JPS6325324B2 - - Google Patents

Info

Publication number
JPS6325324B2
JPS6325324B2 JP54093697A JP9369779A JPS6325324B2 JP S6325324 B2 JPS6325324 B2 JP S6325324B2 JP 54093697 A JP54093697 A JP 54093697A JP 9369779 A JP9369779 A JP 9369779A JP S6325324 B2 JPS6325324 B2 JP S6325324B2
Authority
JP
Japan
Prior art keywords
signal
mirror
drive
level
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54093697A
Other languages
Japanese (ja)
Other versions
JPS5619024A (en
Inventor
Akifumi Mori
Tsutomu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9369779A priority Critical patent/JPS5619024A/en
Publication of JPS5619024A publication Critical patent/JPS5619024A/en
Publication of JPS6325324B2 publication Critical patent/JPS6325324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 この発明は機械的に鏡を動かす光偏向装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light deflection device that mechanically moves a mirror.

ガルバ鏡などの機械的な光偏向装置は偏向速度
が遅いものの偏向角が大きく、分解能が大きく、
比較的低コストであるので例えばProceedings
of SPIE vol 84 Laser Sbanning Components
and Techiques(1976)などや同じくvol 53
Laser Recordingなどに記されているように従来
から広く使われている。
Mechanical optical deflection devices such as galvanic mirrors have a slow deflection speed but a large deflection angle and high resolution.
For example, Proceedings
of SPIE vol 84 Laser Sbanning Components
and Techiques (1976) and similar vol 53
It has been widely used for a long time, as described in Laser Recording.

またガルバ鏡の特性や駆動方法に関しても上記
文献や、General Scanning社の取扱い説明書に
詳しく扱われている。
Further, the characteristics and driving method of the galvanic mirror are covered in detail in the above-mentioned literature and in the instruction manual of General Scanning.

多くの用途では、鋸歯状の動きを得たいので、
ここでは鋸歯状の動きを検討するが、その結果は
他の動きにも適宜適用することができる。一般的
にできるだけ速い繰り返しで、かつ鋸歯波の有効
に使われる傾斜部の一周期に対する時間的な有効
率が大きな偏向が望まれる。
In many applications you want to get a serrated motion, so
Although a sawtooth motion is considered here, the results can be applied to other motions as appropriate. In general, it is desired to have a deflection that repeats as quickly as possible and has a large temporal effectiveness rate for one cycle of the slope portion where the sawtooth wave is effectively used.

鋸歯状の動きをさせるには帰線区間におきる振
動を早く収める必要があり、鏡の動きを検出して
入力に帰還し、電気的にダンピングをかけたり、
あるいは階段状の信号波形を用いることによつて
振動をおさえている。
In order to make a sawtooth movement, it is necessary to quickly suppress the vibration that occurs in the retrace section, so the movement of the mirror is detected and fed back to the input, and damping is applied electrically.
Alternatively, vibrations are suppressed by using a stepped signal waveform.

後者の方法について第1図を使つて簡単に説明
する。図の横軸は時間軸、縦軸は偏向角を示す。
図において実線は駆動信号、点線は鏡の動きをあ
らわす。時間t0まで駆動信号を印加した時に、こ
れに追従する鏡の動きのオーバシユートの頂点が
ちようど希望の偏向角になるように、あらかじめ
この駆動信号を設定しておく。そして、印加され
る駆動信号の最終時点t0で、この鏡を始点位置
(開始位置)に戻すべく、2つのレベルの信号を
鏡の帰線区間に印加する。このようにすること
で、振動をおこさず、短い過渡時間で鏡を動かす
ことができるというものである。
The latter method will be briefly explained using FIG. The horizontal axis of the figure shows the time axis, and the vertical axis shows the deflection angle.
In the figure, the solid line represents the drive signal, and the dotted line represents the movement of the mirror. This drive signal is set in advance so that when the drive signal is applied until time t 0 , the peak of the overshoot of the mirror movement that follows it will be at the desired deflection angle. Then, at the final time t 0 of the applied drive signal, two levels of signals are applied to the retrace section of the mirror in order to return the mirror to the starting position. By doing this, the mirror can be moved in a short transition time without causing vibration.

