JPS6325296A - Production of diamond - Google Patents

Production of diamond

Info

Publication number
JPS6325296A
JPS6325296A JP61168534A JP16853486A JPS6325296A JP S6325296 A JPS6325296 A JP S6325296A JP 61168534 A JP61168534 A JP 61168534A JP 16853486 A JP16853486 A JP 16853486A JP S6325296 A JPS6325296 A JP S6325296A
Authority
JP
Japan
Prior art keywords
substrate
diamond
heating element
gas
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168534A
Other languages
Japanese (ja)
Inventor
Tadao Inuzuka
犬塚 直夫
Atsuhito Sawabe
厚仁 澤邊
Yoshinori Kuwae
桑江 良昇
Masato Kamata
眞人 鎌田
Sakae Kimura
木村 栄
Katsuhisa Honma
克久 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61168534A priority Critical patent/JPS6325296A/en
Publication of JPS6325296A publication Critical patent/JPS6325296A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To readily obtain homogeneous diamond at a constant growth rate, by introducing an organic compound-containing reaction gas into a reaction vessel having a substrate and heating element of a specific shape which is rigid to deformation stress and provided in the vicinity of the substrate and thermally decomposing the reaction gas. CONSTITUTION:A heating element 7 of an optional cross-sectional shape having a continuous surface elongating in the direction parallel to a substrate without causing deformation even in use for a long period is prepared by using a simple substance metal, e.g. W, Mo, Nb, Ta, Hf, etc., or alloy thereof, ceramics, e.g. TiC, ZrC, HfC, SiC, TiN, etc., or composite material thereof. A substrate 5 is held on a substrate holder 4 provided in the horizontal direction in the lower part of the reaction vessel 1 having a gas inlet 2 and gas outlet 3 on the bottom surface and a mixed gas of an organic compound, e.g. acetone or methane, and H2 is introduced from the gas inlet 2, heated to, e.g. about 1,000 deg.C, by a heating source 6 below the substrate 5 and the above-mentioned heating element 7 placed above in the vicinity of the substrate 5 in the horizontal direction and thermally decomposed to form active species and homogeneously grow diamond on the surface of the substrate 5.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明はダイヤモンド製造装置に関し、特に加熱体を改
良して均質なダイヤモンドを製造するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a diamond manufacturing apparatus, and particularly to an apparatus for manufacturing homogeneous diamond by improving a heating element.

(従来の技術) ダイヤモンドは、現在知られている物質の中では、硬度
、熱伝′S率が最も大きく、また極めて高い弾性率、圧
縮強さ、電気絶縁性を備え、かつ透明で化学的にも安定
な物質である。したがって、その優れた特性を生かして
治工具への耐摩耗コーティング、太陽電池の保護膜、光
学レンズあるいは半導体部品の放熱板等への用途開発が
研究されている。しかしながら、天然のダイヤモンドは
産出量が少なく極めて高価であるため、工業用素材とし
て利用するわけにはいかない。
(Prior art) Among currently known materials, diamond has the highest hardness and thermal conductivity, and also has extremely high modulus of elasticity, compressive strength, and electrical insulation, and is transparent and chemically insulating. It is also a stable substance. Therefore, research is underway to utilize its excellent properties to develop applications such as wear-resistant coatings for jigs and tools, protective films for solar cells, optical lenses, and heat sinks for semiconductor components. However, natural diamonds are produced in small quantities and are extremely expensive, so they cannot be used as industrial materials.

このため、人造ダイヤモンドの製造研究が盛んに行なわ
れているが、従来知られている高温・高圧下における方
法で製造された人造ダイヤモンドも高価であって、工業
用素材としての有用性には乏しい。しかも、これら天然
ダイヤモンド、人造ダイヤモンドはいずれも、一般には
塊状又は粒状の形状を有し、膜の製造は困難であるため
、ダイヤモンドが備える有用な特性を充分に活用できて
いない。
For this reason, research on the production of artificial diamonds is actively being conducted, but artificial diamonds manufactured using conventional methods under high temperature and high pressure are also expensive and have little utility as industrial materials. . Moreover, both natural diamonds and artificial diamonds generally have a lumpy or granular shape, and it is difficult to manufacture a film, so that the useful properties of diamond cannot be fully utilized.

このようなことから、最近では、低温・気圧下で加熱体
を用いて加熱することにより右前化合物を含む反応ガス
を分解し、ダイヤモンドを気相成長させて製造する研究
が活発に進められている。
For this reason, research has recently been actively carried out to produce diamonds by vapor phase growth by decomposing the reactive gas containing the right front compound by heating it with a heating element at low temperature and atmospheric pressure. .

こうした低温・低圧下での方法が突環できれば、装置が
比較的小さくなる等、工業的なメリットが期待できる。
If this low-temperature, low-pressure method can be used, industrial benefits can be expected, such as making the device relatively smaller.

