7'h is an interfacial reaction between the A2 alloy and the molten metal, which can suppress the formation of non-magnetic intermetallic compounds (Ajm・F), which is added to the ferromagnetic material and gives the original magnetic properties to the ferromagnetic material. It is possible to fully demonstrate this.

C実施例〕 溶湯含浸法によシ1種々の組合せ条件下で磁性複合材料
を製造した。
Example C] Magnetic composite materials were produced by the molten metal impregnation method under various combinations of conditions.

これら磁性複合材料は1種々の強磁性材料を樹脂等のバ
インダーを用いて所定体積率の予備成形体とかし、その
予備成形体を種々の加熱温度・時間、および雰囲気下で
加熱処理し念後、所定の金型内に挿入し、該金型内にA
l溶湯を注入して、加圧含浸・凝固を経て複合体化させ
た。
These magnetic composite materials are made by preforming various ferromagnetic materials with a predetermined volume ratio using a binder such as resin, and heat-treating the preform at various heating temperatures and times under various atmospheres. Insert it into a predetermined mold, and place A into the mold.
1 molten metal was injected, and the composite was formed through pressurized impregnation and solidification.

第2図は、上記磁性複合材料を製造するに用いられる溶
湯含浸装置の一部を例示しておシ1円柱状の中′空部を
有す金型(8)の上面に、注湯口(4)を設けたデフン
ジャスリープ(5)が密接して配置されている。そして
プフンジャ(6)は前記スリーブ(5)内径に上下動自
由に嵌合すると共に1図外の加圧機構にて駆動されて加
圧力を注湯口(4)より注入されたAl溶湯(1)に加
印する。また、強磁性材料からなる予備成形体(2)は
予じめ所定体積率にて成形され、金型(8)内に配置さ
れている。
FIG. 2 shows a part of the molten metal impregnation device used to manufacture the above-mentioned magnetic composite material. 4) are arranged closely together. The pufunja (6) is fitted into the inner diameter of the sleeve (5) so as to be able to move up and down freely, and is driven by a pressurizing mechanism (not shown in Figure 1) to apply pressurizing force to the molten Al (1) injected from the pouring port (4). Add to. Further, a preformed body (2) made of a ferromagnetic material is molded in advance at a predetermined volume ratio and placed in a mold (8).

上記の方法%訃よび装置にて溶湯含浸されて、複合体化
され良磁性複合材料それぞれについて、100エルステ
ツド(Oe)の磁場内における磁束密度(ガウス)を測
定した。
The magnetic flux density (Gauss) in a magnetic field of 100 oersted (Oe) was measured for each of the good magnetic composite materials that were impregnated with molten metal using the above method and apparatus and made into composites.

これら結果を吹噸寺儒1表に示す、なお、対比のなめ、
粉末冶金法による磁性複合材料の例も第1表中に併記し
たが、これは所定体積率にてAl粉末と強磁性材料とを
混合し、A#の固相温度域の600℃にで、7000気
圧の圧媒ガス下で圧縮固化成形したものである。
These results are shown in Table 1 of Fukihanji Confucianism, and for comparison,
An example of a magnetic composite material made by the powder metallurgy method is also listed in Table 1, and this is made by mixing Al powder and a ferromagnetic material at a predetermined volume ratio, and heating it to 600 ° C. in the solidus temperature range of A#. It was compressed and solidified under pressure medium gas at 7000 atmospheres.

(以下余白) 第1表に示すように、本発明方法の条件を満足する範囲
内の条件にて製造された磁性複合材料(表中の備考欄に
おいてO印で示す実施例のもの)は、それ以外の条件に
て製造されな磁性複合材料(備考欄におhで注記したも
の、およびx印で示すもの)に比較して大巾に磁気特性
の改善が認められ、その一部はその内に添加し良磁性材
料の体積率よシの期待値をほぼ満足するものである。
(Left below) As shown in Table 1, the magnetic composite materials manufactured under conditions that satisfy the conditions of the method of the present invention (examples marked with O in the remarks column of the table) are as follows: Significant improvement in magnetic properties was observed compared to magnetic composite materials manufactured under other conditions (those noted with an h in the notes column and those marked with an x), and some of them It almost satisfies the expected value of the volume fraction of a good magnetic material.

