JPH11297577A - Electric double-layer capacitor and carbon material used for the capacitor - Google Patents

Electric double-layer capacitor and carbon material used for the capacitor

Info

Publication number
JPH11297577A
JPH11297577A JP10098700A JP9870098A JPH11297577A JP H11297577 A JPH11297577 A JP H11297577A JP 10098700 A JP10098700 A JP 10098700A JP 9870098 A JP9870098 A JP 9870098A JP H11297577 A JPH11297577 A JP H11297577A
Authority
JP
Japan
Prior art keywords
electric double
double layer
layer capacitor
carbonaceous
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10098700A
Other languages
Japanese (ja)
Other versions
JP3846022B2 (en
Inventor
Satoshi Hirahara
聡 平原
Yoshitaka Takeda
由孝 竹田
Kazushi Matsuura
一志 松浦
Mitsuo Suzuki
光雄 鈴木
Megumi Aizawa
めぐみ 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP09870098A priority Critical patent/JP3846022B2/en
Publication of JPH11297577A publication Critical patent/JPH11297577A/en
Application granted granted Critical
Publication of JP3846022B2 publication Critical patent/JP3846022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor exhibiting good low- temperature properties and a carbon material used for its electrodes. SOLUTION: An electric double layer capacitor is formed by using a nonaqueous electrolytic solution and polarized electrodes, containing mainly a carbon material for the two poles. In this case, the carbon material is formed by treating a carbon raw material in alkaline. The inter-face distance d002 measured by X-ray diffraction is 0.365 nm or less, and the ratio of surface area to BET measured by nitrogen adsorption method is 0.5 m<2> /g-290 m<2> /g.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に、低温下での
充放電特性に優れた電気二重層キャパシターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having excellent charge / discharge characteristics at a low temperature.

【0002】[0002]

【従来の技術】現在最もよく用いられる電気二重層キャ
パシターは、活性炭(通常300m2/g以上の比表面
積を有する炭素質物質をいう)を主とする分極性電極と
電解質界面に生じる電気二重層を利用したコンデンサー
である。電極に黒鉛を使用すると1回目の容量は高いが
繰り返し使用すると急速な容量低下が生じるため使われ
ていない。このような電気二重層キャパシターは、IC
やLSIのメモリー及びアクチュエータ等のバックアッ
プ電源として、特にエレクトロニクス分野で利用されて
いる。電気二重層キャパシターは、大電流での充放電特
性に優れ、1〜10万回の充放電にも特性劣化が少なく
耐久性も優れるという特長がある。また、使用温度範囲
が、リチウムイオン二次電池、ニッケル水素二次電池等
の二次電池とくらべて広く、-30 ℃〜+85 ℃の耐久温度
特性を有する。
2. Description of the Related Art At present, an electric double layer capacitor most commonly used is an electric double layer formed at the interface between a polarizable electrode mainly composed of activated carbon (usually a carbonaceous substance having a specific surface area of 300 m 2 / g or more) and an electrolyte. It is a condenser using When graphite is used for the electrode, the first time capacity is high, but when it is repeatedly used, the capacity is rapidly reduced, so that it is not used. Such an electric double layer capacitor is an IC
It is used as a backup power source for memories and actuators of LSIs and LSIs, especially in the electronics field. The electric double layer capacitor has a feature that the charge / discharge characteristics at a large current are excellent, the characteristics are not deteriorated even after the charge / discharge of 100,000 to 100,000 times, and the durability is excellent. The operating temperature range is wider than that of secondary batteries such as lithium ion secondary batteries and nickel-metal hydride secondary batteries, and it has a durability temperature characteristic of -30 ° C to + 85 ° C.

【0003】最近、電気二重層キャパシターの大電流充
放電特性、耐久性等、耐久温度特性等から、電気自動車
用補助電源、自動車用触媒マフラーのプレヒータ電源と
して有望とされ、大容量化キャパシターの開発が活発に
行われている。電気二重層キャパシターの電解液には、
硫酸水溶液等の水系電解液、及び四級オニウム塩、リチ
ウム塩をプロピレンカーボネート等の電導度の比較的大
きい有機溶媒に溶解した非水系電解液がある。このうち
後者の非水系電解液は、耐電圧が約3Vと高いため、単
セル当たりの、作動電圧及びエネルギー密度が大きいと
いう利点がある。従って、キャパシターを大容量化する
場合、非水系電解液を使用するほうが有利である。
Recently, the electric double layer capacitor is considered to be promising as an auxiliary power source for an electric vehicle and a preheater power source for a catalyst muffler for an automobile due to its large current charge / discharge characteristics, durability, and durability temperature characteristics. Is being actively conducted. The electrolyte of the electric double layer capacitor includes
There is an aqueous electrolyte such as an aqueous sulfuric acid solution, and a non-aqueous electrolyte in which a quaternary onium salt or a lithium salt is dissolved in an organic solvent having relatively high conductivity such as propylene carbonate. Among them, the latter non-aqueous electrolyte has a high withstand voltage of about 3 V, and therefore has an advantage that the operating voltage and the energy density per unit cell are large. Therefore, when increasing the capacity of the capacitor, it is more advantageous to use a non-aqueous electrolyte.

【0004】電気二重層キャパシターに用いる活性炭分
極性電極は、キャパシターの容量を大きく支配するもの
である。現在、ICのメモリーのバックアップ電源等に
使用されている電気二重層キャパシターには、やしがら
を炭化処理した後、水蒸気、二酸化炭素等の酸化性ガス
雰囲気で賦活して得られる活性炭粉、フェノール樹脂系
繊維を炭化後、同様に酸化性ガスで賦活して得られる活
性炭素繊維布等が用いられている。これらの活性炭及び
活性炭素繊維布は、電気二重層の界面を増やすために、
いずれも、1500m2 /g以上の高比表面積を有して
いる。この他の、高容量を発現する分極性電極用活性炭
として、フェノール樹脂、フラン樹脂、ポリアクリロニ
トリル、ポリ塩化ビニル樹脂、石油コークス、石炭ピッ
チ等の原料を、水蒸気、水酸化カリウム等で賦活したも
の等が多く提案されており、これらは、炭素中にナノメ
ートルサイズの細孔を多く有しており、その比表面積は
いずれも、1000m2 /g以上である。また、電気二
重層キャパシターの内部抵抗の低減を目的として、活性
炭を不活性雰囲気下で高温で熱処理する方法、活性炭粉
電極中に微小黒鉛繊維、導電性カーボンブラック、ステ
ンレス繊維等の導電性物質を加える方法等が知られてい
る。また、電気二重層テトラエチルアンモニウムテトラ
フルオロボレートのプロピレンカーボネート溶液等の非
水系電解液を用いた電気二重層キャパシターにおいて
は、高容量を発現できる有効な活性炭細孔径は、電解液
中の電解質イオンの分子径を考慮して、2nm〜5nm
と言われている(New Mat.New Processes,3,352,1985) 又、特開平9−320906号では、易黒鉛化性有機物
を原料とし、これを黒鉛化しない程度に炭化し、賦活す
ることにより、電気伝導度と表面積を両立させようとし
ている。
[0004] The activated carbon polarizable electrode used in the electric double layer capacitor largely controls the capacity of the capacitor. At present, electric double layer capacitors used as backup power sources for IC memories include activated carbon powder and phenol obtained by carbonizing coconut palm and then activating it in an oxidizing gas atmosphere such as water vapor or carbon dioxide. Activated carbon fiber cloths and the like obtained by carbonizing resin fibers and then activating the same with an oxidizing gas are also used. These activated carbon and activated carbon fiber cloths, in order to increase the interface of the electric double layer,
Each has a high specific surface area of 1500 m 2 / g or more. Other activated carbons for polarizable electrodes that exhibit high capacity, such as phenolic resin, furan resin, polyacrylonitrile, polyvinyl chloride resin, petroleum coke, coal pitch and other raw materials activated with steam, potassium hydroxide, etc. And the like, which have many nanometer-sized pores in carbon and have a specific surface area of at least 1000 m 2 / g. In addition, in order to reduce the internal resistance of the electric double layer capacitor, a method of heat-treating activated carbon at a high temperature in an inert atmosphere, and using a conductive substance such as fine graphite fiber, conductive carbon black, and stainless steel fiber in the activated carbon powder electrode. A method of adding is known. In an electric double-layer capacitor using a non-aqueous electrolyte such as a propylene carbonate solution of an electric double-layer tetraethylammonium tetrafluoroborate, an effective activated carbon pore diameter capable of expressing a high capacity is determined by the number of molecules of electrolyte ions in the electrolyte. 2 nm to 5 nm considering the diameter
(New Mat. New Processes, 3,352,1985) Also, in Japanese Patent Application Laid-Open No. 9-320906, an easily graphitizable organic material is used as a raw material, and carbonized and activated to such an extent that it is not graphitized. An attempt is being made to achieve both electrical conductivity and surface area.