その↑要な方法として、加熱した基体の表面にメタン、
エチレン、アセチレン、アセトンのような有機化合物と
水素との混合ガスを導入し、基体に近接して設けられた
熱フィラメント(加熱体)を1000℃以上に加熱し、
その熱エネルギーで混合ガスを熱分解して活性種を生成
させ、基体表面にダイヤモンドを成長させる方法が知ら
れている(特公昭59−27753、第33回応用物理
学関係連合講演会予稿集、1p−ZD−6,1986年
)。
↑The key method is to apply methane to the surface of the heated substrate.
A mixed gas of an organic compound such as ethylene, acetylene, or acetone and hydrogen is introduced, and a hot filament (heating body) provided close to the substrate is heated to 1000°C or higher.
A method is known in which the thermal energy is used to thermally decompose a mixed gas to generate active species and grow diamonds on the surface of the substrate (Special Publication No. 59-27753, Proceedings of the 33rd Joint Conference on Applied Physics). 1p-ZD-6, 1986).

また、ダイヤモンドの成長速度、膜質及び基体との密着
性を更に改善するために上記方法を改良し、上記方法に
加えて基体と熱フィラメントとの間に、基体が正電位、
熱フィラメントが負電位になるように約150Vの電圧
を印加して熱フィラメントから熱電子を放出させて基体
上に照射しながら、基体上にダイヤモンドを成長させる
方法も知られている(特開昭6O−221395)。
In addition, in order to further improve the diamond growth rate, film quality, and adhesion to the substrate, we have improved the above method.
There is also a known method of growing diamond on a substrate by applying a voltage of about 150 V to the hot filament so that it has a negative potential, emitting thermionic electrons from the hot filament, and irradiating them onto the substrate. 6O-221395).

これらの他にも熱フィラメントを用いる方法として、特
開昭58−156594、特開昭60−186499等
が知られている。
In addition to these methods, methods using hot filaments are known, such as JP-A-58-156594 and JP-A-60-186499.

そして、上記のような方法において、従来、加熱体であ
る熱フィラメントとしては、MOlWlTa等の高融点
金属からなるコイル状のフィラメントが用いられていた
In the above method, a coiled filament made of a high melting point metal such as MOLWlTa has conventionally been used as the heating filament.

しかし、上記のいずれの方法でも、使用時間の経過とと
もにコイル状熱フィラメントは、垂下性(sag性)が
顕在化して変形する。例えば、コイル状熱フィラメント
を水平に配置した場合には、中央部の温度が最も高くな
り、かつ自重によって垂下する傾向を示す。また、コイ
ル状熱フィラメントを鉛直に配置した場合、中央部から
上部が伸び、下部が縮んだように変形する。こうした変
形は、例えばタングステン線からなるコイル状加熱体で
は、約2000℃以上で問題となる場合が多いが、その
変形度合はコイルの形態定数1、すなわち直径、ピッチ
、コイル径、コイル長さ等に依存する。また、有機化合
物を含有する反応ガスが周囲に存在するときには、コイ
ル状熱フィラメントと反応ガスとの反応により変形が加
速されることもある。
However, in any of the above methods, the coiled hot filament becomes deformed as the coiled hot filament becomes more droopy (sag) over time of use. For example, when a coiled hot filament is arranged horizontally, the temperature at the center is the highest and it tends to sag due to its own weight. Furthermore, when a coiled hot filament is placed vertically, it deforms so that the upper part extends from the center and the lower part contracts. Such deformation often becomes a problem in coiled heating bodies made of tungsten wire, for example, at temperatures above about 2000°C, but the degree of deformation is determined by the shape constant of the coil, that is, the diameter, pitch, coil diameter, coil length, etc. Depends on. Furthermore, when a reactive gas containing an organic compound is present in the surroundings, the deformation may be accelerated due to the reaction between the coiled hot filament and the reactive gas.

上記のようなコイル状加熱体の変形は、ダイヤモンドの
成長速度、均−性等に悪影響を及ぼしていた。このよう
な問題は特に広い面積の基体上に均質、−様なダイヤモ
ンド膿を成長させる場合に致命的な弱点となる。
The above-described deformation of the coiled heating element has had an adverse effect on the growth rate, uniformity, etc. of diamond. This problem becomes a fatal weakness, especially when homogeneous diamond-like pus is grown on a substrate over a wide area.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたものであ
り、長時間使用しても加熱体の変形を招くことなく、基
体上に均質なダイヤモンドを製造するに適したダイヤモ
ンド製造装置を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and is capable of producing homogeneous diamonds on a substrate without causing deformation of the heating element even when used for a long time. The purpose is to provide diamond manufacturing equipment suitable for manufacturing.

[発明の構成] (問題点を解決するための手段) 本発明のダイヤモンド製造装置は、反応容器内に基体及
び基体に近接して加熱体を配置し、反応容器内に有機化
合物を含有する反応ガスを導入して熱分解することによ
り、前記基体表面にダイヤモンドを形成する装置におい
て、前記加熱体を、基体と平行な方向に伸びる線状、板
状等の連続面を有する形状としたことを特徴とするもの
である。
[Structure of the Invention] (Means for Solving the Problems) The diamond manufacturing apparatus of the present invention includes a substrate and a heating body disposed in the vicinity of the substrate in a reaction vessel, and a reaction vessel containing an organic compound. In the apparatus for forming diamond on the surface of the substrate by introducing gas and thermally decomposing it, the heating body has a shape having a continuous surface such as a linear shape or a plate shape extending in a direction parallel to the substrate. This is a characteristic feature.