しかし、このような方法をとつたとしても、ガ
ルバ鏡の共振周波数に相当する周期のほぼ半分の
時間は、鏡を始点位置に戻すための過渡時間に必
要である。そのため鋸歯状波の傾斜区間の時間有
効率を70%確保したいときは、最高でも共振周波
数の50%から60%程度の繰り返し周波数でしか鋸
歯状波では動かせない。先に示した文献には、実
用的には30%から40%と示されている。
However, even if such a method is adopted, approximately half of the period corresponding to the resonant frequency of the galvanic mirror is required for the transition time to return the mirror to its starting position. Therefore, if you want to ensure a time efficiency of 70% in the slope section of the sawtooth wave, you can only operate the sawtooth wave at a repetition frequency of about 50% to 60% of the resonant frequency at most. The literature listed above indicates that it is practically 30% to 40%.

ガルバ鏡の共振周波数は必要な分解能や偏向角
などの偏向特性を定めると、それほど上げること
はできず、結局、共振周波数が与えられたガルバ
鏡を少しでも高速に動かすことが重要であるが、
以上述べたように、従来は、共振周波数に対して
その半分以下の繰り返し周波数の駆動にとどま
り、その向上が望まれている。
The resonant frequency of the galvanic mirror cannot be increased that much once the necessary resolution and deflection characteristics such as the deflection angle are determined.In the end, it is important to move the galvanic mirror given the resonant frequency as fast as possible.
As described above, conventionally, driving is limited to a repetition frequency that is less than half of the resonant frequency, and there is a desire to improve this.

またガルバ鏡の偏向特性は、高速になると、駆
動コイルのインダクタンスが無視できなくなり、
3次の特性を示す。一般に高次の特性になると、
遅れが大きくなり高速駆動には適さない。通常の
駆動方法では、このことも問題である。
In addition, the deflection characteristics of the galvanic mirror are such that as the speed increases, the inductance of the drive coil cannot be ignored.
Shows third-order characteristics. Generally speaking, when it comes to higher-order properties,
The delay becomes large and it is not suitable for high-speed drive. This is also a problem with normal drive methods.

この発明の目的は高速でかつ時間的な有効率が
高い偏向が可能な機械的に鏡を動かす光の偏向装
置を提供することにある。
An object of the present invention is to provide a light deflection device that mechanically moves a mirror and is capable of deflecting light at high speed and with a high time efficiency.

本発明においては、駆動回路を含めた偏向装置
の特性を2次にした上で偏向の有効区間は鏡の動
きに対応した信号で駆動し、過渡区間は高、低二
つのレベルからなる信号で駆動する。過渡区間の
高低二つのレベルの信号は、過渡区間の鏡の状態
を初期値から加速し、また減速して最終値すなわ
ち有効区間の初期値に設定する働きをする。この
ようにすると過渡区間の加速、減速が効果的に行
なわれ、従来技術に比べて過渡区間を短くでき
る。
In the present invention, the characteristics of the deflection device including the drive circuit are made quadratic, and the effective deflection section is driven by a signal corresponding to the movement of the mirror, and the transient section is driven by a signal consisting of two levels, high and low. Drive. The two high and low level signals of the transient section serve to accelerate and decelerate the mirror state of the transient section from the initial value and set it to the final value, that is, the initial value of the effective section. In this way, acceleration and deceleration in the transient section are effectively performed, and the transient section can be made shorter than in the prior art.

第2図は、本発明の実施例を示す装置の構成図
であり、信号発生回路1、駆動回路2及びガルバ
鏡3とからなる。
FIG. 2 is a block diagram of an apparatus showing an embodiment of the present invention, which includes a signal generation circuit 1, a drive circuit 2, and a galvanic mirror 3.