なお、強磁性材料の体積率を10%としたJI&2に示
す例においては、Alfll湯を注入した時点で予備成
形体が下方に収縮して所定の形状を得ることができず、
また1体積率を90%とし九I&50に示す例において
は、Aj)W湯を予備成形体内に十分浸透させることが
できなかつ念、′そして、対比のための粉末冶金法によ
るもの(製造方法欄にHと記入の例)は、それぞれと対
応する本発明方法のものと比較(A7−A8,414−
AI 5.416−A17 、屈18−A19゜ム44
−Al5.扁46−厘47)すると、はぼ半分程度の磁
気特性しか得られなかつ九。
In addition, in the example shown in JI & 2 where the volume fraction of the ferromagnetic material was 10%, the preform contracted downward when Alfll hot water was poured, and the predetermined shape could not be obtained.
In addition, in the example shown in 9 I & 50 where the 1 volume ratio is 90%, Aj) W could not be sufficiently penetrated into the preformed body. (Examples with H written in) are compared with the corresponding methods of the present invention (A7-A8, 414-
AI 5.416-A17, bend 18-A19゜44
-Al5. 46-47) Then, only about half of the magnetic properties can be obtained.

なお、第1表に示す溶湯含浸法によるもの(製造方法欄
KSと記入の例)Pcついては、その含浸圧力、すなわ
ち溶湯圧入圧力は300〜400気圧としたが、これは
他の実験において2気圧以上の圧力であれば予備成形体
内のガスは排除され、Al溶湯は十分予備成形体に浸透
し得ることが確認されでいるが、よ〕確実なる浸透を計
るため設定したものである。
In addition, for Pc made by the molten metal impregnation method shown in Table 1 (example of writing KS in the manufacturing method column), the impregnation pressure, that is, the molten metal injection pressure, was 300 to 400 atm, but this was 2 atm in other experiments. It has been confirmed that if the pressure is above, the gas inside the preform will be expelled and the molten Al will be able to sufficiently penetrate into the preform, but this pressure was set to ensure more reliable penetration.

ただし、との含浸圧力は予備成形体を形成する強磁性材
料の注入溶湯温度における降伏応力に相当する圧力以下
であることが望ましい、これは、強磁性材料の降伏応力
以下の応力では該強磁性材料内部に歪を残留さすことが
ないからである。
However, it is desirable that the impregnation pressure with the ferromagnetic material be less than the pressure corresponding to the yield stress at the pouring melt temperature of the ferromagnetic material forming the preform. This is because no strain remains inside the material.

溶湯含浸に先立ち1強磁性材料に施す加熱酸化について
は、I&6,436,448に示す実施例でわかるよう
に1本発明条件範囲内温度内の570℃にて強磁性材料
を加熱酸化させた磁性複合材料の磁気特性は、その体積
率が15%、50%。
Regarding the thermal oxidation applied to the ferromagnetic material prior to impregnation with molten metal, as can be seen in the example shown in I & 6,436,448, 1. The magnetic properties of the composite material are that its volume fraction is 15% and 50%.

80%と変動しても、効果の面で特異差は認められずそ
の体積率の増加と共に磁気特性が高くなる。
Even if it varies to 80%, no singular difference is observed in terms of effectiveness, and the magnetic properties increase as the volume fraction increases.

そして、墓30.屋36,438に示す実施例でわかる
ように1強磁性材料の形態を変えても本発明条件範囲内
温度で加熱酸化され九強磁性材料をその内に添加させた
磁性複合材料の磁気特性は高い値を示す。
And grave 30. As can be seen from the examples shown in Ya. 36, 438, even if the form of the ferromagnetic material is changed, the magnetic properties of the magnetic composite material, which is heated and oxidized at a temperature within the range of the conditions of the present invention and has the ferromagnetic material added therein, are still the same. Indicates a high value.

対比の九め、大気中における加熱酸化に替シ、不活性ガ
ス雰囲気下にて加熱処理し友もの(雰囲気様にてNtま
たはAr と記入の例)は、それと対応する本発明方法
のものと比較(A9,10−ム8.428 、29−4
27)すると、はぼ2/3程度の磁気特性しか得られな
かった。
Ninth comparison, instead of heating oxidation in the air, the heat treatment in an inert gas atmosphere (examples where Nt or Ar is entered in the atmosphere) is the same as that of the corresponding method of the present invention. Comparison (A9, 10-m 8.428, 29-4
27) As a result, only about 2/3 of the magnetic properties were obtained.

これら磁性複合材料の内、代表的なものについての断面
を観察したところ、例えばss s’o実施例のものは
、磁性複合材料の断面模式図である第3図aに示すよう
に1強磁性材料(ト)の周囲に酸化被1(FO)が認め
られるが、Al(6)どの反応相は認められ々かった。
When we observed the cross sections of representative magnetic composite materials, we found that, for example, the one in the SS S'O example had a ferromagnetic structure as shown in Figure 3a, which is a schematic cross-sectional view of the magnetic composite material. Although oxide 1 (FO) was observed around the material (g), no reaction phase such as Al(6) was observed.