なお、本発明においてダイヤモンドとは、全体が完全に
ダイヤモンドで構成されている場合に限らず、ダイヤモ
ンドとともに黒鉛又は非晶質炭素等の非ダイヤモンド成
分が多少混在する場合や、炭素が主成分で(若干水素を
含んでもよい)本質的には非晶質(結晶質を含んでもよ
い)構造で4000Hv以上の硬度及び電気絶縁性を有
するダイヤモンド状炭素(diamond−like 
carbon )を含むものとする。
In the present invention, diamond is not limited to cases where the entire structure is completely composed of diamond, but also cases where some non-diamond components such as graphite or amorphous carbon are mixed together with diamond, or cases where carbon is the main component ( Diamond-like carbon (which may contain some hydrogen) has an essentially amorphous (may contain crystalline) structure and has a hardness of 4000 Hv or more and electrical insulation properties.
carbon).

本発明において用いられる加熱体の形状は、基体と平行
な方向に伸びる連続面を有するものであれば、その断面
形状はどのような形状でもよい。
The heating body used in the present invention may have any cross-sectional shape as long as it has a continuous surface extending in a direction parallel to the base.

加熱体は1個でもよいし、複数個用いてもよい。One or more heating bodies may be used.

また、加熱体の材質としては、各種の単体金属、合金、
セラミックス、ガラス又はこれらの復合材料が挙げられ
、特に限定されない。具体的には、W、Mo、Nb、T
a、Hf、LaB5 、TiC1ZrC,HfC,Mo
C,NbC,S 1C1T i N、ZrN、HfN、
NbN、UO2Wサーメット、Ba−0−W等を挙げる
ことができる。
In addition, the material of the heating body can be various single metals, alloys,
Examples include ceramics, glass, and composite materials thereof, and are not particularly limited. Specifically, W, Mo, Nb, T
a, Hf, LaB5, TiC1ZrC, HfC, Mo
C, NbC, S 1C1T i N, ZrN, HfN,
NbN, UO2W cermet, Ba-0-W, etc. can be mentioned.

(作用) 上記のようなダイヤモンド製造装置によれば、加熱体が
基体と平行な方向に伸びる連続面を有する形状であるの
で、従来のようなコイル状のものと異なり、変形応力に
対してリジッドであり、長時間にわたって形状を維持す
ることができる。したがって、基体上に形成されるダイ
ヤモンド膜の均質性に悪影響を与えることが少ない。
(Function) According to the above-mentioned diamond manufacturing apparatus, the heating body has a shape with a continuous surface extending in a direction parallel to the base body, so unlike the conventional coil-shaped one, it is rigid against deformation stress. and can maintain its shape for a long time. Therefore, the homogeneity of the diamond film formed on the substrate is less likely to be adversely affected.

なお、加熱体は長時間使用すると、クリープ変形するこ
ともあるので、特に長時間使用する場合には、変形を抑
えるために加熱体の長軸方向に適切な引張り応力を付与
することが望ましい。また、基体上に成長するダイヤモ
ンドの均一性を向上させるために、基体と加熱体との相
対位置を経時的に変えてもよい。
Note that the heating element may undergo creep deformation when used for a long time, so especially when used for a long time, it is desirable to apply an appropriate tensile stress in the long axis direction of the heating element to suppress deformation. Furthermore, in order to improve the uniformity of diamond grown on the substrate, the relative position of the substrate and the heating element may be changed over time.

(実施例) 以下、本発明の実施例を図面を参照して説明する。なお
、以下の実施例では第1図〜第6図に示すような構成の
ダイヤモンド製造装置を用いた。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. In addition, in the following examples, a diamond manufacturing apparatus having a configuration as shown in FIGS. 1 to 6 was used.

第1図において、反応容器1の底面にはガス入口2及び
ガス出口3が設けられている。反応容器1内の下部には
基体ホルダ4が設けられており、この基体ホルダ4上に
基体5が水平方向に保持され、基体ホルダ4の下方には
基体5加熱用の加熱源6が設けられている。更に、基体
5上方には基体5に近接して反応ガスを加熱する加熱体
7が水平方向に設けられている。
In FIG. 1, a gas inlet 2 and a gas outlet 3 are provided at the bottom of a reaction vessel 1. A substrate holder 4 is provided at the lower part of the reaction vessel 1, and a substrate 5 is held horizontally on this substrate holder 4. A heat source 6 for heating the substrate 5 is provided below the substrate holder 4. ing. Further, above the base 5, a heating body 7 is provided in the vicinity of the base 5 in a horizontal direction to heat the reaction gas.

第2図図示の装置は、加熱体7の長袖方向に引張り応力
(矢印で図示)をかけである以外は第1図図示の装置と
同様な構成を有している。
The device shown in FIG. 2 has the same construction as the device shown in FIG. 1, except that tensile stress (indicated by arrows) is applied in the long sleeve direction of the heating element 7.