ガルバ鏡3の偏向特性は上述したように高速に
なると駆動コイルのインダクタンスが無視できな
くなり、一般に3次の特性を示すようになる(例
えばProceedings of SPIE vol. 84 Laser
Scanning Components and Techniques(1976)
の第62頁乃至第63頁参照)。つまり、次数が多い
こと(ここでは3次式)は、それだけ駆動遅れが
大きくなることであり、高速駆動には適していな
い。ところが、例えば第3図に示すような本発明
の駆動回路で駆動すると、駆動回路を含めた特性
を2次にすることができる。そこで今、この回路
を図示の如く、各抵抗、ガルバ鏡の駆動コイル、
コンデンサ、印加される信号を各々(R0〜R5
(L,R),(C),(V1)とし、又図示の位置の電
圧、電流をV0,iSを設定してこの回路を解析す
る。
As mentioned above, as the speed increases, the inductance of the drive coil cannot be ignored, and the deflection characteristics of the galvanic mirror 3 generally exhibit third-order characteristics (for example, Proceedings of SPIE vol. 84 Laser
Scanning Components and Techniques (1976)
(See pages 62-63). In other words, a large number of orders (in this case, a cubic equation) means a correspondingly large drive delay, which is not suitable for high-speed drive. However, when driven by the drive circuit of the present invention as shown in FIG. 3, for example, the characteristics including the drive circuit can be made quadratic. Therefore, we will now construct this circuit as shown in the diagram, including each resistor, the galvanic mirror drive coil, and
capacitor, each applied signal (R 0 ~ R 5 )
(L, R), (C), (V 1 ), and set the voltage and current at the positions shown as V 0 and i S to analyze this circuit.

まずガルバ鏡の特性により、電気的に Gdθ/dt+iSR=V0−Ldis/dt …(1) (ただし、G:駆動トルク係数、θ:偏向角) と表わされ、又ガルバ鏡の動きは Id2θ/dt2+P′dθ/dt+K・θ=G・iS …(2) (ただし、I:イナーシヤ、P′:制御トルク係
数、K:制御トルク係数) と表わされる。
First, due to the characteristics of the galvanic mirror, it is electrically expressed as Gdθ/dt+i S R=V 0 −Ldis/dt (1) (where G: driving torque coefficient, θ: deflection angle), and the movement of the galvanic mirror is is expressed as Id 2 θ/dt 2 +P′dθ/dt+K·θ=G·i S (2) (where I: inertia, P′: control torque coefficient, K: control torque coefficient).

一方、駆動回路の特性により V0=−V1R2/R1+R2/R5・R3/R4・R0・is +R2/R5・R3・R0・Cdis/dt …(3) と表わされる。次にこの(1)(2)(3)式よりV0,iSを消
去して、V1とθの関係を求める。
On the other hand, depending on the characteristics of the drive circuit, V 0 = -V 1 R 2 /R 1 +R 2 /R 5・R 3 /R 4・R 0・i s +R 2 /R 5・R 3・R 0・Cdis/dt ...(3) It is expressed as. Next, eliminate V 0 and i S from equations (1), (2), and (3) to find the relationship between V 1 and θ.

ここで、L=R2/R5・R3・R0・C(インダクタン スの逆起電力をキヤンセル)となるように調整す
ると、 (3)式と(1)式よりV0を消去して Gdθ/dt+iSR=−V1 1・R2/R1+R2/R5 ・R3/R4・R0・iS …(4) となる。さらにこの(4)式と(2)式からiSを消去して Id2θ/dt2+P′dθ/dt+K・θ=G ・V1R2/R1−Gdθ/dt/R−R0R2R3/(R5R4) これより Id2θ/dt2+{P′+G2/R−R0R2R3/(R5R4
} dθ/dtKθ=R2/R1G/R−R0R2R3/(R5R4) となる。以上のように、第3図に示した回路では
ガルバ鏡3の駆動コイルに流れる電流(iS)を検
出し、その微分信号を抵抗(R5)を介して入力
に帰還し、駆動コイルのインダクタンス(L)による
逆起電力を打ち消し、2次の特性としている。さ
らにこの回図では、電流に比例する信号を帰還し
て電気的にダンピングフアクタを可変にしてい
る。つまり、ダンピングフアクタζは ζ=1/2w0・1/I{P′ +G2/R−R0R2R3/(R5R4)}, (w0 2=K/I)であり、ダンピングを増す為 にはR0R2R3/R5R4>0とすればよい。
Here, when adjusting so that L = R 2 / R 5 · R 3 · R 0 · C (cancels the back electromotive force of the inductance), V 0 is canceled from equations (3) and (1). Gdθ/dt+i S R=-V 1 1・R 2 /R 1 +R 2 /R 5・R 3 /R 4・R 0・i S (4). Furthermore, by eliminating i S from equations (4) and (2), Id 2 θ/dt 2 +P'dθ/dt+K・θ=G ・V 1 R 2 /R 1 −Gdθ/dt/R−R 0 R 2 R 3 / (R 5 R 4 ) From this Id 2 θ / dt 2 + {P′ + G 2 / R−R 0 R 2 R 3 / (R 5 R 4 )
} dθ/dtKθ=R 2 /R 1 G/R−R 0 R 2 R 3 /(R 5 R 4 ). As described above, the circuit shown in Fig. 3 detects the current (i S ) flowing through the drive coil of the galvanic mirror 3, and feeds back the differential signal to the input via the resistor (R 5 ) to drive the drive coil. It cancels out the back electromotive force caused by inductance (L) and has second-order characteristics. Furthermore, in this circuit, a signal proportional to the current is fed back to electrically make the damping factor variable. In other words, the damping factor ζ is ζ=1/2w 0・1/I {P′ +G 2 /R−R 0 R 2 R 3 /(R 5 R 4 )}, (w 0 2 =K/I) Yes, and in order to increase the damping, R 0 R 2 R 3 /R 5 R 4 >0 should be set.