一方、大気中において210℃にて加熱酸化された42
1の実施例のもの、および不活性ガス雰囲気下で加熱処
理されたI&28の例のものにおいては、磁性複合材料
の断面模式図である第3図bK示すように、Fe■とA
l(4)との反応生成物、すなわち金属間化合物(AF
)が存在し、また強磁性材料(ト)の損耗が認められた
On the other hand, 42 that was heated and oxidized at 210°C in the atmosphere
As shown in FIG. 3bK, which is a schematic cross-sectional view of the magnetic composite material, in the Example 1 and the Example I & 28 which were heat-treated in an inert gas atmosphere, Fe■ and A
The reaction product with l(4), namely the intermetallic compound (AF
), and wear and tear of the ferromagnetic material (g) was observed.

また、830℃の温度にて加熱酸化された扁43の例の
ものにおいては、磁性複合材料の断面模式図である第3
図CK示すように、強磁性材料■の周囲に酸化被膜(F
O)が認められ、かつ人1(4)との反応相は認められ
なかったが、しかし1強磁性材料(ト)の酸化による損
耗が激しく、強磁性材料がほとんど消失しているととが
判明した。
In addition, in the example of flat plate 43 that was heated and oxidized at a temperature of 830°C, the third
As shown in Figure CK, there is an oxide film (F
O) was observed, and no reaction phase with Person 1 (4) was observed; however, the ferromagnetic material 1 (G) was severely damaged by oxidation, and most of the ferromagnetic material had disappeared. found.

なお、溶湯含浸に先立つ強磁性材料の加熱酸化について
、その実施にあたってよシ良く、かつ安定し念効果を得
る几めには、その加熱温度を400〜600℃の範囲内
に設定されることが望ましい。
Regarding the heating oxidation of the ferromagnetic material prior to impregnation with the molten metal, in order to achieve a good and stable effect, the heating temperature should be set within the range of 400 to 600°C. desirable.

途上のように、本発明に係る磁性複合材料はその内に添
加され九強磁性材料について、その本来の磁気特性を十
分に発揮させている。
As mentioned above, the magnetic composite material according to the present invention is added therein to fully exhibit the original magnetic properties of the nine ferromagnetic materials.

〔発明の効果〕〔Effect of the invention〕

本発明に係るActたはAlJ合金の磁性複合材料の製
造方法は、その製造過程において、その内に添加する強
磁性材料とABtたはA1合金)との界面反応、すなわ
ち非磁性の金属間化合物(Aim・Fs)の生成を、予
じめ強磁性材料に形成させ念酸化被膜にて抑制するを得
て1Alの特性を有してなお高い磁気特性を有す磁性複
合材料の製造を可能とするものであって、本発明方法に
係る磁性複合材料は、その優れた特性によシ実用モータ
回転子や固定子用の磁性体1+高性能磁気遮蔽体その他
、磁性を利用する電気製品の分野において、その軽量化
に大きく寄与し得るものである。
The method for manufacturing the magnetic composite material of Act or AlJ alloy according to the present invention involves an interfacial reaction between the ferromagnetic material added therein and the ABt or AlJ alloy, that is, a non-magnetic intermetallic compound. By forming (Aim・Fs) on a ferromagnetic material in advance and suppressing it with a dioxidized film, it is possible to produce a magnetic composite material that has the characteristics of 1Al but still has high magnetic properties. Due to its excellent properties, the magnetic composite material according to the method of the present invention can be used in the field of magnetic material 1 + high performance magnetic shield for practical motor rotors and stators, as well as other electrical products that utilize magnetism. This can greatly contribute to weight reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の大気下での強磁性材料の加熱温度・時
間と磁性複合材料の磁気特性との関係を示すグラフであ
る。 第2図は本発明の磁性複合材料の製造するにm−られる
溶湯含浸装置を示す正断面図である。 第3図aは磁性複合材料の部分断面を示す模式第3図す
は磁性複合材料の部分断面を示す模式図である。 第3図Cは磁性複合材料の部分断面を示す模式%式% 4・・・注湯口、 5・・・ブツシャスリーブ、 6・
・・プランジャ。
FIG. 1 is a graph showing the relationship between the heating temperature and time of a ferromagnetic material in the atmosphere and the magnetic properties of a magnetic composite material according to the present invention. FIG. 2 is a front sectional view showing a molten metal impregnation apparatus used for producing the magnetic composite material of the present invention. FIG. 3a is a schematic diagram showing a partial cross section of the magnetic composite material. FIG. 3A is a schematic diagram showing a partial cross section of the magnetic composite material. Figure 3C is a schematic diagram showing a partial cross section of the magnetic composite material.
...Plunger.