第3図図示の装置は、第1図図1の装置と異なり、基体
ホルダ4、基体5、加熱源6及び加熱体7がいずれも鉛
直方向に配置されているものである。
The apparatus shown in FIG. 3 differs from the apparatus shown in FIG. 1 in that the substrate holder 4, the substrate 5, the heating source 6, and the heating body 7 are all arranged in the vertical direction.

第4図図示の装置は、基体ホルダ4と加熱体7との間に
基体ホルダ4が正電位、加熱体7が負電位となるように
直流電源8が接続されている以外は第1図図示の装置と
同様な構成を有している。
The apparatus shown in FIG. 4 is the same as that shown in FIG. 1 except that a DC power source 8 is connected between the substrate holder 4 and the heating element 7 so that the substrate holder 4 has a positive potential and the heating element 7 has a negative potential. It has a similar configuration to the device.

第5図図示の装置は、反応容器1内に棒状の基体5が鉛
直方向に配置され、その周囲に棒状の基体5の長軸方向
と平行になるように、4本の加熱体7、・・・が設けら
れたものである。なお、基体5は直接通電加熱される。
In the apparatus shown in FIG. 5, a rod-shaped base 5 is vertically arranged in a reaction vessel 1, and four heating elements 7, . ...is provided. Note that the base body 5 is directly heated by applying electricity.

また、基体5と加熱体7との間に基体5が正電位、加熱
体7が負電位となるように直流電源(図示せず)が接続
されている。
Further, a DC power source (not shown) is connected between the base 5 and the heating body 7 so that the base 5 has a positive potential and the heating body 7 has a negative potential.

第6図図示の装置は、反応容器1内に棒状の基体5が水
平方向に配置され、この棒状の基体5の長軸方向と平行
になるように、加熱体7が設けられたものである。なお
、基体5は回転するようになっている。
In the apparatus shown in FIG. 6, a rod-shaped base 5 is arranged horizontally in a reaction vessel 1, and a heating element 7 is provided so as to be parallel to the longitudinal direction of the rod-shaped base 5. . Note that the base body 5 is designed to rotate.

また、第1図〜第6図に図示したようなダイヤモンド製
造装置において、tt=(7):加熱体7としては、第
7図〜第15図に示す種々の形状を有するものが用いら
れる。
Further, in the diamond manufacturing apparatus shown in FIGS. 1 to 6, tt=(7): As the heating body 7, those having various shapes shown in FIGS. 7 to 15 are used.

実施例1 第1図図示の装置に、第7図図示の形状を有する直径0
.1J11%長さ30#lのタングステン線からなる加
熱体7を装着し、化学気相成長法により以下のような条
件でダイヤモンドを成長させた。まず、基体ホルダ4上
に基体5として直径20m、厚さ2m+の炭化ケイ素円
板を設置し、加熱源6で加熱して750℃に保持した。
Example 1 The device shown in FIG.
.. A heating element 7 made of a tungsten wire with a length of 30#l was attached, and diamond was grown by chemical vapor deposition under the following conditions. First, a silicon carbide disk having a diameter of 20 m and a thickness of 2 m+ was placed on the substrate holder 4 as the substrate 5, and heated with the heat source 6 and maintained at 750°C.

次に、ガス入口2から反応容器1内にメタンと水素との
混合ガス(混合比1:100)を導入し、ガス出口3か
ら排気して反応容器1内を約50 T orrに維持し
た。
Next, a mixed gas of methane and hydrogen (mixing ratio 1:100) was introduced into the reaction vessel 1 from the gas inlet 2 and exhausted from the gas outlet 3 to maintain the inside of the reaction vessel 1 at about 50 Torr.

次いで、加熱体7を1850℃に昇温した。Next, the temperature of the heating element 7 was raised to 1850°C.

このタングステン線からなる加熱体7の形状は使用中は
ぼ安定しており、20時間使用した後も加熱体7の変形
はほとんどなく、使用前の形状を保っていた。また、ダ
イヤモンドの成長速度もほぼ一定で安定しており、20
時間後には、炭化ケイ素基体上に躾厚約12pnの均一
なダイヤモンド膜が形成されていた。
The shape of the heating element 7 made of this tungsten wire was almost stable during use, and even after 20 hours of use, the heating element 7 was hardly deformed and maintained its shape before use. In addition, the growth rate of diamond is almost constant and stable, and 20
After a period of time, a uniform diamond film with a thickness of about 12 pn had been formed on the silicon carbide substrate.

比較例1として、第1図図示の装置を用い、実施例1で
用いた第7図図示の加熱体7の代わりに、直径0.1層
mのタングステン線を巻いて作製したコイル長30am
、コイル径1.5M、巻線ピッチ1.5虜のコイル状加
熱体を用いたこと以外は実施例1と同様な条件でダイヤ
モンドを成長させた。
As Comparative Example 1, using the apparatus shown in FIG. 1, a coil length of 30 am was prepared by winding a tungsten wire with a diameter of 0.1 layer m instead of the heating body 7 shown in FIG. 7 used in Example 1.
Diamond was grown under the same conditions as in Example 1, except that a coiled heating element with a coil diameter of 1.5M and a winding pitch of 1.5 mm was used.

