JPS63252948A - Alkali aggregate reaction inhibitor - Google Patents

Alkali aggregate reaction inhibitor

Info

Publication number
JPS63252948A
JPS63252948A JP62083895A JP8389587A JPS63252948A JP S63252948 A JPS63252948 A JP S63252948A JP 62083895 A JP62083895 A JP 62083895A JP 8389587 A JP8389587 A JP 8389587A JP S63252948 A JPS63252948 A JP S63252948A
Authority
JP
Japan
Prior art keywords
cement
aggregate
concrete
aggregate reaction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62083895A
Other languages
Japanese (ja)
Other versions
JP2503226B2 (en
Inventor
磯崎 啓
隆典 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP8389587A priority Critical patent/JP2503226B2/en
Publication of JPS63252948A publication Critical patent/JPS63252948A/en
Application granted granted Critical
Publication of JP2503226B2 publication Critical patent/JP2503226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルカリ骨材反応を起し易い反応性骨材、あ
るいはアルカリ成分が多いセメント又は混和剤を含有し
たコンクリートのアルカリ骨材反応抑制材に関するもの
である。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to suppressing the alkaline aggregate reaction of concrete containing reactive aggregates that easily cause alkaline aggregate reactions, or cement or admixtures with a high alkali content. It is related to materials.

〔従来の技術とその問題点〕[Conventional technology and its problems]

近年、土木建築分野におけるコンクリート施工において
、セメント等に含有されるアルカリ成分と骨材の反応(
アルカリ骨材反応)がクローズアップされている。
In recent years, in concrete construction in the civil engineering and construction field, the reaction between the alkaline components contained in cement etc. and aggregate (
Alkaline aggregate reaction) has been highlighted.

このアルカリ骨材反応とは骨材中の特殊な反応性鉱物、
例えばα−クリストバライト等と、セメントや海砂に含
有されたり、海水や凍結防止剤等の混和剤など外部から
侵入するナトリウム(Na)やカリウム(K)等のアル
カリとが、ある条件下で反応し、コンクリートに膨張ひ
びゎれを持たらす現象であり、一般に反応性シリカ質が
主因であるため、アルカリ−シリカ反応とも考えられる
This alkaline aggregate reaction is caused by special reactive minerals in the aggregate.
For example, under certain conditions, α-cristobalite, etc., reacts with alkalis, such as sodium (Na) and potassium (K), which are contained in cement or sea sand, or which enter from outside, such as seawater or admixtures such as antifreeze agents. However, this is a phenomenon that causes expansion cracks in concrete, and since reactive silica is generally the main cause, it is also considered to be an alkali-silica reaction.

このアルカリ骨材反応により、珪酸ゲルが生成し、膨潤
することにより、コンクリートにひびゎれが発生し、耐
久性の面で大きな問題となっている。
Due to this alkaline aggregate reaction, silicic acid gel is generated and swells, causing cracks in concrete, which poses a major problem in terms of durability.

建設省のコンクU −トのアルカリ骨材反応への暫定対
策の骨子は次の4つからなっている。
The Ministry of Construction's provisional countermeasures against alkaline aggregate reactions in concrete consist of the following four points.

■低アルカリ形セメントを使用する。■Use low-alkali type cement.

■アルカリ骨材反応抑制効果のある混合セメント等を使
用する。
■Use mixed cement that has the effect of suppressing alkali aggregate reaction.

■アルカリ骨材反応の面で安全と認められる骨材を使用
する。
■Use aggregates that are recognized as safe in terms of alkaline aggregate reaction.

■コンクリート中のアルカリ総量をNa2O換算で6.
0 kll / an3以下に制限する。
■Total amount of alkali in concrete converted to Na2O 6.
Limit to 0 kll/an3 or less.