このような駆動回路により2次の特性をもたせ
た上で本発明を鋸歯状偏向に適用した例を第4図
を使つて説明する。鋸歯状動きの傾射部10が最
大に達した時点t=t0(有効区間の最終値に当る
時点)で駆動回路2により次の有効区間の初期値
レベル以下のレベルの信号、例えばこの駆動回路
2が許容する最低レベルの信号11を加え、鏡を
最大の加速度で傾斜部10の始点方向(次の有効
区間の初期値に当る方向)へもどす。そして鏡の
向きが始点へ達する少し前の時点t=t1で、逆に
先の有効区間の最終値レベル以上のレベルの信
号、例えば回路が許容する最高レベルの信号12
を加えブレーキをかけ、さらに傾斜部10と同方
向に加速する。そして、鏡の速度が鋸歯状の傾斜
部10の速度になつた時点t=t2で傾斜部10に
相当するランプ信号に切り換える。ただし、この
ランプ信号には、鏡の遅れに相当した一定レベル
の信号を重畳する。例えば鋸歯状動きの繰り返し
周期を1と規格化し、2次の特性をもつ系の共振
周波数を鋸歯状波繰り返しの1.3倍、ダンピング
フアクタを0.6としたとき、駆動回路2が鋸歯状
動きに相当する振幅の1.5倍の信号まで駆動でき
るときt1=0.25 t2=0.31となる。このとき傾斜部
の鏡の遅れに相当するレベルは、鋸歯状動きに相
当する振幅±1に対して0.42である。この例の場
合は、時間有効率69%の鋸歯状動きが共振周波数
の77%(0.77=1/1.3)の繰り返し周波数で得られ ている。
An example in which the present invention is applied to sawtooth deflection with a quadratic characteristic provided by such a drive circuit will be described with reference to FIG. At the time t = t 0 (the time corresponding to the final value of the effective section) when the tilting section 10 of the sawtooth movement reaches the maximum, the drive circuit 2 outputs a signal at a level lower than the initial value level of the next effective section, for example, this drive. A signal 11 of the lowest level allowed by the circuit 2 is applied, and the mirror is returned toward the starting point of the inclined portion 10 (the direction corresponding to the initial value of the next effective section) with maximum acceleration. Then, at time t= t1 , just before the direction of the mirror reaches the starting point, conversely, a signal with a level higher than the final value level of the previous valid section, for example, the highest level signal 12 allowed by the circuit.
is applied, the brake is applied, and the vehicle is further accelerated in the same direction as the inclined portion 10. Then, at a time point t=t 2 when the speed of the mirror reaches the speed of the sawtooth-like inclined portion 10, the ramp signal is switched to the ramp signal corresponding to the inclined portion 10. However, a signal at a constant level corresponding to the delay of the mirror is superimposed on this ramp signal. For example, if the repetition period of the sawtooth motion is normalized to 1, the resonance frequency of a system with quadratic characteristics is 1.3 times the repetition of the sawtooth wave, and the damping factor is 0.6, then the drive circuit 2 corresponds to the sawtooth motion. When it is possible to drive a signal up to 1.5 times the amplitude of the signal, t 1 =0.25 and t 2 =0.31. In this case, the level corresponding to the delay of the mirror of the inclined part is 0.42 for the amplitude ±1 corresponding to sawtooth movement. In this example, a sawtooth motion with a time effective rate of 69% is obtained at a repetition frequency of 77% (0.77=1/1.3) of the resonant frequency.