このコイル状加熱体は徐々に変形してダイヤモンドの成
長速度は不安定であった。20時間後にはこのコイル状
加熱体は大きく変形し、また得られたダイヤモンド膜も
平均膜厚は約12譚で実施例1と同等であったものの、
膜厚が不均一であり、最大S要約22,11111、最
小膜厚約2声とバラツキが大きかった。
This coiled heating element was gradually deformed and the growth rate of diamond was unstable. After 20 hours, this coiled heating element was greatly deformed, and the average thickness of the obtained diamond film was about 12 mm, which was the same as in Example 1.
The film thickness was non-uniform, with a maximum S summary of 22,11111 and a minimum film thickness of approximately 2 tones.

実施例2 第2図図示の装置に、第10図図示の正方形の断面形状
を有する辺長0.2 m、長さ80m++のモリブデン
角線からなる加熱体7を装着し、化学気相成長法により
以下のような条件でダイヤモンドを成長させた。まず、
基体ホルダ4上に基体5として辺長50am、厚さ5a
#Iのタンタル正方形板を設置し、加熱源6で加熱して
650℃に保持した。次に、ガス入口2から反応容器1
内にエタンと水素との混合ガス(混合比1:200)を
導入し、ガス出口3から排気して反応容器1内を約30
T orrに維持した。次いで、加熱体7を2000℃
に昇温するとともに、加熱体7に0.1 kMa++2
の引張り応力を付与した。そして、加熱体7を長軸方向
に垂直な方向で、かつ基体5の表面に平行な方向に駆動
速度2mm/win1駆動距離±251Mの範囲で往復
運動させた。
Example 2 A heating element 7 made of a square molybdenum wire with a side length of 0.2 m and a length of 80 m++ having a square cross-sectional shape as shown in FIG. 10 was attached to the apparatus shown in FIG. Diamonds were grown under the following conditions. first,
A base 5 with a side length of 50 am and a thickness of 5 a is placed on the base holder 4.
A #I tantalum square plate was installed, heated with heat source 6, and maintained at 650°C. Next, from the gas inlet 2 to the reaction vessel 1
A mixed gas of ethane and hydrogen (mixing ratio 1:200) is introduced into the reaction vessel 1, and is exhausted from the gas outlet 3 until the inside of the reaction vessel 1 is heated to approximately 30%.
It was maintained at Torr. Next, the heating element 7 is heated to 2000°C.
At the same time, the temperature of the heating element 7 is increased to 0.1 kMa++2
A tensile stress of . Then, the heating body 7 was reciprocated in a direction perpendicular to the long axis direction and parallel to the surface of the base 5 at a driving speed of 2 mm/win1 and a driving distance of ±251 M.

このモリブデン角線からなる加熱体7の形状は使用中は
ぼ安定しており、30時間使用した後も加熱体7の変形
はほとんどなく、使用前の形状を保っていた。また、ダ
イヤモンドの成長速度もほぼ一定で安定しており、30
時間後には、タンタル基体上に膜厚的17yRの均一な
ダイヤモンド膜が形成されていた。
The shape of the heating element 7 made of this square molybdenum wire was almost stable during use, and even after 30 hours of use, the heating element 7 was hardly deformed and maintained its shape before use. In addition, the growth rate of diamond is almost constant and stable, and 30%
After a period of time, a uniform diamond film with a film thickness of 17yR was formed on the tantalum substrate.

比較例2として、第2図図示の装置を用い、実施例2で
用いた第10図図示の加熱体7の代わりに、辺長0.2
 tartのモリブデン角線を巻いて作製したコイル長
80a、コイル径2.0111II、巻線ピッチ1.5
履のコイル状加熱体を用いたこと以外は実施例2と同様
な条件でダイヤモンドを成長させた。
As Comparative Example 2, the apparatus shown in FIG. 2 was used, and instead of the heating body 7 shown in FIG. 10 used in Example 2, a side length of 0.2 was used.
Coil length 80a, coil diameter 2.0111II, winding pitch 1.5 made by winding tart molybdenum square wire.
Diamond was grown under the same conditions as in Example 2 except that a coiled heating element was used.

このコイル状加熱体は徐々に変形してダイヤモンドの成
長速度は不安定であった。30時間後にはこのコイル状
加熱体は大きく変形し、また得られたダイヤモンド膜も
平均膜厚は約13−であり、基体上の場所によって膜厚
のバラツキが大きがった。
This coiled heating element was gradually deformed and the growth rate of diamond was unstable. After 30 hours, this coiled heating element was greatly deformed, and the average thickness of the obtained diamond film was about 13-1, with large variations in film thickness depending on the location on the substrate.

