JPS63254667A - Activated carbon fiber electrode - Google Patents

Activated carbon fiber electrode

Info

Publication number
JPS63254667A
JPS63254667A JP62089625A JP8962587A JPS63254667A JP S63254667 A JPS63254667 A JP S63254667A JP 62089625 A JP62089625 A JP 62089625A JP 8962587 A JP8962587 A JP 8962587A JP S63254667 A JPS63254667 A JP S63254667A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
fiber
sheet
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62089625A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Hideki Yasushiro
秀樹 保城
Takuji Okaya
岡谷 卓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62089625A priority Critical patent/JPS63254667A/en
Publication of JPS63254667A publication Critical patent/JPS63254667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the filling density and make a cell small-sized by applying a polymer binder to the cloth width of activated carbon fibers with the aligned fiber axis direction then compressing and molding it. CONSTITUTION:A woven fabric made of a dehydrated and carbonized carbonaceous fiber is activated in the fuel gas to form a woven fabric-shaped activated carbon fiber sheet. This is immersed in the aqueous dispersion of Teflon as a binder then heated and dried. Then, two sheets are overlapped, heated, pressed, compressed, and molded. The fiber axis direction of the sheet thus obtained from the woven fabric is aligned, and its specific gravity is larger than that of the sheet obtained from a random nonwoven fabric-shaped activated carbon fiber in the same method. The filling density is improved accordingly, and a cell can be made small-sized.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高密度化した活性炭素繊維電極に関する。 〔従来の技術〕 近年、比表面積の大ぎな活性炭素繊維を用いた電極の開
発が積極的に行われている。これらの電極の用途として
は燃料電池用極板(特開59−46762、特開58−
100364 ) 、電気二重層キャパシタ用分極性電
極(特開58−206116、特開59−4114)、
二次電池用電極(特開59−157974、特開59−
163765ン、電気化学的表示装置用対向極(特開5
9−143130 )等様々のものが提案されている。 100〜3000 yy1勺のように大きな比表面積を
有する活性炭素繊維は溶液との接触面積が大きいために
各種の電極材として極めて有用である。例えば活性炭素
繊維を分極性電極として用いた電気二重層キャパシタの
場合、大きな比表面積のために多量のドーピングが可能
であり、このため高エネルギーの出力を有するキャパシ
タの作製が可能であるという特徴を有する。 〔発明が解決しようとする問題点〕 しかしながらこのように有用な活性炭素繊維を用いた電
極も充填密度が低いという欠点を有していた。このため
各種の電池の容積が大きくなるという欠点があった。 活性炭素繊維からなる電極の充填密度の向上は当該業者
の間では強く要望されていたことであった。例えば充填
密度を上げる方法としては一般的な活性炭粉末をテフロ
ン結看剤で固型化した電極がすでに報告されている(特
開昭6O−17871)。 しかしながらこの方法を用いた場合においても電極の充
填密度は十分なものではなかった。 〔問題点を解決するための手段〕 本発明者らは上記の目的に鑑みて広範に亘る検討を行っ
たところ、活性炭素繊維の充填密度を向上させるために
は、該活性炭素繊維の繊維軸方向をそろえることが最も
有効であることを認め、本発明に至った。 即ち、本発明は、繊維軸の方向が少くとも一方向におい
てそろった活性炭素繊維よりなる布帛に高分子バインダ
ーを付与した後に圧縮成形することを特徴とする高密度
化した活性炭素繊維電極である。該電極を用いることに
より、従来の活性炭電極の有する有用な特性を何ら失う
ことなく電極の高充填化が達成できることが見し゛出さ
れた。 本発明において用いられる布帛としては、繊維軸の方向
が少くとも一方向において、そろった活性炭素繊維より
構成されるものである。かかる布帛としては、例えば繊
維軸方向が平行配列された不織布より得られる活性炭素
繊維シート、おおむね並行に配列された1fIlの糸に
対して、これらの糸にほぼ直角方向に第2群に属する糸
を所定の方式で順次組み合せ、第2群の糸も相互におお
むね平行関係を保つように構成された布、例えば織布よ
り得られた活性炭素繊維シートが挙げられる。 後宮の少なくとも2方向に直交する方向において順次組
み合された繊維よりなるシートから得られる圧縮成形品
は、充填密度の上昇に加わえ、得られた成形品の強度が
大きいという特長を有するので、特に好適に用いられる
。 本発明で用いられる活性炭素繊維とは、吸看能に特に優
れた炭素繊維であり、一般的には100ηg以上の比表
面積を有するものである。好ましい比表面積はs o 
o d/g以上特に1400 d1g以上のものを用い
るのがよい。 本発明による電極は電気二重層キャパシター等様々なも
のに用いることができるが特にリチウム二次電池用正極
として用いるのがよい。またこの場合には特に、活性炭
繊維としてIp/Ioが0.3以下の主として非品性構
造よりなる活性炭繊維を用いるのがよい。ここでIPと
はX線回折強度曲線の(o02)面の回折ピークの両相
に接線を引き、その接線から上の部分の強度の最大値で
あり、工0とはIPを示す回折角2θにおける実測回折
強度から空気の散乱強度を差し引いた残りのX線強度で
ある。主として非品性構造よりなる活性炭特に活性炭素
繊維を正極に用いたリチウム二次電池は極めて優れた性