【0005】[0005]

【発明が解決すべき課題】しかしながら、これらの活性
炭による電気二重層キャパシターの高容量化策のほとん
どは、その使用温度が25℃付近の室温下を前提とした
ものであり、室温下では比較的高容量を発現するもの
の、−20℃付近下の低温下では、電気二重層キャパシ
ターでの放電直後の電圧降下が著しく大きくなり、室温
下と比べて大幅に容量が小さくなった。特に、低温下で
大電流を放電すると実質的に容量を発現できないものも
存在した。その主要因は、活性炭の細孔内での電解質イ
オンの易動度の低下によるものである。これまでに、低
温下での容量向上を図るため、活性炭の平均細孔径を大
きくする、活性炭の高温熱処理、電極中への導電性物質
の添加等による内部抵抗の低減が提案された。
However, most of the measures for increasing the capacity of electric double layer capacitors using activated carbon are based on the premise that the operating temperature is at room temperature around 25 ° C. Although a high capacity is exhibited, at a low temperature around −20 ° C., the voltage drop immediately after the discharge in the electric double layer capacitor becomes remarkably large, and the capacity becomes significantly smaller than that at room temperature. In particular, there is a case where a large current is discharged at a low temperature so that the capacity cannot be substantially expressed. The main factor is a decrease in the mobility of electrolyte ions in the pores of the activated carbon. Hitherto, in order to improve the capacity at low temperatures, it has been proposed to increase the average pore diameter of the activated carbon, to perform a high-temperature heat treatment of the activated carbon, and to reduce the internal resistance by adding a conductive substance to the electrode.

【0006】しかしながらこれらの例は、いずれの程度
の差こそあれ満足すべきものではなかった。活性炭の細
孔径を大きくして低温下での電解質イオンの易動度を大
きくすることより抵抗を低減することは可能であるが、
一方で、活性炭の比表面積の減少により室温下での電気
二重キャパシターの容量が大幅に低下するという問題が
あった。活性炭を高温で熱処理しても、活性炭中には多
数の細孔を有するため、結晶性の発達による電気導電性
の向上が少ない。電極中に導電性物質を添加しても、活
性炭粒子自体の導電性があまり高くないため、電気二重
層キャパシターの内部抵抗の低下に限界がある、多量の
導電性物質の添加が必要となりキャパシターの容量が下
がる等の問題があった。
However, these examples were not satisfactory to any extent. Although it is possible to reduce the resistance by increasing the mobility of electrolyte ions at low temperatures by increasing the pore size of activated carbon,
On the other hand, there has been a problem that the capacity of the electric double capacitor at room temperature is significantly reduced due to a decrease in the specific surface area of the activated carbon. Even if the activated carbon is heat-treated at a high temperature, since the activated carbon has a large number of pores, there is little improvement in electrical conductivity due to the development of crystallinity. Even if a conductive substance is added to the electrodes, the conductivity of the activated carbon particles themselves is not so high, so there is a limit to the reduction of the internal resistance of the electric double layer capacitor. There were problems such as a decrease in capacity.

【0007】従って、室温下だけでなく低温下でも高容
量かつ大電流充放電を可能とするには、従来の活性炭に
あるナノメートルサイズの細孔はできるだけ少ないほう
が良い。しかしながら、細孔が少ない場合、比表面積が
非常に小さくなるため、高容量化するためには、単位面
積当たりの静電容量(F/m2 )が従来の活性炭の10
0倍以上を示す炭素質物質が必要となる。従って、寒冷
地での電気自動車発進時の補助動力用として強く要求さ
れる低温性能を満たす電気二重層キャパシターの分極性
電極材料は実質的になかったと言ってよい。こういった
ことから、室温と低温での容量の温度依存性が小さく、
かつ低温下で高容量を有する電気二重層キャパシターが
求められていた。
Therefore, in order to enable high-capacity and large-current charging and discharging not only at room temperature but also at low temperature, it is preferable that the conventional activated carbon has as few nanometer-sized pores as possible. However, when the number of pores is small, the specific surface area is extremely small. Therefore, in order to increase the capacity, the capacitance per unit area (F / m 2 ) is 10 times that of the conventional activated carbon.
A carbonaceous substance showing 0 times or more is required. Therefore, it can be said that there is substantially no polarizable electrode material of the electric double layer capacitor that satisfies the low-temperature performance strongly required for auxiliary power when starting the electric vehicle in a cold region. Because of this, the temperature dependence of capacitance at room temperature and low temperature is small,
There has been a demand for an electric double layer capacitor having a high capacity at a low temperature.

【0008】[0008]