実施例3 第3図図示の装置に、第11図図示の長方形の断面形状
を有する長辺長0,2.、短辺長0.1M、長さ60#
Iの、表面にTaC層が形成されたTa角線からなる加
熱体7を装着し、化学気相成長法により以下のような条
件でダイヤモンドを成長させた。まず、基体ホルダ4上
に基体5として直径25+1111、厚さ4層の酸化ア
ルミニウム円板を設置し、加熱ff16で加熱して70
0℃に保持した。次に、ガス人口2から反応容器1内に
アセトンと水素との混合ガス(混合比1ニア5)を導入
し、ガス出口3から排気して反応容器1内を杓100T
 orrに維持した。次いで、加熱体7を2200℃に
昇温した。
Embodiment 3 The apparatus shown in FIG. 3 was provided with long side lengths of 0, 2, . , short side length 0.1M, length 60#
A heating element 7 made of a Ta square wire with a TaC layer formed on its surface was attached, and diamond was grown by chemical vapor deposition under the following conditions. First, an aluminum oxide disk with a diameter of 25 + 1111 mm and a thickness of 4 layers was placed as the substrate 5 on the substrate holder 4, and heated with heating ff16 to 70
It was kept at 0°C. Next, a mixed gas of acetone and hydrogen (mixing ratio 1 near 5) was introduced into the reaction vessel 1 from the gas outlet 2, and the mixture was exhausted from the gas outlet 3, and the inside of the reaction vessel 1 was poured into the reaction vessel 1 with a ladle of 100T.
It was maintained at orr. Next, the temperature of the heating element 7 was raised to 2200°C.

この表面にTaC層が形成されたTa角線からなる加熱
体7の形状は使用中はぼ安定しており、50時間使用し
た後も加熱体7の変形はほとんどなく、使眉前の形状を
保っていた。また、ダイヤモンドの成長速度もほぼ一定
で安定しており、50時間後には、酸化アルミニウム基
体上に!l厚約30−の均一なダイヤモンド膜が形成さ
れていた。
The shape of the heating element 7 made of a Ta square wire with a TaC layer formed on its surface is almost stable during use, and there is almost no deformation of the heating element 7 even after 50 hours of use. I kept it. In addition, the growth rate of diamond is almost constant and stable, and after 50 hours, diamond grows on the aluminum oxide substrate! A uniform diamond film with a thickness of about 30 mm was formed.

比較例3として、第3図図示の装置を用い、実施例3で
用いた第11図図示の加熱体7の代わりに、長辺長0.
2am、短辺長0.1aa+の、表面にTaCffが形
成されたTa角線を巻いて作製したコイル長60顯、コ
イル径1.0111巻線ピッチ2.0 mのコイル状加
熱体を用いたこと以外は実施例3と同様な条件でダイヤ
モンドを成長させた。
As Comparative Example 3, the apparatus shown in FIG. 3 was used, and instead of the heating body 7 shown in FIG. 11 used in Example 3, the long side length was 0.
A coil-shaped heating body with a coil length of 60 mm, a coil diameter of 1.0111, and a winding pitch of 2.0 m was used, which was made by winding a Ta square wire with TaCff formed on the surface, with a short side length of 0.1 aa+ and a coil length of 60 mm. Diamond was grown under the same conditions as in Example 3 except for the above.

このコイル状加熱体は徐々に変形してダイヤモンドの成
長速度は不安定であった。50時間後にはこのコイル状
加熱体は大きく変形し、また得られたダイヤモンド膜も
平均膜厚は約30−で実施例3とほぼ同等であったもの
の、膜厚が不均一であり、基体上にはダイヤモンド膜で
覆われていない部分もあった。
This coiled heating element was gradually deformed and the growth rate of diamond was unstable. After 50 hours, this coiled heating element was greatly deformed, and although the obtained diamond film had an average film thickness of about 30 mm, which was almost the same as that of Example 3, the film thickness was uneven, and the diamond film was uneven on the substrate. There were also parts that were not covered with the diamond film.

実施例4 第4図図示の装置に、第13図図示の形状を有する外径
2am、内径1JII11長ざ30amのモリブデン管
からなる加熱体7を装置し、化学気相成長法により以下
のような条件でダイヤモンドを成長させた。まず、基体
ホルダ4上に基体5として直径15111%厚さ1ml
のシリコンウェハを設置し、加熱源6で加熱して550
℃に保持した。次に、ガス人口2から反応容器1内にエ
タンと水素との混合ガス(a合比1 :400)を導入
し、ガス出口3から排気して反応容器1内を約30 T
 orrに維持した。次いで、加熱体7を1800℃に
昇温した。これと同時に直流電3!8により基体ホルダ
4と加熱体7との間に、基体ホルダ4が正電位となるよ
うに130Vの電圧を印加した。この結果、加熱体7か
ら基体5方向へ平均的25mA/cm2の電子密度の電
子線が照射された。
Example 4 A heating element 7 made of a molybdenum tube having the shape shown in FIG. 13 and having an outer diameter of 2 am, an inner diameter of 1 JII, and a length of 30 am was installed in the apparatus shown in FIG. Diamonds were grown under these conditions. First, place the substrate 5 on the substrate holder 4 with a diameter of 15111% and a thickness of 1 ml.
A silicon wafer of
It was kept at ℃. Next, a mixed gas of ethane and hydrogen (combined ratio 1:400) is introduced into the reaction vessel 1 from the gas outlet 2, and is exhausted from the gas outlet 3, so that the inside of the reaction vessel 1 is heated to about 30 T.
It was maintained at orr. Next, the temperature of the heating element 7 was raised to 1800°C. At the same time, a voltage of 130 V was applied between the substrate holder 4 and the heating element 7 using a DC voltage 3!8 so that the substrate holder 4 had a positive potential. As a result, an electron beam with an average electron density of 25 mA/cm2 was irradiated from the heating body 7 toward the substrate 5.