能を有することがすでに本発明の出願人と同一の出願人
により報告されている(特願昭61−238951 )
。しかしながらこの活性炭も単位重量あたりの性能は極
めて優れたものであるが、単位体積あたりの性能は今だ
十分なものではなく、活性炭電極の高密度化が強く要望
されてきた。 本発明で用いられる活性炭素繊維の原料は特に限定され
ず、例えば合成有機高分子またはピッチよりなるものが
挙げられる。該合成有機高分子にはポリビニルアルコー
ル、フェノール!脂、ポリアク!J@ニド!Jル等のよ
うな純合成高分子の他、繊維素誘導体等の半合成高分子
を包含する。 本発明で用いられる活性炭素繊維の直径は特に限定され
ないが1μm以上30μm以下のものを用いるのが良好
な性能のwl極を得られるのでよい。 活性炭素繊維の充填密度を上げるためには繊維軸の方向
を少くとも一方向にそろえる必要があった。繊維軸方向
がそろわなければ電極内の空間が増加するために電極の
見掛けの密度は向上しなかった。 本発明においては圧縮成形に先立ち高分子樹脂バインダ
ーが付与される。該高分子樹脂バインダー
[Industrial Field of Application] The present invention relates to a highly densified activated carbon fiber electrode. [Prior Art] In recent years, electrodes using activated carbon fibers having a large specific surface area have been actively developed. Applications of these electrodes include electrode plates for fuel cells (JP-A-59-46762, JP-A-58-
100364), polarizable electrode for electric double layer capacitor (JP-A No. 58-206116, JP-A No. 59-4114),
Electrodes for secondary batteries (JP-A-59-157974, JP-A-59-
163765, counter electrode for electrochemical display device (JP-A-5
9-143130) have been proposed. Activated carbon fibers having a large specific surface area such as 100 to 3000 yy1 are extremely useful as various electrode materials because of their large contact area with solutions. For example, in the case of electric double layer capacitors using activated carbon fibers as polarizable electrodes, a large amount of doping is possible due to the large specific surface area, which makes it possible to fabricate capacitors with high energy output. have [Problems to be Solved by the Invention] However, electrodes using such useful activated carbon fibers also have the drawback of low packing density. For this reason, there was a drawback that the volume of various batteries became large. There has been a strong desire among those in the industry to improve the packing density of electrodes made of activated carbon fibers. For example, as a method of increasing the packing density, an electrode in which a general activated carbon powder is solidified with a Teflon binder has already been reported (Japanese Patent Application Laid-Open No. 6O-17871). However, even when this method was used, the packing density of the electrodes was not sufficient. [Means for Solving the Problems] The present inventors conducted extensive studies in view of the above objectives, and found that in order to improve the packing density of activated carbon fibers, the fiber axis of the activated carbon fibers should be changed. The present invention was realized by recognizing that aligning the directions is most effective. That is, the present invention is a high-density activated carbon fiber electrode characterized in that a polymer binder is applied to a fabric made of activated carbon fibers whose fiber axes are aligned in at least one direction, and then compression molded. . It has been found that by using this electrode, highly packed electrodes can be achieved without losing any of the useful properties of conventional activated carbon electrodes. The fabric used in the present invention is composed of activated carbon fibers whose fiber axes are aligned in at least one direction. Such a fabric includes, for example, an activated carbon fiber sheet obtained from a nonwoven fabric in which the fiber axes are