【発明を解決するための手段】そこで、本発明者らは、
上記の課題を検討すべく鋭意検討した結果、従来の活性
炭の比表面積及び細孔径を調節するという方法とは異な
る抜本的解決方法として、単位面積当たりの静電容量が
従来の活性炭より著しく大きくかつ低比表面積の炭素質
物質を分極性電極に用いることにより、室温と低温での
容量の温度依存性が小さく、かつ低温下で高容量を有す
る電気二重層キャパシターが得られることを見出し、本
発明に到達した。すなわち、本発明の目的は、室温下だ
けでなく低温下でも大電流の充放電が可能な電気二重層
キャパシターを提供することにあり、かかる目的は、非
水系電解液と両極に炭素質物質を主体とする分極性電極
を用いた電気二重層キャパシターにおいて、該炭素質物
質が炭素質原料をアルカリ中で処理して得られたもの
で、そのX線回折で測定される面間隔d002 が、0.365
nm以下であり、かつ窒素吸着法で測定したBET比表
面積が0.5m2 /g以上、290m2 /g以下であ
り、さらに、該非水系電解液の溶質が、R4 +、R4
+ (ただし、RはC n H2n+1 で示されるアルキル
基)、トリエチルメチルアンモニウムイオン等でなる第
4級オニウムカチオンとBF4 - 、PF6 - 、ClO4 -、SbF6
-、またはCF3SO3 -なるアニオンとを組み合わせた塩で
あり、かつ溶質濃度が、0.5モル/リットル以上、2モ
ル/リットル以下であること、により容易に達成され
る。
Means for Solving the Invention Accordingly, the present inventors have
As a result of intensive studies to study the above issues,
It is different from the method of adjusting the specific surface area and pore size of charcoal.
As a drastic solution, the capacitance per unit area is
Carbonaceous material significantly larger and lower in specific surface area than conventional activated carbon
By using a substance for a polarizable electrode,
Low temperature dependence of capacity and high capacity at low temperatures
Found that an electric double layer capacitor
The invention has been reached. That is, the object of the present invention is at room temperature.
Electric double layer capable of charging and discharging large current even at low temperature
It is to provide a capacitor, the purpose of which is
Polarizable electrode mainly composed of aqueous electrolyte and carbonaceous material for both electrodes
The carbonaceous material in an electric double layer capacitor using
Obtained by treating carbonaceous raw materials in alkali
And the plane spacing d measured by the X-ray diffraction002But 0.365
BET ratio table below nm and measured by nitrogen adsorption method
Area 0.5mTwo/ G or more, 290mTwo/ G or less
And the solute of the non-aqueous electrolyte is RFourN+, RFour
P+(However, R is CnH2n + 1Alkyl represented by
Group), triethylmethylammonium ion, etc.
Quaternary onium cation and BFFour -, PF6 -, ClOFour -, SbF6
-, Or CFThreeSOThree -With a salt that combines
And the solute concentration is more than 0.5 mol / l
Less than liters per liter,
You.

【0009】[0009]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の最大の特徴は、電気二重層キャパシターの分極
性電極に、炭素質原料をアルカリ中で処理して得られた
もので、そのX線回折で測定される面間隔d00 2 が、0.
365 nm以下であり、かつ窒素吸着法で測定したBET
比表面積が0.5m2 /g以上、290m2 /g以下で
ある炭素質物質を用いることにより、該炭素質物質の単
位面積当たりの容量が従来の高比表面積活性炭と比べて
数百倍以上と著しく大きく、かつ、低比表面積であり従
来の高比表面積活性炭とくらべてnmオーダーの細孔を
ほとんど有していないため、電気二重層キャパシター
の、低温下での細孔内の電解質イオンの易動度の低下に
よる放電時のIR降下が少なく、室温下だけでなく低温
下でも高容量かつ大電流充放電が可能な電気二重層キャ
パシターを提供できる点にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The greatest feature of the present invention is that the polarizable electrode of the electric double layer capacitor is obtained by treating a carbonaceous raw material in an alkali, and the plane distance d 00 2 measured by X-ray diffraction is 0. .
BET less than 365 nm and measured by nitrogen adsorption method
By using a carbonaceous material having a specific surface area of 0.5 m 2 / g or more and 290 m 2 / g or less, the capacity per unit area of the carbonaceous material is several hundred times or more as compared with conventional high specific surface area activated carbon. It is extremely large, has a low specific surface area, and has few nm-order pores as compared with conventional high specific surface area activated carbon, so that the electrolyte ions in the pores of the electric double layer capacitor at a low temperature are low. An object is to provide an electric double layer capacitor which has a small IR drop at the time of discharge due to a decrease in mobility and is capable of high capacity and large current charge / discharge not only at room temperature but also at low temperature.

【0010】本発明では、比較的結晶性の発達した炭素
原料をアルカリ中で処理することにより、黒鉛に匹敵す
る高い単位面積当たりの容量を有し、かつ、充放電を繰
り返しても容量は変化しないことを見出した。本発明の
電気二重層キャパシターの分極性電極に用いられる炭素
質物質は、好ましくは、以下の手法に基づく製法により
得られる。炭素質物質のアルカリ中で処理する前の炭素
質原料としては、植物物系の木材、のこくず、ヤシ殻、
パルプ廃液、化石燃料系の石炭、石油重質油、あるいは
それらを熱分解した石炭および石油系のタール及びピッ
チ、石油コークス、石炭コークス、タールピッチを紡糸
した繊維、炭素繊維、天然黒鉛、人造黒鉛、カーボンブ
ラック、微小黒鉛繊維、カーボンアエロゲル、活性炭、
合成高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビ
ニル樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、
ポリアミド樹脂、液晶高分子、プラスチック廃棄物、廃
タイヤ等多種多用であるが、黒鉛化が容易な易黒鉛化性
炭素または易黒鉛化性有機化合物が好ましい。このよう
な、易黒鉛化性有機化合物および炭素として、石炭及び
石油等の多環芳香族環化合物であるタール、ピッチ、メ
ソフェイズ、ポリイミド樹脂等、脂肪族化合物であるポ
リ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂等が挙げら
れる。特に、易黒鉛化性炭素である、石油コークス、石
炭コークス、流動性コークス、無煙炭、メソカーボンマ
イクロビーズ等の石油及び石炭の原料とする炭素質及び
黒鉛は、安価かつ結晶性が基本的に発達しているため好
ましい。これらの炭素質をそのまま、または、炭化処理
により更に結晶性を発達させることにより、本発明の炭
素質物質のアルカリ中で処理する前の炭素質原料とする
ことが可能である。
According to the present invention, a carbon material having a relatively high degree of crystallinity is treated in an alkali to have a high capacity per unit area comparable to graphite, and the capacity does not change even after repeated charging and discharging. Not found. The carbonaceous substance used for the polarizable electrode of the electric double layer capacitor of the present invention is preferably obtained by a production method based on the following method. The carbonaceous raw materials before being treated in the alkali of carbonaceous substances include plant-based wood, sawdust, coconut shell,
Pulp waste liquor, fossil fuel coal, petroleum heavy oil, or thermally decomposed coal and petroleum tar and pitch, petroleum coke, coal coke, fiber spun from tar pitch, carbon fiber, natural graphite, artificial graphite , Carbon black, fine graphite fiber, carbon aerogel, activated carbon,
Synthetic polymer, phenolic resin, furan resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyimide resin,
Polyamide resins, liquid crystal polymers, plastic waste, waste tires, and many other types are used, but graphitizable carbon or graphitizable organic compounds that can be easily graphitized are preferred. As such graphitizable organic compounds and carbon, polycyclic aromatic ring compounds such as coal and petroleum such as tar, pitch, mesophase, polyimide resin, etc., aliphatic compounds such as polyvinyl chloride resin, polyvinylidene chloride Resins. In particular, the carbonaceous and graphite raw materials for petroleum and coal, such as petroleum coke, coal coke, fluid coke, anthracite, and mesocarbon microbeads, which are easily graphitizable carbon, are basically developed at low cost and crystallinity. Is preferred. These carbonaceous materials can be used as they are or by further developing the crystallinity by carbonization treatment to obtain carbonaceous materials of the present invention before being treated in an alkali.