単発的な動きにも本発明は適用できる。例えば
第5図に示されているように、静止状態のガルバ
鏡を他の系に同期して単発の鋸歯状動きをさせた
いときも、負のレベルの信号と正のレベルの信号
をタイミングよく加えることによつて鏡を静止状
態から鋸歯状動きの始点の状態にすみやかに動か
すことができる。第5図では、傾斜部が終了した
あと速やかに静止状態にもどし、次の動きに備え
るためにも本発明を適用している。
The present invention can also be applied to single movements. For example, as shown in Figure 5, when you want to synchronize a stationary galvanic mirror with another system to make a single sawtooth motion, you can send a negative level signal and a positive level signal at the right time. By adding this, the mirror can be quickly moved from a resting state to the starting point of sawtooth motion. In FIG. 5, the present invention is also applied to quickly return to a stationary state after completing the slope section and prepare for the next movement.

あるタイミングに合わせて連続的な鋸歯状動き
を始めさせる場合も同様に本発明を適用できる。
この場合は最初の一発だけ、第5図に示されてい
る立ち上がりの波形を加え次からは第4図に示さ
れる駆動を行なう。
The present invention can be similarly applied to the case where a continuous sawtooth movement is started in accordance with a certain timing.
In this case, the rising waveform shown in FIG. 5 is added for only the first shot, and from then on, the driving shown in FIG. 4 is performed.

また、鋸歯状動きに限らず、例えば第6図に示
されるように鏡を任意の位置に次々と設定する場
合も本発明を適用することができる。
Furthermore, the present invention is not limited to sawtooth movement, but can also be applied to cases in which mirrors are successively set at arbitrary positions, as shown in FIG. 6, for example.

この図に示される駆動は、静止状態・駆動(過
渡)・静止状態・……を繰り返し行う場合である。
このような鏡の動きは、例えば光を使つて記録・
再生あるいは消去などを行う情報記録装置、一般
に光デイスク装置に有効である。つまり、光がデ
イスクの所定トラツク上にあり、このトラツクに
隣接あるいは所望のトラツクに光を高速に移動
(アクセス)する場合である。本実施例の場合、
ヘツド自体を移動させたりして、光を隣接あるい
は所望のトラツクにアクセスするのではなく、ヘ
ツドに設けられた光偏向器(ガルバ鏡に相当)の
みを駆動させ、光自体をトラツクジヤンプさせる
ことにより、高速ランダムアクセスが可能とな
る。ただし、この場合にも、静止状態の信号レベ
ルが、次の静止状態の信号レベルより大きい時は
過渡区間に供給される2つの信号のレベルは低・
高からなるレベルの信号でなければならない。
The drive shown in this figure is a case in which a stationary state, a drive (transient), a stationary state, etc. are repeatedly performed.
This kind of mirror movement can be recorded and recorded using light, for example.
It is effective for information recording devices that perform playback or erasing, generally optical disk devices. That is, when the light is on a predetermined track of the disk and the light is rapidly moved (accessed) to a desired track or adjacent to this track. In the case of this example,
Rather than moving the head itself to access the adjacent or desired track, the light itself is track-jumped by driving only the optical deflector (corresponding to a galvanic mirror) installed in the head. , high-speed random access becomes possible. However, even in this case, when the signal level in the stationary state is higher than the signal level in the next stationary state, the levels of the two signals supplied to the transient section are low.
It must be a high level signal.

いずれの場合も、過渡区間に加える高低二つの
信号レベルは、任意の値に設定してもよい。しか
し過渡区間を短時間にするには、駆動回路が許容
する最高レベルと最低レベルに設定するのが有利
である。
In either case, the two high and low signal levels added to the transient section may be set to arbitrary values. However, in order to shorten the transient period, it is advantageous to set the levels to the highest and lowest levels allowed by the drive circuit.