arranged in parallel, and yarns belonging to the second group in a direction approximately perpendicular to the 1fIl yarns arranged in approximately parallel directions. Examples include an activated carbon fiber sheet obtained from a fabric, such as a woven fabric, in which the yarns of the second group are sequentially combined in a predetermined manner so that the yarns of the second group also maintain a generally parallel relationship with each other. A compression molded product obtained from a sheet made of fibers that are sequentially combined in a direction perpendicular to at least two directions of the seraglio is characterized by an increased packing density and a high strength of the resulting molded product. It is particularly suitable for use. The activated carbon fiber used in the present invention is a carbon fiber that has particularly excellent absorption ability, and generally has a specific surface area of 100 ηg or more. The preferred specific surface area is s o
It is preferable to use od/g or more, especially 1400 d/g or more. The electrode according to the present invention can be used for various things such as electric double layer capacitors, but it is particularly suitable for use as a positive electrode for lithium secondary batteries. In this case, it is particularly preferable to use activated carbon fibers having an Ip/Io of 0.3 or less and mainly having a non-standard structure. Here, IP is the maximum intensity value above the tangent line drawn on both phases of the diffraction peak on the (o02) plane of the X-ray diffraction intensity curve, and 0 is the diffraction angle 2θ that indicates the IP. This is the X-ray intensity remaining after subtracting the air scattering intensity from the measured diffraction intensity at . It has already been reported by the same applicant as the applicant of the present invention that a lithium secondary battery using activated carbon, particularly activated carbon fiber, as a positive electrode, which has a mainly non-standard structure, has extremely excellent performance. 61-238951)
. However, although this activated carbon has extremely excellent performance per unit weight, its performance per unit volume is still insufficient, and there has been a strong demand for higher density activated carbon electrodes. The raw material for the activated carbon fiber used in the present invention is not particularly limited, and includes, for example, those made of synthetic organic polymers or pitch. The synthetic organic polymers include polyvinyl alcohol and phenol! Fat, polyac! J@nido! It includes semi-synthetic polymers such as cellulose derivatives as well as pure synthetic polymers such as J.I. The diameter of the activated carbon fiber used in the present invention is not particularly limited, but it is preferable to use one having a diameter of 1 μm or more and 30 μm or less, since a wl pole with good performance can be obtained. In order to increase the packing density of activated carbon fibers, it was necessary to align the fiber axes in at least one direction. If the fiber axes were not aligned, the space within the electrode would increase, and the apparent density of the electrode would not improve. In the present invention, a polymer resin binder is applied prior to compression molding. The polymer resin binder