【0011】本発明のアルカリ中での処理に用いられる
アルカリとしては特に限定はしないが、具体的には、K
OH,NaOHなどの苛性アルカリ、K2 CO3 ,Na
2 CO3 などの炭酸アルカリ等が使用でき、好ましくは
苛性アルカリ、特にKOHである。このアルカリとして
は、通常、溶融液、水溶液又は有機溶媒溶液として用い
ることができるが、溶融液又は高濃度水溶液として用い
るのが好ましい。黒鉛、黒鉛化処理したメソフェーズ、
炭素繊維、微小黒鉛繊維、石油コークス、石炭コークス
等の易黒鉛化炭素で、900℃以上の高温で熱処理され
た炭素質物質は、さらに炭化処理を行う必要はないがそ
れ以外の有機物または炭素質物質については、不活性雰
囲気下で900℃以上の温度で炭化処理することが好ま
しい。又、十分に結晶性を発達させるため、1300℃
以上の高温で炭化処理を行うとより好ましい。
The alkali used for the treatment in the alkali of the present invention is not particularly limited.
Caustic alkali such as OH, NaOH, K 2 CO 3 , Na
Alkali carbonate such as 2 CO 3 can be used, preferably caustic, especially KOH. The alkali can be used as a melt, an aqueous solution or an organic solvent solution, but is preferably used as a melt or a high-concentration aqueous solution. Graphite, graphitized mesophase,
Carbonaceous materials such as carbon fibers, micrographite fibers, petroleum coke, coal coke, etc., which have been heat treated at a high temperature of 900 ° C. or higher, need not be further carbonized, but other organic or carbonaceous materials The substance is preferably carbonized at a temperature of 900 ° C. or higher in an inert atmosphere. In addition, in order to sufficiently develop crystallinity, 1300 ° C.
It is more preferable to perform the carbonization treatment at the above high temperature.

【0012】また、フェノール樹脂、フラン樹脂等の難
黒鉛化性有機化合物を使用する場合には、硬化条件を最
適化して、かつ、1400℃以上で炭化処理して十分に
結晶性を発達させることにより、本発明の炭素質原料と
することが可能である。これらの結晶性を発達させた炭
素質のX線回折で測定される面間隔d002 は、0.363n
m以下であり、かつ結晶粒子のc軸方向のサイズLcが
2nm以上であることが好ましい。炭素質物質の形状
は、破砕、造粒、顆粒、繊維、フェルト、織物、シート
状等各種の形状があるが、いずれも本発明に使用するこ
とができる。
When a non-graphitizable organic compound such as a phenolic resin or a furan resin is used, it is necessary to optimize the curing conditions and carbonize at 1400 ° C. or more to sufficiently develop the crystallinity. Thus, the carbonaceous raw material of the present invention can be obtained. The interplanar spacing d 002 measured by X-ray diffraction of these crystalline carbonaceous materials is 0.363 n
m and the size Lc in the c-axis direction of the crystal grains is preferably 2 nm or more. As the shape of the carbonaceous material, there are various shapes such as crushing, granulation, granule, fiber, felt, woven fabric, and sheet shape, and any of them can be used in the present invention.

【0013】本発明で用いられる最も好ましい態様とし
ては、炭素質原料を溶融KOH中で熱処理する方法であ
り、炭素質原料/KOHの重量比を1〜8の比率で混合
し、窒素ガス、アルゴンガス等の不活性ガス中で、60
0℃〜950℃、好ましくは650℃〜850℃の温度
範囲で保持し、保持時間は10分間〜5時間、好ましく
は30分間〜3時間とする。熱処理後、水洗して、カリ
ウム分を除去した後、乾燥して、本発明の炭素質物質を
得るとよい。得られた炭素質物質のX線回折で測定され
る面間隔d002 は、0.365 nm以下であり、窒素吸着法
で測定したBET比表面積は、0.5m2 /g以上、2
90m2 /g以下であることが好ましい。得られた炭素
質物質を、窒素、アルゴン、ヘリウム、キセノン等の不
活性雰囲気下で、500 〜2500℃、好ましくは700 〜1500
℃で熱処理し、不要な表面官能基を除去したり、炭素の
結晶性を発達させて電子伝導性を増加させても良い。炭
素質物質が粒状の場合、電極の嵩密度の向上、内部抵抗
の低減という点で、平均粒子径は30μm以下が好まし
い。
The most preferred embodiment used in the present invention is a method of heat-treating a carbonaceous raw material in molten KOH. The carbonaceous raw material / KOH is mixed at a weight ratio of 1 to 8, and nitrogen gas and argon are mixed. In an inert gas such as gas, 60
The temperature is maintained at 0 ° C. to 950 ° C., preferably 650 ° C. to 850 ° C., and the holding time is 10 minutes to 5 hours, preferably 30 minutes to 3 hours. After the heat treatment, the carbonaceous material of the present invention is preferably obtained by washing with water to remove potassium, and then drying. The plane distance d 002 measured by X-ray diffraction of the obtained carbonaceous material is 0.365 nm or less, and the BET specific surface area measured by the nitrogen adsorption method is 0.5 m 2 / g or more.
It is preferably 90 m 2 / g or less. The obtained carbonaceous material is subjected to a temperature of 500 to 2500 ° C., preferably 700 to 1500 under an inert atmosphere of nitrogen, argon, helium, xenon or the like.
Heat treatment may be performed at a temperature of 0 ° C. to remove unnecessary surface functional groups or to improve the crystallinity of carbon to increase electron conductivity. When the carbonaceous material is granular, the average particle size is preferably 30 μm or less from the viewpoint of improving the bulk density of the electrode and reducing the internal resistance.

【0014】炭素質物質を主体とする分極性電極は、炭
素質物質とバインダーから構成される。また、電極に導
電性を付与するために、さらに導電性物質を添加しても
良い。分極性電極は、従来より知られている方法により
成形することが可能である。例えば、炭素質物質とアセ
チレンブラックの混合物に、ポリテトラフルオロエチレ
ンを添加・混合した後、プレス成形して得られる。ま
た、比較的軟化点の高い石炭ピッチをバインダーとして
添加・混合後、成型したものを、不活性雰囲気中でバイ
ンダーの熱分解温度以上まで焼成して成型体を得ること
もできる。さらに、導電剤、バインダーを用いず、活性
炭のみを焼結して分極性電極とすることも可能である。
電極は、薄い塗布膜、シート状または板状の成形体、さ
らには複合物からなる板状成形体のいずれであっても良
い。
A polarizable electrode mainly composed of a carbonaceous substance is composed of a carbonaceous substance and a binder. Further, a conductive substance may be further added to impart conductivity to the electrode. The polarizable electrode can be formed by a conventionally known method. For example, it can be obtained by adding and mixing polytetrafluoroethylene to a mixture of a carbonaceous substance and acetylene black, followed by press molding. Alternatively, after adding and mixing coal pitch having a relatively high softening point as a binder, the molded product may be fired in an inert atmosphere to a temperature not lower than the thermal decomposition temperature of the binder to obtain a molded product. Furthermore, it is also possible to obtain a polarizable electrode by sintering only activated carbon without using a conductive agent and a binder.
The electrode may be any of a thin coating film, a sheet-like or plate-like molded body, and a plate-like molded body made of a composite.

【0015】分極性電極に用いられる導電剤としては、
アセチレンブラック、ケッチェンブラック等のカーボン
ブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテ
ニウム、酸化チタン、アルミニウム、ニッケル等の金属
ファイバーからなる群より選ばれる少なくとも一種の導
電剤が好ましく、少量で効果的に導電性が向上する点
で、アセチレンブラック及びケッチェンブラックが特に
好ましい。活性炭との配合量は、活性炭の嵩密度により
異なるが、多すぎると活性炭の割合が減り容量が減少す
るため、活性炭の重量の5〜50%、特には10〜30%程度
が好ましい。バインダーとしては、ポリテトラフルオロ
エチレン、ポリフッ化ビニリデン、カルボキシメチルセ
ルロース、フルオロオレフィン共重合体架橋ポリマー、
ポリビニルアルコール、ポリアクリル酸、ポリイミド、
石油ピッチ、石炭ピッチ、フェノール樹脂のうち少なく
とも1種類以上用いるのが好ましい。
As the conductive agent used for the polarizable electrode,
Acetylene black, carbon black such as Ketjen black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, aluminum, at least one conductive agent selected from the group consisting of metal fibers such as nickel is preferable, in a small amount Acetylene black and Ketjen black are particularly preferable in that the conductivity is effectively improved. The amount of the activated carbon varies depending on the bulk density of the activated carbon. However, if the amount is too large, the proportion of the activated carbon is reduced and the capacity is reduced. As the binder, polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, fluoroolefin copolymer crosslinked polymer,
Polyvinyl alcohol, polyacrylic acid, polyimide,
It is preferable to use at least one or more of petroleum pitch, coal pitch, and phenol resin.