Claims (1)

【特許請求の範囲】[Claims] FeまたはFe合金からなる強磁性材料の粉体または繊
維状体を予備成形した後、該予備成形体にAlまたはA
l合金の溶湯を圧入含浸させることにより、前記強磁性
材料を体積率で15〜80%含有する磁性複合材料を製
造する方法において、前記強磁性材料を予備成形の前、
もしくは後に、大気中にて300〜700℃の温度で加
熱酸化させ、しかる後、該加熱酸化された強磁性材料か
らなる予備成形体に前記溶湯を圧入含浸させることを特
徴とするAlまたはAl合金の磁性複合材料の製造方法
After preforming powder or fibrous material of a ferromagnetic material made of Fe or Fe alloy, Al or A is added to the preform.
In a method for manufacturing a magnetic composite material containing 15 to 80% by volume of the ferromagnetic material by press-fitting and impregnating a molten metal of L alloy, the ferromagnetic material is preformed,
Alternatively, Al or Al alloy is characterized in that it is then heated and oxidized in the atmosphere at a temperature of 300 to 700°C, and then the molten metal is press-fitted and impregnated into a preform made of the heated and oxidized ferromagnetic material. A method for producing a magnetic composite material.
JP9020087A 1987-04-13 1987-04-13 Method for producing magnetic composite material of A1 or A1 alloy Expired - Lifetime JPH0639643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9020087A JPH0639643B2 (en) 1987-04-13 1987-04-13 Method for producing magnetic composite material of A1 or A1 alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9020087A JPH0639643B2 (en) 1987-04-13 1987-04-13 Method for producing magnetic composite material of A1 or A1 alloy

Publications (2)

Publication Number Publication Date
JPS63255332A true JPS63255332A (en) 1988-10-21
JPH0639643B2 JPH0639643B2 (en) 1994-05-25

Family

ID=13991842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9020087A Expired - Lifetime JPH0639643B2 (en) 1987-04-13 1987-04-13 Method for producing magnetic composite material of A1 or A1 alloy

Country Status (1)

Country Link
JP (1) JPH0639643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257513A (en) * 2005-03-17 2006-09-28 Toyama Univ Magnetic aluminum composite body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257513A (en) * 2005-03-17 2006-09-28 Toyama Univ Magnetic aluminum composite body
JP4590633B2 (en) * 2005-03-17 2010-12-01 国立大学法人富山大学 Magnetic aluminum composite

Also Published As

Publication number Publication date
JPH0639643B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US5346667A (en) Method of manufacturing sintered aluminum alloy parts
JP2018510267A (en) Infiltrated iron material
EP1595267B1 (en) High performance magnetic composite for ac applications and a process for manufacturing the same
JPS63255332A (en) Manufacture of magnetic composite material of al or al alloy
WO2006126351A1 (en) Process for production of aluminum composite material
JP3417666B2 (en) Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same
JPH06192767A (en) Composite and its production
JP3841455B2 (en) Method for producing high density sintered stainless steel
JPS62142705A (en) Production of cylinder for plastic molding device
JP4239047B2 (en) Method for producing magnesium-based composite material and magnesium-based composite material
JP2003510805A (en) Soft magnetic material and manufacturing method thereof
JPS6184304A (en) Method for joining metallic member to ceramic member
JPS61264105A (en) Production of high-strength sintered member
KR102541042B1 (en) Die casting using sintered material and die casting product manufactured therefrom
JPS63247321A (en) Formation of ti-al intermetallic compound member
JP3102582B2 (en) Manufacturing method of composite member
JP2599284B2 (en) Manufacturing method of soft sintered magnetic material
JP2000271728A (en) Production of composite stock with non-pressurize impregnating permeation method
JP2936695B2 (en) Aluminum alloy powder forging method
JPH04337001A (en) Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding
JPS61264101A (en) Production of high-strength sintered member
JPS6164849A (en) High strength iron sintered alloy
JPH06122137A (en) Composite cylinder for plastic molding machine
JPH01230734A (en) Manufacture of fibrous composite member
JPH06322410A (en) Reinforcing treatment of sintered part