〔実 施 例〕〔Example〕

以下実施例により本発明をざらに詳しく説明する。 合成例1 〔活性炭素繊維の合成〕 出発原料として平均重合度1700のPVA(ポリビニ
ルアルコール)水溶液より湿式紡糸法により紡糸したP
VA繊維(デニール1800d、フィラメント数100
Of、強度10.5 Q/d 、伸度796)から得た
織布を用いた。次に脱水・炭化剤として(N)114 
)2804と(NH4)2HPO4の各sogを100
09の水に溶解し、この水溶液を60°に加温しその中
に織布を5分間浸漬し、その後マングルで絞液し、10
5℃で3分間乾燥させた。脱水剤の付着率は重量法で1
096であった。この脱水剤の付着した織布を210℃
で30分間加熱する際に織布の1−幅当り50gの低張
力をかけることにより繊維の収縮率を制御し4096と
した。ざらに炭化条件である330℃×10分間とその
後400℃X20分間の2段階で加熱する際にも織布の
10幅当り3ogの低張力をかけて繊維の収縮率を出発
PVA繊維から見て6096とした。なおその時の重量
減少率は55LX)であった。以上の様に脱水・炭化を
行った黒色の炭素質繊維よりなる織布を燃焼ガス中で9
50℃1時間30分賦活を行うことにより活性炭素繊維
シートを得た。N7ガスによるBET法の比表面積は2
300 rIVgであった。この活性炭素繊維のX線回
折強度曲線を理学電機抹製回転対陰極型X線回折装置T
ype RAD−rAを用いて測定した。測定条件は4
0 kVl 00mA、 OuK a線(λ=1.54
18A)、スリット1/2.0.15+++m、走査速
度1°’/min、フルスケール800 cpsにおい
て透過法で測定したa2θが25°付近に存在する筈の
(002)面に基づくピークがほとんど消失しており、
主として非品性構造よりなる活性炭素繊維が生成してい
ることがわかった(IP/IO= 0.071゜固体高
分解能N M Rにより内部のざらに微細な構造の検討
を行った。MA、S GATE法により測定したデータ
ーポイントは8K、サンプリングポイント1.5に、ス
キャン数10000回、の条件で測定を行った140P
PM付近にピークを有する曲線が得られた事からフェニ
ル基骨格を中心とする構造である事が確認ざ几た。表面
反射赤外においてC−■の吸収はまったく観察されずほ
ぼ完全に炭素化している事が確認された。この織布状活
性炭素繊維の見かけの比重は0.2であった、また同様
な手法によりランダム不織布状の活性炭素繊維を得たが
この見かけの比重は0.07であった。 実施例1 合成例1で得られた織布状活性炭素繊維をテフロンの水
性ディスパージョン(テフロンを5wt%の譲度で含有
)に30分間浸した。その後120℃で1時間乾燥させ
た。その後上記の織布を2枚重ねにし170℃、100
 kg/Aiの条件で30分間加圧圧縮成形を行った。 室温まで冷却後プレスより取り出し120℃で2時間真
空乾燥を行った。このようにして得られたシートの見か
けの比重は0.8であってもとの値(0,2)に比較し
大きく向上していた。また電極中に含まれる樹脂の量は
10 wt96であった。 比較例1 合成例1で得られたランダム不織布状活性炭素繊維を用
い実施例1と同一条件にて圧縮成形してシートを得た。 このシートの見かけの比重は0.2であって織布状活性
炭素繊維を用いた場合と比較し大きく低下していた。シ
ートの見掛けの比重は圧縮力を2倍に増大させても、ま
た加圧時間を1時間に増大させても、実質的な増加は得
られなかった。 比較例2 合成例1で得られた活性炭素繊維をボールミルを用い2
4時間粉砕し粉末状活性炭素繊維を得た。 粒度分布は350メツシユ下が99.696であつ九こ
のようにして得られた粉末状活性炭素繊維に15wt%
のテフロン結着剤をバインダーとして添加し加圧圧縮成
形を行った(170℃、100 kgAi)。 このようにして得られたシートの見かけの比重は0.5
であって、織布状活性炭素繊維を用いた場合と比較し密
度は大きくはなかった。シートの見かけの比重は、圧縮
力を2倍に増大させても、また加圧時間を1時間に増大
させても、実質的な増加は得られなかった。 使用例1 実施例1で得られた約1閣のシートを直径10圏の円盤
状に打ち抜いた。これを正極に用い、負極に金属リチウ
ムを用いた二次電池をアルゴン雰囲気化で作製した。正
極と負極は厚さ0.5フのガラス繊維フィルタを介して
両極に設置された。電解液にはプロピレンカーボネート
に過塩素酸リチウムをI M7’lの濃度で溶解させた
ものを用いた。 正極側の集電用の電極としてはニッケルエキスバンドメ
タルを用いた。 この二次電池の組み立て直後の電圧は3.OVであった
。また3、OVから2.OVまで開放端電圧が低下する
までの容量は4.8 mAhr (4,8mAの電流を
1時間流せる電流容量)であった。 ざらに比較例1および2で得られたシートを用い浮ざ約
1M直径10圏の円盤状電極を得た。これを用いたリチ
ウム二次電池の3.OVから2.0Vまで開放端電圧が
低下するまでの電流容量はおのおの1.2 mAhrと
3 mAhrであった。 使用例2 実施例1で得られた厚さ約1mのシートを直径10mの
円盤状に打ち抜いた。これを正負両極に用いた電気二重
層キャパシタをアルゴン雰囲気下で作製した。正極と負
極は厚さ0.5mmのガラス繊維フィルタを介して両極
に設置された。電解液にはプロピレンカーボネートに過
塩素酸リチウムを1ル9の濃度で溶解ざiたものを用い
た。集電用の電極としては正極側にはニッケルエキスバ
ンドメタル負極側にはアルミエキスバンドメタルを用い
た。 この電気二重層キャパシタの組み立て直後の電圧はOV
であった。こルを2.OVの電圧で定電圧充電を1時間
行った後に1.OVまで放電させた。 この時の電流容量は1 、2 mAbrであった。ざら
に比較例1および2で得られたシートを用い厚さ約1m
m直径10−の円盤状電極を得た。これを用いたキャパ
シタの電流容量(2,OVから1.0■まで)はおのお
の0.3mAhrおよび0.7 mAhrであった。 上記の結果より二次電池容量および電気二重層キャパシ
タ容量は電極の比重にほぼ比例しており、比重の大きな
実施例1の場合に最も大きな容量が得られることがわか
った。 〔発明の効果〕 本発明の電極は充填密度が大きく電気二重層キャパシタ
あるいはリチウム二次電池等の電極として工業的に極め
て有用である。
The present invention will be explained in more detail with reference to Examples below. Synthesis Example 1 [Synthesis of activated carbon fiber] P was spun by a wet spinning method from a PVA (polyvinyl alcohol) aqueous solution with an average degree of polymerization of 1700 as a starting material.
VA fiber (denier 1800d, number of filaments 100
A woven fabric obtained from a fabric with a strength of 10.5 Q/d and an elongation of 796 was used. Next, as a dehydration and carbonization agent (N) 114
)2804 and (NH4)2HPO4 each sog to 100
09 in water, heated this aqueous solution to 60°, immersed the woven fabric in it for 5 minutes, and then squeezed the liquid with a mangle.