【0016】本発明においては、電気二重層キャパシタ
ーの室温下での容量を上げるために、比表面積が300
2 /g以上、2800m2 /g以下の活性炭、好まし
くは低温下では低容量だが室温下では高容量を発現す
る、フェノール樹脂熱分解物、石油コークス等を原料と
したKOH賦活品等の比表面積が1000m2 /g以上
の活性炭粉末を、本発明の炭素質物質に10重量%〜7
0重量%程度添加して成型しても良い。また、得られた
分極性電極に電気化学的にリチウムイオンを少量ドープ
する等の手法により電極の非水系電解液中での自然電位
を1.3V〜2.5V付近に調節することにより、電気
二重層キャパシターの耐電圧、電圧を長期間印加した時
の耐久性、及び充放電耐久性が向上する。これらの、分
極性電極の自然電位を任意に調節した電気二重層キャパ
シターも本発明に含まれる。
In the present invention, in order to increase the capacity of the electric double layer capacitor at room temperature, the specific surface area is set at 300.
Activated carbon of not less than m 2 / g and not more than 2800 m 2 / g, preferably a KOH-activated product made from phenolic resin pyrolysis products, petroleum coke, etc., which exhibits low capacity at low temperature but high capacity at room temperature Activated carbon powder having a surface area of 1000 m 2 / g or more is added to the carbonaceous material of the present invention in an amount of 10% by weight to 7% by weight.
It may be molded by adding about 0% by weight. Further, by adjusting the natural potential of the electrode in the non-aqueous electrolyte solution to around 1.3 V to 2.5 V by a method such as electrochemically doping a small amount of lithium ions into the obtained polarizable electrode, The withstand voltage of the double layer capacitor, the durability when a voltage is applied for a long time, and the charge / discharge durability are improved. These electric double layer capacitors in which the natural potential of the polarizable electrode is arbitrarily adjusted are also included in the present invention.

【0017】集電体は電気化学的及び化学的に耐食性が
あればよく、特に限定するものではないが、例えば、正
極ではステンレス、アルミニウム、チタン、タンタルが
あり、負極では、ステンレス、ニッケル、銅等が好適に
使用される。電解液は非水系電解液が好ましい。非水系
電解液の溶質は、R4 + 、R4 + (ただし、RはC
n H2n+1 で示されるアルキル基)、トリエチルメチルア
ンモニウムイオン等でなる第4級オニウムカチオンと、
BF4 - 、PF6 - 、ClO4 -、SbF6 -またはCF3SO3 -なるア
ニオンとを組み合わせた塩、または、カチオンがリチウ
ムイオンであるリチウム塩を用いる。リチウム塩は、L
iBF4 ,LiClO 4 ,LiPF6 ,LiSbF6
LiAsF6 ,LiCF3 SO3 ,LiC(CF3 SO
2 3 ,LiB(C6 5 4 ,LiC4 9 SO3
LiC8 17SO3 ,LiB(C6 5 4 ,LiN
(CF3 SO2 2 から選ばれる1つ以上の物質が好ま
しい。特に、電気導電性、安定性、及び低コスト性とい
う点から、カチオンが、R4 + (ただし、RはC n H
2n+1 で示されるアルキル基)及びトリエチルメチルア
ンモニウムイオン、アニオンが、BF4 - 、PF6 - 、ClO4
-、及びSbF6 -を組み合わせた塩が好ましい。
The current collector is electrochemically and chemically resistant to corrosion.
There is no particular limitation, but for example, positive
At the poles are stainless steel, aluminum, titanium and tantalum
Yes, for the negative electrode, stainless steel, nickel, copper, etc.
used. The electrolyte is preferably a non-aqueous electrolyte. Non-aqueous
The solute of the electrolyte is RFourN+, RFourP +(However, R is C
nH2n + 1), Triethylmethyla
A quaternary onium cation such as ammonium ion,
BFFour -, PF6 -, ClOFour -, SbF6 -Or CFThreeSOThree -Become
Salt combined with Nion or cation is Lithium
A lithium salt which is a mu ion is used. The lithium salt is L
iBFFour, LiClO Four, LiPF6, LiSbF6,
LiAsF6, LiCFThreeSOThree, LiC (CFThreeSO
Two)Three, LiB (C6HFive)Four, LiCFourF9SOThree,
LiC8F17SOThree, LiB (C6HFive)Four, LiN
(CFThreeSOTwo)TwoOne or more substances selected from
New In particular, electrical conductivity, stability, and low cost
From the point that the cation is RFourN+(However, R is CnH
2n + 1An alkyl group represented by
If the ammonium ion or anion is BFFour -, PF6 -, ClOFour
-, And SbF6 -Are preferred.

【0018】これらの非水系電解液中の溶質濃度は電気
二重層キャパシターの特性が十分引き出せるように、0.
5〜2モル/リットルが好ましく、特に、0.7モル/リ
ットル以上1.9モル/リットル以下の濃度では、高い電
気導電性が得られて好ましい。特に、-20 ℃以下の低温
で充放電するとき、2モル/リットルを越える濃度で
は、電解液の電気導電性が低下し好ましくない。また、
0.5モル/リットル未満では室温下、低温下とも電気電
導度が小さく好ましくない。
The solute concentration in these non-aqueous electrolytes is adjusted to a value of 0.1 so that the characteristics of the electric double layer capacitor can be sufficiently obtained.
The concentration is preferably from 5 to 2 mol / l, and particularly preferably at a concentration of from 0.7 mol / l to 1.9 mol / l, high electric conductivity is obtained. In particular, when charging and discharging at a low temperature of −20 ° C. or less, if the concentration exceeds 2 mol / liter, the electric conductivity of the electrolytic solution decreases, which is not preferable. Also,
If the amount is less than 0.5 mol / liter, the electric conductivity is unfavorably low at both room temperature and low temperature.