本発明によれば、鏡の動きの過渡時間を著しく
短縮できる。これを70%の時間有効率の鋸歯状動
きが得られる最大繰り返し周波数で評価すれば、
従来技術では先に記したように鏡の共振周波数の
30〜40%が限界であつたものを、本発明によれば
70%程度に上げるのは容易であるし、ダンピング
フアクタの値や過渡区間に設定する高低二つのレ
ベル値によつてはさらに上げることが可能であ
る。また時間有効率の許容範囲を下げれば、共振
周波数以上での実用的な鋸歯状動きを行なわせる
こともできる。
According to the present invention, the transition time of mirror movement can be significantly shortened. If we evaluate this at the maximum repetition frequency that provides sawtooth motion with a time effective rate of 70%, we get:
In the conventional technology, as mentioned earlier, the resonant frequency of the mirror is
According to the present invention, the limit was 30-40%.
It is easy to raise it to about 70%, and it is possible to raise it further depending on the value of the damping factor and the two high and low level values set in the transient section. Furthermore, by lowering the allowable range of the time effective rate, it is possible to perform a practical sawtooth motion above the resonant frequency.

逆に駆動周波数を固定した場合は、本発明では
時間有効率を大きくすることができる。
On the other hand, when the drive frequency is fixed, the time efficiency can be increased in the present invention.

また本発明では過渡区間においては高低二つの
レベルを設定するだけでよく、信号発生回路1は
簡単な構成でよい。
Furthermore, in the present invention, it is only necessary to set two levels, high and low, in the transient period, and the signal generating circuit 1 may have a simple configuration.

また本発明は繰り返し動きに限るものではなく
任意の信号に応答するというガルバ鏡の特徴を生
かすことができる。
Further, the present invention can take advantage of the feature of the galvanic mirror, which is not limited to repetitive motion, but responds to any signal.

また本発明では、鏡は有効区間中、入力信号に
従つた動きをし、良好な偏向特性が得られる。例
えば直線性のよい鋸歯状動きが可能である。
Further, in the present invention, the mirror moves according to the input signal during the effective period, and good deflection characteristics can be obtained. For example, a sawtooth motion with good linearity is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術によるガルバ鏡駆動の入力信
号と鏡の動きの説明図、第2図は本発明の実施例
を示す装置の構成図、第3図はガルバ鏡に2次の
偏向特性をもたせる駆動回路の一施を示す説明
図、第4図〜第6図は本発明によるガルバ鏡駆動
の各種の例の入力信号と鏡の動きの説明図であ
る。 1……信号発生回路、2……駆動回路、3……
ガルバ鏡。
Fig. 1 is an explanatory diagram of input signals and mirror movements for galvanic mirror drive according to the prior art, Fig. 2 is a configuration diagram of a device showing an embodiment of the present invention, and Fig. 3 shows a galvanic mirror with secondary deflection characteristics. FIGS. 4 to 6 are explanatory diagrams illustrating an example of a driving circuit for driving a galvanic mirror according to the present invention, and are explanatory diagrams illustrating input signals and mirror movements in various examples of galvanic mirror driving according to the present invention. 1...Signal generation circuit, 2...Drive circuit, 3...
Galva mirror.

Claims (1)