It was dried for 3 minutes at 5°C. The adhesion rate of the dehydrating agent is 1 by gravimetric method.
It was 096. The woven fabric coated with this dehydrating agent was heated to 210°C.
The shrinkage rate of the fibers was controlled to 4096 by applying a low tension of 50 g per width of the woven fabric during heating for 30 minutes. When heating in two stages: rough carbonization at 330°C for 10 minutes and then 400°C for 20 minutes, a low tension of 3 og per 10 widths of the woven fabric was applied to determine the fiber shrinkage rate from the starting PVA fiber. It was set to 6096. The weight reduction rate at that time was 55LX). A woven fabric made of black carbonaceous fibers that has been dehydrated and carbonized as described above is placed in a combustion gas for 9 minutes.
An activated carbon fiber sheet was obtained by performing activation at 50° C. for 1 hour and 30 minutes. The specific surface area of the BET method using N7 gas is 2
It was 300 rIVg. The X-ray diffraction intensity curve of this activated carbon fiber was measured using a rotating anticathode type X-ray diffractometer manufactured by Rigaku Denki.
It was measured using ype RAD-rA. Measurement conditions are 4
0 kVl 00mA, OuKa a-line (λ=1.54
18A), slit 1/2.0.15+++m, scanning speed 1°'/min, full scale 800 cps, the peak based on the (002) plane that should exist around 25° a2θ measured by transmission method almost disappeared. and
It was found that activated carbon fibers mainly consisting of a non-standard structure were produced (IP/IO = 0.071°. The internal rough and fine structure was examined by solid-state high-resolution NMR. MA, The data points measured by the S GATE method are 8K, 140P was measured at a sampling point of 1.5, and the number of scans was 10,000 times.
Since a curve with a peak near PM was obtained, it was confirmed that the structure was centered around a phenyl group skeleton. No absorption of C-■ was observed in surface reflection infrared, and it was confirmed that carbonization was almost complete. The apparent specific gravity of this woven activated carbon fiber was 0.2.Also, random non-woven activated carbon fiber was obtained by the same method, but its apparent specific gravity was 0.07. Example 1 The woven activated carbon fiber obtained in Synthesis Example 1 was immersed in an aqueous Teflon dispersion (containing Teflon at a yield of 5 wt %) for 30 minutes. Thereafter, it was dried at 120°C for 1 hour. After that, the above woven fabric was layered in two layers and heated at 170℃ and 100℃.
Pressure compression molding was performed for 30 minutes under the condition of kg/Ai. After cooling to room temperature, it was taken out from the press and vacuum dried at 120° C. for 2 hours. Even though the apparent specific gravity of the sheet thus obtained was 0.8, it was greatly improved compared to the original value (0,2). Further, the amount of resin contained in the electrode was 10 wt96. Comparative Example 1 The random nonwoven activated carbon fiber obtained in Synthesis Example 1 was compression-molded under the same conditions as in Example 1 to obtain a sheet. The apparent specific gravity of this sheet was 0.2, which was significantly lower than that when woven activated carbon fibers were used. The apparent specific gravity of the sheet did not substantially increase even when the compression force was doubled or the pressing time was increased to 1 hour. Comparative Example 2 The activated carbon fiber obtained in Synthesis Example 1 was processed using a ball mill.