このモリブデン管からなる加熱体7の形状は使用中はぼ
安定しており、20時間使用した後も加熱体7の変形は
ほとんどなく、使用前の形状を保っていた。また、ダイ
ヤモンドの成長速度もほぼ一定で安定しており、201
1間後には、シリコンウェハ基体上に膜厚的40uIR
の均一なダイヤモンド膜が形成されていた。
The shape of the heating element 7 made of this molybdenum tube was almost stable during use, and even after 20 hours of use, the heating element 7 was hardly deformed and maintained its shape before use. In addition, the growth rate of diamond is almost constant and stable, and 201
After 1 hour, a film thickness of 40μIR was deposited on the silicon wafer substrate.
A uniform diamond film was formed.

比較例4として、第4図図示のi置を用い、実施例4で
用いた第13図図示の加熱体7の代わりに、外径2履、
内径111I+のモリブデン管を巻いて作製したコイル
長30m、コイル径5 xts 、巻線ピッチ6jll
lのコイル状加熱体を用いたこと以外は実施例4と同様
な条件でダイヤモンドを成長させた。
As Comparative Example 4, the i position shown in FIG. 4 was used, and instead of the heating body 7 shown in FIG. 13 used in Example 4, a diameter of 2,
Coil length 30m, coil diameter 5xts, winding pitch 6jll made by winding a molybdenum tube with an inner diameter of 111I+
Diamond was grown under the same conditions as in Example 4 except that a coiled heating element of 1 was used.

このコイル状加熱体は徐々に変形してダイヤモンドの成
長速度は不安定であった。20時間後にはこのコイル状
加熱体は大きく変形し、また得られたダイヤモンド膜も
平均膜厚は約35譚であり、基体上の場所によって膜厚
のバラツキが大きかった。
This coiled heating element was gradually deformed and the growth rate of diamond was unstable. After 20 hours, this coiled heating element was greatly deformed, and the average thickness of the obtained diamond film was about 35 mm, with large variations in film thickness depending on the location on the substrate.

実施例5 第5図図示の装置に、第7図図示の形状を有する直径0
.1am、長さ30awのタングステン線からなる加熱
体7を4本装着し、化学気相成長法により以下のような
条件でダイヤモンドを成長させた。
Example 5 The apparatus shown in FIG.
.. Four heating elements 7 made of tungsten wire each having a length of 1 am and a length of 30 aw were attached, and diamond was grown by chemical vapor deposition under the following conditions.

まず、棒状のモリブデン製基体5を直接通電加熱して5
00℃に保持した。次に、ガス入口2から反応容器1内
にアセトンと水素との混合ガス(混合比1:50)を導
入し、ガス出口3から排気して反応容器1内を約100
Torrに維持した。次いで、加熱体7、・・・を17
50℃に昇温した。これと同時に直流電源により基体5
と加熱体7、・・・どの間に、基体5が正電位、加熱体
7、・・・が負電位となるようにi oovの電圧を印
加した。この結果、加熱体7から基体5方向へ平均的1
5mA/ cts 2の電子密度の電子線が照射された
First, a rod-shaped molybdenum base 5 is directly heated with electricity.
The temperature was maintained at 00°C. Next, a mixed gas of acetone and hydrogen (mixing ratio 1:50) is introduced into the reaction vessel 1 from the gas inlet 2, and is exhausted from the gas outlet 3, so that the inside of the reaction vessel 1 is
It was maintained at Torr. Next, the heating elements 7, . . .
The temperature was raised to 50°C. At the same time, the base 5 is
A voltage of i oov was applied between the substrate 5 and the heating body 7, so that the substrate 5 had a positive potential and the heating body 7, . . . had a negative potential. As a result, an average of 1
An electron beam with an electron density of 5 mA/cts 2 was irradiated.

このタングステン線からなる加熱体7の形状は使用中は
ぼ安定しており、40時間使用した後も加熱体7の変形
はほとんどな(、使用前の形状を保っていた。また、ダ
イヤモンドの成長速度もほぼ一定で安定しており、40
時間後には、棒状のモリブデン基体上に膜厚的100−
の均一なダイヤモンド膜が形成されていた。
The shape of the heating element 7 made of this tungsten wire is almost stable during use, and even after 40 hours of use, the heating element 7 shows almost no deformation (it maintains its shape before use). The speed is almost constant and stable, 40
After a period of time, a film with a thickness of 100-
A uniform diamond film was formed.