【特許請求の範囲】 1 機械的に動く鏡を有する光偏向装置の偏向特
性を、この光偏向装置を駆動するための駆動回路
を含めて二次の特性に設定するとともに、 前記鏡の動きの第1及び第2の有効区間は所望
の鏡の動きに対応した駆動信号で駆動し、かつ前
記第1及び第2の有効区間の間の前記鏡の過渡区
間は、所定の2つのレベルからなる信号で駆動す
る光偏向装置であつて、 前記第1の有効区間の駆動信号の最終値より、
前記第2の有効区間の駆動信号初期値の方が大き
い場合に、前記2つのレベルからなる信号は、前
記第2の有効区間の初期値以上のレベル信号とそ
れに続く前記第1の有効区間の最終値以下のレベ
ルの信号とで構成され、 前記第1の有効区間の駆動信号の最終値の方
が、前記第2の有効区間の駆動信号の初期値より
大きい場合に、前記2つのレベルからなる信号
は、前記第2の有効区間の初期値以下のレベルの
信号とそれに続く前記第1の有効区間の長終値以
上のレベルの信号とで構成されることを特徴とす
る光偏向装置。 2 所定の2つのレベルからなる信号は、前記駆
動回路が許容する最高レベル及び最低レベルの信
号からなることを特徴とする特許請求の範囲第1
項記載の光偏向装置。
[Claims] 1. The deflection characteristics of an optical deflection device having a mechanically moving mirror are set to secondary characteristics, including a drive circuit for driving this optical deflection device, and The first and second effective sections are driven by a drive signal corresponding to the desired movement of the mirror, and the transition section of the mirror between the first and second effective sections consists of two predetermined levels. The optical deflection device is driven by a signal, and from the final value of the drive signal in the first effective section,
When the initial value of the drive signal in the second valid section is larger, the signal consisting of the two levels is a level signal equal to or higher than the initial value of the second valid section, followed by a signal in the first valid section. If the final value of the drive signal in the first valid section is greater than the initial value of the drive signal in the second valid section, the signal has a level lower than the final value. The optical deflection device is characterized in that the signal consists of a signal at a level lower than the initial value of the second effective interval and a subsequent signal at a level higher than the long final value of the first effective interval. 2. Claim 1, wherein the signal consisting of two predetermined levels consists of the highest level and lowest level signals allowed by the drive circuit.
The optical deflection device described in .
JP9369779A 1979-07-25 1979-07-25 Optical deflector Granted JPS5619024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9369779A JPS5619024A (en) 1979-07-25 1979-07-25 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9369779A JPS5619024A (en) 1979-07-25 1979-07-25 Optical deflector

Publications (2)

Publication Number Publication Date
JPS5619024A JPS5619024A (en) 1981-02-23
JPS6325324B2 true JPS6325324B2 (en) 1988-05-25

Family

ID=14089587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9369779A Granted JPS5619024A (en) 1979-07-25 1979-07-25 Optical deflector

Country Status (1)

Country Link
JP (1) JPS5619024A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627905B2 (en) * 1984-08-16 1994-04-13 富士写真フイルム株式会社 Galvanometer Tamila drive method
JP4639896B2 (en) * 2005-03-29 2011-02-23 ブラザー工業株式会社 Optical scanning device and optical scanning display device
JP5176823B2 (en) * 2008-09-25 2013-04-03 ブラザー工業株式会社 Optical scanning device, image display device, and driving method of optical scanning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489673A (en) * 1977-07-26 1979-07-16 Konishiroku Photo Ind Co Ltd Driving system of galvanometer type photo deflector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489673A (en) * 1977-07-26 1979-07-16 Konishiroku Photo Ind Co Ltd Driving system of galvanometer type photo deflector

Also Published As

Publication number Publication date
JPS5619024A (en) 1981-02-23

Similar Documents

Publication Publication Date Title
EP0335650A2 (en) Sampled servo motion control system
JPH0863913A (en) Seek control method and device for disk device
US4740939A (en) Apparatus for reproducing information recorded on a disk
US4598394A (en) Optical reproducing apparatus with fast access mode operation
US4932013A (en) Apparatus for reading an optical disk which controls track jumping accurately and stably
US5056072A (en) Seek apparatus for optical disc drive
JPS6325324B2 (en)
JPH0438504A (en) Positioning controller
JPH08167152A (en) Track access device
US6785197B2 (en) Control system and method for controlling the sled of the optical storage device by using stepping motor
US6961205B2 (en) Magnetic disk apparatus
US5442607A (en) Jump pulse corrector and optical disk unit
WO1994007329A1 (en) Bidirectional sinusoidal scanning system
JPS6325411B2 (en)
EP0432278B1 (en) Seek control apparatus
US4823128A (en) Digital-to-analog converter filter for producing a continuous analog signal output without distortion
JPS6029929B2 (en) Drive method of galvanometer type optical deflector
EP0158245A2 (en) Skip circuit for recorded information reproducing unit
JP2671363B2 (en) Tracking control device
JPH0547122A (en) Disk reproducing device
JPH097184A (en) Optical information recorder and reproducer
JPH04302827A (en) Optical disk device
JP2537838B2 (en) Magnetic recording device
JPH0337876A (en) Track servo pull-in circuit for optical disk device
JPH0437788A (en) Laser plotting device