The mixture was pulverized for 4 hours to obtain powdered activated carbon fibers. The particle size distribution was 99.696 below 350 mesh.
A Teflon binder was added as a binder, and pressure compression molding was performed (170°C, 100 kgAi). The apparent specific gravity of the sheet thus obtained is 0.5
However, the density was not higher than that when woven activated carbon fibers were used. The apparent specific gravity of the sheet did not substantially increase even when the compression force was doubled or the pressing time was increased to 1 hour. Usage Example 1 The sheet of approximately one size obtained in Example 1 was punched out into a disk shape with a diameter of 10 circles. A secondary battery using this as a positive electrode and metallic lithium as a negative electrode was fabricated in an argon atmosphere. The positive and negative electrodes were placed through a glass fiber filter with a thickness of 0.5 ft. The electrolytic solution used was one in which lithium perchlorate was dissolved in propylene carbonate at a concentration of IM 7'l. Nickel expanded metal was used as the current collecting electrode on the positive electrode side. The voltage of this secondary battery immediately after assembly is 3. It was OV. Also 3, 2 from OV. The capacity until the open circuit voltage decreased to OV was 4.8 mAh (current capacity that allows a current of 4.8 mA to flow for 1 hour). Using the sheets obtained in Comparative Examples 1 and 2, a disc-shaped electrode having a diameter of about 1M and 10 circles was obtained. 3. Lithium secondary battery using this. The current capacities until the open circuit voltage decreased from OV to 2.0V were 1.2 mAh and 3 mAh, respectively. Use Example 2 The sheet with a thickness of about 1 m obtained in Example 1 was punched out into a disk shape with a diameter of 10 m. An electric double layer capacitor using this as both positive and negative electrodes was fabricated in an argon atmosphere. The positive electrode and the negative electrode were placed through a glass fiber filter with a thickness of 0.5 mm. The electrolyte was prepared by dissolving lithium perchlorate in propylene carbonate at a concentration of 1 part to 9 parts. As current collecting electrodes, nickel expanded metal was used on the positive electrode side, and aluminum expanded metal was used on the negative electrode side. The voltage of this electric double layer capacitor immediately after assembly is OV
Met. 2. After 1 hour of constant voltage charging at OV voltage, 1. It was discharged to OV. The current capacity at this time was 1.2 mAbr. The sheets obtained in Comparative Examples 1 and 2 were roughly 1 m thick.
A disc-shaped electrode with a diameter of 10 m was obtained. The current capacities (from 2.0V to 1.0V) of the capacitors using this were 0.3 mAh and 0.7 mAh, respectively. From the above results, it was found that the secondary battery capacity and the electric double layer capacitor capacity are approximately proportional to the specific gravity of the electrode, and the largest capacity is obtained in the case of Example 1, which has a large specific gravity. [Effects of the Invention] The electrode of the present invention has a high packing density and is extremely useful industrially as an electrode for electric double layer capacitors, lithium secondary batteries, etc.