なお、ダイヤモンド製造装置として第6図図示のものを
用いた場合、また1専璋加熱体7として上記実施例1〜
5で用いた以外のものを用いた場合にも基体上に均一な
ダイヤモンド膜を形成できることが確認された。
It should be noted that when the diamond manufacturing apparatus shown in FIG.
It was confirmed that a uniform diamond film could be formed on the substrate even when a material other than that used in No. 5 was used.

[発明の効果] 以上詳述したように本発明のダイヤモンド製造装置によ
れば、はぼ一定の成長速度で均一なダイヤモンド膜を製
造することができ、広面積にダイヤモンド膜を製造する
ことも容易である等工業的価値が極めて大きいものであ
る。
[Effects of the Invention] As detailed above, according to the diamond manufacturing apparatus of the present invention, a uniform diamond film can be manufactured at a nearly constant growth rate, and a diamond film can be easily manufactured over a wide area. It has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明に係るダイヤモンド製造装置の
構成図、第7図〜第15図は本発明のダイヤモンド製造
装置に用いられる加熱体の斜視図である。 1・・・反応容器、2・・・ガス入口、3・・・ガス出
口、4・・・基体ホルダ、5・・・基体、6・・・加熱
源、7・・・加熱体、8・・・直流電源。 出願人代理人 弁理士 鈴江武彦 第 5 図         第 6 図第7図  第
8図 第10図    第11C 第 9 図 4  第12図 図   第15図
1 to 6 are configuration diagrams of a diamond manufacturing apparatus according to the present invention, and FIGS. 7 to 15 are perspective views of a heating body used in the diamond manufacturing apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... Gas inlet, 3... Gas outlet, 4... Substrate holder, 5... Substrate, 6... Heating source, 7... Heating body, 8... ...DC power supply. Applicant's representative Patent attorney Takehiko Suzue Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 11C Figure 9 Figure 4 Figure 12 Figure 15

Claims (1)

【特許請求の範囲】[Claims]  反応容器内に基体及び基体に近接して加熱体を配置し
、反応容器内に有機化合物を含有する反応ガスを導入し
て熱分解することにより、前記基体表面にダイヤモンド
を形成する装置において、前記加熱体を、基体と平行な
方向に伸びる連続面を有する形状としたことを特徴とす
るダイヤモンド製造装置。
In the apparatus for forming diamond on the surface of the substrate by arranging a substrate and a heating body in the vicinity of the substrate in a reaction container, and introducing a reaction gas containing an organic compound into the reaction container and thermally decomposing it, A diamond manufacturing device characterized in that the heating body has a shape having a continuous surface extending in a direction parallel to the base body.
JP61168534A 1986-07-17 1986-07-17 Production of diamond Pending JPS6325296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168534A JPS6325296A (en) 1986-07-17 1986-07-17 Production of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168534A JPS6325296A (en) 1986-07-17 1986-07-17 Production of diamond

Publications (1)

Publication Number Publication Date
JPS6325296A true JPS6325296A (en) 1988-02-02

Family

ID=15869802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168534A Pending JPS6325296A (en) 1986-07-17 1986-07-17 Production of diamond

Country Status (1)

Country Link
JP (1) JPS6325296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472992A (en) * 1987-09-14 1989-03-17 Sumitomo Electric Industries Diamond synthesizing installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472992A (en) * 1987-09-14 1989-03-17 Sumitomo Electric Industries Diamond synthesizing installation

Similar Documents

Publication Publication Date Title
US7288321B2 (en) Carbon nanotube array and method for forming same
US4740263A (en) Process for preparing thin film and p-type diamond semiconductor
US5124179A (en) Interrupted method for producing multilayered polycrystalline diamond films
US5584045A (en) Polycrystalline diamond tool and method for producing same
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
JPH08973B2 (en) Deposited film formation method
RU2684128C1 (en) Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating
JPS62202897A (en) Production of diamond
JPH08151295A (en) Production of substrate for vapor synthesis of single crystal diamond film
JPH10502971A (en) Diamond phase carbon tube and CVD method for its production
Tzeng et al. Spiral hollow cathode plasma‐assisted diamond deposition
JPS6325296A (en) Production of diamond
US20110056433A1 (en) Device for forming diamond film
EP0959148A2 (en) Method for producing diamond films using a vapour-phase synthesis system
JPS62171993A (en) Production of diamond semiconductor
US5824368A (en) Process of diamond growth from C70
JP4907017B2 (en) Method for producing carbon nanotube film body
JP2582765B2 (en) Diamond production equipment
US7767275B2 (en) Method for synthesizing self-aligned carbon nanomaterials on large area
JP3091305B2 (en) Method for manufacturing silicon carbide film
JPH0226894A (en) Method and device for synthesizing diamond in vapor phase
JPS6355197A (en) Production of diamond having high purity
JP4907009B2 (en) Carbon nanotube film, carbon nanotube film-containing SiC substrate, and method of manufacturing carbon nanotube film body
JPS61151096A (en) Formation of diamond film or diamond-like carbon film
JP3219832B2 (en) Manufacturing method of silicon carbide thin film