【0019】非水系電解液の溶媒は特に限定するもので
はないが、プロピレンカーボネート、エチレンカーボネ
ート、ブチレンカーボネート、ジメチルカーボネート、
メチルエチルカーボネート、ジエチルカーボネート、ス
ルホラン、メチルスルホラン、γ−ブチロラクトン、γ
−バレロラクトン、N-メチルオキサゾリジノン、ジメチ
ルスルホキシド、及びトリメチルスルホキシドから選ば
れる1種類以上からなる有機溶媒が好ましい。電気化学
的及び化学的安定性、電気伝導性に優れる点から、プロ
ピレンカーボネート、エチレンカーボネート、ブチレン
カーボネート、ジメチルカーボネート、メチルエチルカ
ーボネート、ジエチルカーボネート、スルホラン、メチ
ルスルホラン、γ−ブチロラクトンから選ばれる1種類
以上の有機溶媒が特に好ましい。ただし、エチレンカー
ボネート等の高融点溶媒は、単独では低温下では固体と
なるため使用できず、プロピレンカーボネート等の低融
点溶媒との混合溶媒とする必要がある。非水系電解液中
の水分は、高い耐電圧が得られるように200ppm以下、さ
らには50ppm 以下が好ましい。
Although the solvent of the non-aqueous electrolyte is not particularly limited, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate,
Methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, γ-butyrolactone, γ
-An organic solvent comprising at least one selected from valerolactone, N-methyloxazolidinone, dimethylsulfoxide, and trimethylsulfoxide is preferred. At least one selected from propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, and γ-butyrolactone from the viewpoint of excellent electrochemical and chemical stability and electric conductivity. Is especially preferred. However, a high melting point solvent such as ethylene carbonate alone cannot be used because it becomes a solid at a low temperature and must be a mixed solvent with a low melting point solvent such as propylene carbonate. The water content in the non-aqueous electrolyte is preferably 200 ppm or less, more preferably 50 ppm or less, so as to obtain a high withstand voltage.

【0020】[0020]

【実施例】以下、本発明を具体的な実施例で説明する
が、本発明は以下の実施例により限定されない。 (実施例1)キノリン不溶成分を取り除いたコールター
ルピッチをディレードコーカーでコーキングした後、回
転キルンにて約1500℃で4時間熱処理した後、これ
をボールミルで粉砕して、平均粒径が約20μmの炭素
質原料を得た。これに、重量比で2倍の粒状の水酸化カ
リウムを加えて混合した後、ニッケル製のるつぼに入
れ、窒素気流中で、800℃で2時間熱処理した。冷却
後、水洗い、1N−塩酸水溶液による中和を繰り返し
て、カリウム成分を取り除いた後、115℃で乾燥して
炭素質粉末を得た。得られた炭素質粉末のX線回折パタ
ーンを図1に示す。このX線回折パターンから求めた面
間隔d002 は、0.3454nmであった。また、窒素吸着測
定装置(カルロエルバ社製ソープトマチック1600)
で測定した、炭素質物質のBET比表面積は、1m2
gであった。
EXAMPLES Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to the following examples. (Example 1) Coal tar pitch from which a quinoline-insoluble component was removed was coked with a delayed coker, heat-treated at about 1500 ° C. for 4 hours in a rotary kiln, and then pulverized with a ball mill to have an average particle size of about 20 μm. Was obtained. After adding twice the weight ratio of granular potassium hydroxide to the mixture and mixing, the mixture was placed in a nickel crucible and heat-treated at 800 ° C. for 2 hours in a nitrogen stream. After cooling, washing with water and neutralization with a 1N-hydrochloric acid aqueous solution were repeated to remove the potassium component, followed by drying at 115 ° C. to obtain a carbonaceous powder. FIG. 1 shows an X-ray diffraction pattern of the obtained carbonaceous powder. The interplanar spacing d 002 determined from this X-ray diffraction pattern was 0.3454 nm. In addition, a nitrogen adsorption measurement device (Carlo Elba's Soapmatic 1600)
The BET specific surface area of the carbonaceous substance measured by 1 m 2 /
g.

【0021】次に、炭素質物質80重量%、アセチレンブ
ラック10重量%、ポリテトラフルオロエチレン10重量%
からなる混合物を混練した後、日本分光製錠剤成型器を
用い、油圧プレスで直径10.5mm,厚さ0.5mm となるよう
に50kgf/cm2 の圧力で加圧成形して円盤状の成型体
を2枚作製した。この成型体を0.1torr 以下の真空中、
300 ℃で3時間乾燥した後、窒素雰囲気下のグローブボ
ックス中へ移した。2枚の成型体に、1.3モル/リッ
トルの濃度のトリエチルメチルアンモニウムテトラフル
オロボレートを含むプロピレンカーボネートとエチレン
カーボネート(容積比1+1)を含浸した。次に、2枚
の成型体を各々正極、負極とし、両極間にポリエチレン
セパレータを配置して図3に示すようなコイン型セルを
組立てることにより電気二重層キャパシターを得た。
Next, 80% by weight of carbonaceous material, 10% by weight of acetylene black, 10% by weight of polytetrafluoroethylene
After kneading the mixture consisting of, using a tablet press made by JASCO Corporation, press molding with a hydraulic press at a pressure of 50 kgf / cm 2 to a diameter of 10.5 mm and a thickness of 0.5 mm to obtain a disc-shaped molded body Two sheets were produced. In a vacuum of 0.1 torr or less,
After drying at 300 ° C. for 3 hours, it was transferred into a glove box under a nitrogen atmosphere. Two molded bodies were impregnated with propylene carbonate and ethylene carbonate (volume ratio 1 + 1) containing triethylmethylammonium tetrafluoroborate at a concentration of 1.3 mol / liter. Next, the two molded bodies were used as a positive electrode and a negative electrode, respectively, and a polyethylene separator was arranged between the two electrodes to assemble a coin type cell as shown in FIG. 3 to obtain an electric double layer capacitor.

【0022】(実施例2)キノリン不溶成分を取り除い
たコールタールピッチをディレードコーカーでコーキン
グした後、回転キルンにて950℃で4時間熱処理した
後、粉砕して、炭素質原料を得たこと以外は、実施例1
と同様な電気二重層キャパシターを構成した。得られた
炭素質粉末の面間隔d002 は、0.3605nm、また、BE
T比表面積は11m2 /gであった。
(Example 2) Coal tar pitch from which quinoline insoluble components were removed was coked with a delayed coker, heat-treated at 950 ° C for 4 hours in a rotary kiln, and then pulverized to obtain a carbonaceous raw material. Example 1
An electric double layer capacitor similar to the above was constructed. The interplanar spacing d 002 of the obtained carbonaceous powder was 0.3605 nm, and BE
The T specific surface area was 11 m 2 / g.

【0023】(実施例3)実施例2において、重量比が
3倍の水酸化カリウムを添加したこと以外は、実施例1
と同様な電気二重層キャパシターを構成した。得られた
炭素質粉末の面間隔d002 は、0.3615nm、また、BE
T比表面積は17m2 /gであった。
Example 3 Example 1 was the same as Example 2 except that the weight ratio of potassium hydroxide was 3 times.
An electric double layer capacitor similar to the above was constructed. The interplanar spacing d 002 of the obtained carbonaceous powder was 0.3615 nm, and BE
The T specific surface area was 17 m 2 / g.

【0024】(実施例4)石油ピッチを1400℃で4
時間熱処理して、粉砕して炭素質原料を得たこと以外
は、実施例1と同様な電気二重層キャパシターを構成し
た。溶融KOH 中で熱処理して得られた炭素質粉末のX線
回折パターンから求めた面間隔d002 は、0.3458nmで
あった。また、炭素質物質のBET比表面積は、1m2
/gであった。
(Example 4) Petroleum pitch was set to 4 at 1400 ° C.
An electric double layer capacitor was formed in the same manner as in Example 1 except that heat treatment was performed for a time and pulverization was performed to obtain a carbonaceous raw material. The interplanar spacing d 002 determined from the X-ray diffraction pattern of the carbonaceous powder obtained by heat treatment in molten KOH was 0.3458 nm. The BET specific surface area of the carbonaceous material is 1 m 2
/ G.