Claims (1)

【特許請求の範囲】[Claims] 繊維軸の方向が少くとも一方向においてそろつた活性炭
素繊維の布帛に高分子樹脂バインダーを付与した後に圧
縮成形することにより得られる高密度化した活性炭素繊
維電極。
A densified activated carbon fiber electrode obtained by applying a polymer resin binder to an activated carbon fiber fabric whose fiber axes are aligned in at least one direction and then compression molding the fabric.
JP62089625A 1987-04-10 1987-04-10 Activated carbon fiber electrode Pending JPS63254667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089625A JPS63254667A (en) 1987-04-10 1987-04-10 Activated carbon fiber electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089625A JPS63254667A (en) 1987-04-10 1987-04-10 Activated carbon fiber electrode

Publications (1)

Publication Number Publication Date
JPS63254667A true JPS63254667A (en) 1988-10-21

Family

ID=13975932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089625A Pending JPS63254667A (en) 1987-04-10 1987-04-10 Activated carbon fiber electrode

Country Status (1)

Country Link
JP (1) JPS63254667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery
JP2021519870A (en) * 2018-03-28 2021-08-12 ゾルテック コーポレイション Conductive sizing for carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005525A (en) * 2014-08-25 2015-01-08 大日本印刷株式会社 Gas diffusion layer for fuel battery, manufacturing method therefor, gas diffusion electrode for fuel battery using the same, membrane-electrode junction for fuel battery, and fuel battery
JP2021519870A (en) * 2018-03-28 2021-08-12 ゾルテック コーポレイション Conductive sizing for carbon fiber

Similar Documents

Publication Publication Date Title
TWI527299B (en) Lithium-ion battery negative electrode with carbon particles, lithium-ion battery with a negative and lithium-ion battery
Liang et al. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators
US6547990B2 (en) Process for producing activated carbon material, and electric double layer capacitor employing the same
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
JP5540470B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
JPS63107011A (en) Polarizing electrode for electric double-layer capacitor and manufacture of the same
EP3439070A1 (en) Non-porous separator and use thereof
CN112201905A (en) Cellulose-based lithium battery flame-retardant diaphragm and preparation method thereof
CN112117444A (en) Carbon-coated cobalt sulfide positive electrode material, preparation method, positive electrode and aluminum ion battery
JP3091373B2 (en) Electric double layer capacitor
CN112499624A (en) Modification method of natural graphite, modified natural graphite and application
JP7406405B2 (en) Activated carbon for electricity storage device electrodes
JPS63254667A (en) Activated carbon fiber electrode
JPS63100009A (en) Activated carbon
JPH11297577A (en) Electric double-layer capacitor and carbon material used for the capacitor
CN112531292B (en) Lithium ion battery diaphragm prepared from inorganic-organic composite material
JP5817872B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN111540611B (en) Preparation method of sandwich-structure carbon-based supercapacitor
JPH08138651A (en) Carbonaceous electrode plate for non-aqueous electrolyte secondary battery and secondary battery
JPH06132032A (en) Nonaquaous electrolytic battery
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPS63218159A (en) Active carbon electrode
JP4394208B2 (en) Polyvinylidene chloride resin powder and activated carbon
US20020036883A1 (en) Activated carbon for electric double layer capacitor