【0025】(比較例1)フェノール樹脂(ノボラック
樹脂)を窒素気流中、700℃で4時間熱処理した後、
粉砕して、炭素質原料を得たこと以外は、実施例1と同
様な電気二重層キャパシターを構成した。得られた炭素
質粉末(活性炭)のXRDパターンを図2に示す。実施
例1〜4に見られるような面間隔d002 に由来するピー
クを明確には検出できなかった。また、BET比表面積
は1980m2 /gであり、平均細孔径は約18Åであ
った。
(Comparative Example 1) A phenol resin (novolak resin) was heat-treated at 700 ° C. for 4 hours in a nitrogen stream.
An electric double layer capacitor was constructed in the same manner as in Example 1 except that pulverization was performed to obtain a carbonaceous raw material. FIG. 2 shows an XRD pattern of the obtained carbonaceous powder (activated carbon). It could not be clearly detected a peak derived from the surface spacing d 002, as seen in Examples 1-4. Further, the BET specific surface area was 1980 m 2 / g, and the average pore diameter was about 18 °.

【0026】(比較例2)キノリン可溶成分を取り除い
たコールタールピッチを回転キルン中で500℃で4時
間熱処理して得られた石炭ピッチを、そのまま粉砕した
ものに2.3倍の粒状の水酸化カリウムを加えて混合し
た後、ニッケル製のるつぼに入れ、窒素気流中で、65
0℃で1時間熱処理した。冷却後、水洗い、塩酸中和を
繰り返した後、窒素気流中で1000℃で1時間熱処理
して炭素質粉末を得たこと以外は実施例1と同様な電気
二重層キャパシターを構成した。得られた炭素質粉末の
面間隔d002 は、0.375 nm、また、BET比表面積は
2200m2/gであった。
Comparative Example 2 Coal pitch obtained by heat-treating a coal tar pitch from which a quinoline-soluble component was removed at 500 ° C. for 4 hours in a rotary kiln was pulverized as it was into 2.3 times granular material. After potassium hydroxide was added and mixed, the mixture was placed in a nickel crucible and placed in a nitrogen stream at 65 ° C.
Heat treatment was performed at 0 ° C. for 1 hour. After cooling, washing with water and neutralization with hydrochloric acid were repeated, and an electric double layer capacitor was formed in the same manner as in Example 1 except that heat treatment was performed at 1000 ° C. for 1 hour in a nitrogen stream to obtain a carbonaceous powder. The interplanar spacing d 002 of the obtained carbonaceous powder is 0.375 nm, and the BET specific surface area is
It was 2200 m 2 / g.

【0027】(比較例3)石炭ピッチを約1000℃の
水蒸気下で賦活して得た活性炭粉末(比表面積:162
0m2 /g、面間隔d002 :0.370 nm、平均粒径:約
20μm、純度:99.5%以上)を炭素質物質とした
こと以外は、実施例1と同様な電気二重層キャパシター
を構成した。実施例1〜4、及び比較例1〜3の電気二
重層キャパシターを市販の充放電装置を使用して、−2
5℃または25℃の温度条件下、3.8Vまたは2.8
Vの電圧を1時間印加した後、8.65mA(10.0
mA/cm2 )の定電流で1.0Vまで放電して、電気
二重層キャパシターの静電容量を求めた。表1に静電容
量の測定結果を示す。
Comparative Example 3 Activated carbon powder (specific surface area: 162) obtained by activating coal pitch under steam at about 1000 ° C.
(0 m 2 / g, interplanar spacing d 002 : 0.370 nm, average particle size: about 20 μm, purity: 99.5% or more) except that a carbonaceous substance was used, and the same electric double layer capacitor as in Example 1 was constructed. did. The electric double-layer capacitors of Examples 1 to 4 and Comparative Examples 1 to 3 were obtained by using a commercially available charging / discharging device at -2.
3.8 V or 2.8 at 5 ° C. or 25 ° C.
8.65 mA (10.0 mA) after applying a voltage of V for 1 hour.
The battery was discharged to 1.0 V at a constant current of mA / cm 2 ) to determine the capacitance of the electric double layer capacitor. Table 1 shows the measurement results of the capacitance.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明により、低温特性に優れた電気二
重層キャパシターを得ることができる。
According to the present invention, an electric double layer capacitor having excellent low temperature characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の炭素質物質のX線パターンを説明す
る図。
FIG. 1 is a view for explaining an X-ray pattern of a carbonaceous substance of Example 1.

【図2】活性炭のX線パターンを説明する図。FIG. 2 is a diagram illustrating an X-ray pattern of activated carbon.

【図3】本発明の実施例で用いたコイン型セルの説明図
である。
FIG. 3 is an explanatory diagram of a coin-type cell used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス製容器のケース 2 正極 3 ガスケット 4 セパレータ 5 負極 6 ステンレス製容器の上蓋 DESCRIPTION OF SYMBOLS 1 Case of stainless steel container 2 Positive electrode 3 Gasket 4 Separator 5 Negative electrode 6 Top cover of stainless steel container

フロントページの続き (72)発明者 鈴木 光雄 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 相沢 めぐみ 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内Continued on the front page (72) Inventor Mitsuo Suzuki 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Chemical Research Institute (72) Inventor Megumi Aizawa 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Inside Yokohama Research Institute

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 非水系電解液と両極に炭素質物質を主体
をする分極性電極を用いた電気二重層キャパシターにお
いて、該炭素質物質が、炭素質原料をアルカリにより接
触処理したもので、そのX線回折で測定される面間隔d
002 が、0.365nm以下であり、かつ窒素吸着法で
測定したBET比表面積が0.5m2/g以上、290
2 /g以下であることを特徴とする電気二重層キャパ
シター。
1. An electric double layer capacitor using a non-aqueous electrolyte and a polarizable electrode mainly composed of a carbonaceous substance in both electrodes, wherein the carbonaceous substance is obtained by contacting a carbonaceous raw material with an alkali. Plane spacing d measured by X-ray diffraction
002 is 0.365 nm or less, and the BET specific surface area measured by the nitrogen adsorption method is 0.5 m 2 / g or more and 290
An electric double layer capacitor having a m 2 / g or less.
【請求項2】 アルカリによる接触処理が、苛性アルカ
リの溶融液と接触させる方法である請求項1記載の電気
二重層キャパシター。
2. The electric double layer capacitor according to claim 1, wherein the contact treatment with an alkali is a method of contacting with a molten solution of caustic alkali.
【請求項3】 該電解液の溶質が、R4 + 、R4 +
(ただし、RはC nH2n+1 で示されるアルキル基)及び
トリエチルメチルアンモニウムイオンからなる群より選
ばれる少なくとも1つの第4級オニウムカチオンと、BF
4 - 、PF6 -、ClO4 -、SbF6 -及びCF3SO3 -からなる群
より選ばれる少なくとも1つのアニオンとを組み合わせ
た塩であり、かつ溶質濃度が、0.5モル/リットル以
上、2モル/リットル以下である非水系電解液である請
求項1記載の電気二重層キャパシター。
3. The method according to claim 1, wherein the solute of the electrolytic solution is R 4 N + , R 4 P +
(Where R is an alkyl group represented by C n H 2n + 1 ) and at least one quaternary onium cation selected from the group consisting of triethylmethylammonium ions;
4 -, PF 6 -, ClO 4 -, SbF 6 - and CF 3 SO 3 - is at least one anion and the combined salt selected from the group consisting of, and solute concentration, 0.5 mol / l The electric double layer capacitor according to claim 1, which is a non-aqueous electrolyte having a concentration of 2 mol / liter or less.
【請求項4】 該炭素質物質の炭素質原料が900℃以
上の前熱処理をされたものである請求項1又は2のいず
れか記載の電気二重層キャパシター。
4. The electric double layer capacitor according to claim 1, wherein the carbonaceous material of the carbonaceous substance has been subjected to a pre-heat treatment at 900 ° C. or higher.
【請求項5】 該炭素質原料が、易黒鉛化炭素である請
求項1乃至3いずれか記載の電気二重層キャパシター。
5. The electric double layer capacitor according to claim 1, wherein the carbonaceous raw material is graphitizable carbon.
【請求項6】 該分極性電極中に該炭素質物質の外に比
表面積が300m2/g以上、2800m2 /g以下の
活性炭粉を含有する請求項1乃至4いずれか記載の電気
二重層キャパシター。
6. The electric double layer according to claim 1, wherein the polarizable electrode contains activated carbon powder having a specific surface area of 300 m 2 / g or more and 2800 m 2 / g or less in addition to the carbonaceous material. Capacitor.
【請求項7】 −20℃以下の温度域で使用することを
特徴とする請求項1乃至5いずれか記載の電気二重層キ
ャパシター。
7. The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor is used in a temperature range of −20 ° C. or lower.
【請求項8】 炭素質原料をアルカリ中で処理し、その
X線回折で測定される面間隔d002 が、0.365nm
以下であり、かつ窒素吸着法で測定したBET比表面積
が0.5m2 /g以上、290m2 /g以下であること
を特徴とする電気二重層キャパシターの電極用炭素質物
質。
8. A carbonaceous raw material is treated in an alkali, and its plane distance d 002 measured by X-ray diffraction is 0.365 nm.
A carbonaceous material for an electrode of an electric double layer capacitor, wherein the carbonaceous material has a BET specific surface area of 0.5 m 2 / g or more and 290 m 2 / g or less as measured by a nitrogen adsorption method.
【請求項9】 該炭素質物質の炭素質原料が900℃以
上の前熱処理をされたものである請求項8に記載の電気
二重層キャパシターの電極用炭素質物質。
9. The carbonaceous material for an electrode of an electric double layer capacitor according to claim 8, wherein the carbonaceous material of the carbonaceous material has been pre-heat treated at 900 ° C. or higher.
【請求項10】 該炭素質原料が、易黒鉛化炭素である
請求項8又は9のいずれか記載の電気二重層キャパシタ
ーの電極用炭素質物質。
10. The carbonaceous material for an electrode of an electric double layer capacitor according to claim 8, wherein the carbonaceous material is graphitizable carbon.
JP09870098A 1998-04-10 1998-04-10 Electric double layer capacitor Expired - Lifetime JP3846022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09870098A JP3846022B2 (en) 1998-04-10 1998-04-10 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09870098A JP3846022B2 (en) 1998-04-10 1998-04-10 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH11297577A true JPH11297577A (en) 1999-10-29
JP3846022B2 JP3846022B2 (en) 2006-11-15

Family

ID=14226789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09870098A Expired - Lifetime JP3846022B2 (en) 1998-04-10 1998-04-10 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3846022B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151364A (en) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd Electric double-layer capacitor and its manufacturing method
WO2002073632A1 (en) * 2001-03-08 2002-09-19 Naoi, Kenzo Inorganic/organic complex nano-beads and method for manufacturing the same
KR100447890B1 (en) * 2001-10-25 2004-09-08 (주)넥센나노텍 Carbon material for electrode of electric double layered capacitor and method of making the same
WO2007132896A1 (en) * 2006-05-16 2007-11-22 Ube Industries, Ltd. Electric storage device and electric storage system
KR100894481B1 (en) * 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
US7799894B2 (en) 2004-02-06 2010-09-21 Yamaguchi University Electrode for energy storage device and process for producing the same
US7803898B2 (en) 2004-01-13 2010-09-28 Nissan Chemical Industries, Ltd. Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
JP2014035915A (en) * 2012-08-09 2014-02-24 Sony Corp Electrode material and method for manufacturing the same and secondary battery
JP2015088834A (en) * 2013-10-29 2015-05-07 京セラ株式会社 Portable terminal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151364A (en) * 2000-11-09 2002-05-24 Asahi Glass Co Ltd Electric double-layer capacitor and its manufacturing method
WO2002073632A1 (en) * 2001-03-08 2002-09-19 Naoi, Kenzo Inorganic/organic complex nano-beads and method for manufacturing the same
US7291392B2 (en) 2001-03-08 2007-11-06 Aoi Electronics Co., Ltd. Inorganic/organic complex nano-beads and method for manufacturing the same
KR100447890B1 (en) * 2001-10-25 2004-09-08 (주)넥센나노텍 Carbon material for electrode of electric double layered capacitor and method of making the same
US7564676B2 (en) 2003-10-17 2009-07-21 Nippon Oil Corporation Electric double layer capacitor, activated carbon for electrode therefor and method for producing the same
US7803898B2 (en) 2004-01-13 2010-09-28 Nissan Chemical Industries, Ltd. Aminoquinoxaline compound, polyaminoquinoxaline compound, and use thereof
US7799894B2 (en) 2004-02-06 2010-09-21 Yamaguchi University Electrode for energy storage device and process for producing the same
WO2007132896A1 (en) * 2006-05-16 2007-11-22 Ube Industries, Ltd. Electric storage device and electric storage system
JPWO2007132896A1 (en) * 2006-05-16 2009-09-24 宇部興産株式会社 Power storage device and power storage system
JP4888667B2 (en) * 2006-05-16 2012-02-29 宇部興産株式会社 Power storage device and power storage system
JP2012049142A (en) * 2006-05-16 2012-03-08 Ube Ind Ltd Power storage device and power storage system
KR100894481B1 (en) * 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
JP2014035915A (en) * 2012-08-09 2014-02-24 Sony Corp Electrode material and method for manufacturing the same and secondary battery
JP2015088834A (en) * 2013-10-29 2015-05-07 京セラ株式会社 Portable terminal

Also Published As

Publication number Publication date
JP3846022B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US8273683B2 (en) Active carbon, production method thereof and polarizable electrode
JP4618929B2 (en) Activated carbon for electric double layer capacitors
KR101545116B1 (en) Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
US7625839B2 (en) Activated carbon for use in electric double layer capacitors
TWI487180B (en) Anode material for nonaqueous lithium type electrical storage element
JP5931326B2 (en) Activated carbon for electric double layer capacitors
US20090201630A1 (en) Phosphorus compound-complexed activated carbon for electric double layer capacitor and method for producing the same
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
WO1998034291A1 (en) Lithium ion secondary battery
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JP3846022B2 (en) Electric double layer capacitor
KR100978604B1 (en) Carbonaceous material for electric double layer capacitor and electric double layer capacitor
JPH1092432A (en) Manufacture of electrode material
US7088570B2 (en) Carbonized product used for production of activated carbon for electrode of electric double-layer capacitor
JP3611412B2 (en) Mesophase pitch activated carbon fiber, process for producing the same, and electric double layer capacitor using the same
JP3807854B2 (en) Electric double layer capacitor
JP4066506B2 (en) A method for producing a carbonaceous material.
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP3837866B2 (en) Electric double layer capacitor
JPH11145009A (en) Electric double layer capacitor
JP3800810B2 (en) Electric double layer capacitor
JP2005243933A (en) Electric double-layer capacitor
JP2008050258A (en) Carbonaceous substance and electrical double layer capacitor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term