又、アルカリ骨材反応はコンクリートの細孔に存在する
溶液組成、特にアルカリ濃度に関係してオシ、高炉水砕
スラグはアルカリを固定し、グメリナイトといわれるア
ルミニウム°シリケートーソーダ水和物を生成すること
により、細孔の溶液中のアルカリ濃度を低減し、アルカ
リ骨材反応を抑制することが知られている。
In addition, the alkaline aggregate reaction is related to the composition of the solution present in the pores of concrete, especially the alkali concentration, and granulated blast furnace slag fixes alkali, producing an aluminum silicate-soda hydrate called gmelinite. It is known that this reduces the alkali concentration in the solution in the pores and suppresses the alkaline aggregate reaction.

更に、反応性骨材を微粉末にして添加する方法も提案さ
れている(特開昭61−106449号公報)。しかし
ながら、本方法では適用範囲が限定され、充分な効果が
得られなかった。
Furthermore, a method has also been proposed in which reactive aggregate is added in the form of fine powder (Japanese Patent Application Laid-open No. 106449/1983). However, the scope of application of this method was limited and sufficient effects could not be obtained.

本発明者らは、上記問題点を解決する目的で植種検討し
た結果、混合セメントあるいは普通ポルトランドセメン
トに添加する混和材として用いる高炉水砕スラグの組成
をコントロールすることにより、アルカリ骨材反応を抑
制でき、耐久性が向上できる知見を得て本発明を完成す
るに到った。
As a result of seed planting studies aimed at solving the above problems, the present inventors found that by controlling the composition of granulated blast furnace slag, which is used as an admixture to mixed cement or ordinary Portland cement, the alkaline aggregate reaction can be improved. The present invention has been completed based on the knowledge that this can be suppressed and durability can be improved.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、At203含有率が12重量%以下で
ある高炉水砕スラグを用いることを特徴とするコンクリ
ートのアルカリ骨材反応抑制材である。
That is, the present invention is an alkaline aggregate reaction suppressing material for concrete, which is characterized by using granulated blast furnace slag having an At203 content of 12% by weight or less.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に係るコンクリートは特に限定されるものではな
いが、反応性骨材、特にアルカリ成分の含有率が多い反
応性骨材を使用するコンクリート工 には、本発明の“アルカリ骨反応抑制材(以下抑制材と
いう)は有効である。
Although the concrete according to the present invention is not particularly limited, the "alkali bone reaction suppressing material" of the present invention is suitable for concrete work using reactive aggregate, especially reactive aggregate with a high content of alkaline components. (hereinafter referred to as suppressor) is effective.

本発明に係るセメントとしては、普通・早強・超早強等
各種ポルトランドセメント、高炉セメント・フライアッ
シュセメントφシリカセメントの混合セメント及びポル
トランドセメントを含まないスラグセメント等が挙げら
れる。
Examples of the cement according to the present invention include various Portland cements such as normal, early strength, and super early strength, mixed cements of blast furnace cement, fly ash cement, φ silica cement, and slag cement that does not contain Portland cement.

又、本発明に係る骨材としては、コンクリートなどに使
用される骨材であれば特に限定されるものではないが、
反応性の低い骨材を使用することはより好ましい。
In addition, the aggregate according to the present invention is not particularly limited as long as it is an aggregate used for concrete etc.
It is more preferable to use aggregates with low reactivity.

高炉水砕スラグとは、冶金あるいは金属製練等において
副生ずるもので、高炉水砕スラグ(以下単にスラグとい
う)の活性度(水硬性指数)は通常CaO成分(C) 
t MgO成分(M)及びAt203 (A)成分の合
計量に対する5102成分(S)の割合で示され、塩基
度= (C+M+A) / Sとして表わされる。高炉
セメントに使用される高炉水砕スラグの塩基度は、rr
sR5211で1.4以上と規定されている。
Granulated blast furnace slag is a by-product of metallurgy or metal smelting, and the activity (hydraulic index) of granulated blast furnace slag (hereinafter simply referred to as slag) is usually due to the CaO component (C).
t It is expressed as the ratio of the 5102 component (S) to the total amount of the MgO component (M) and the At203 (A) component, and is expressed as basicity = (C+M+A)/S. The basicity of granulated blast furnace slag used for blast furnace cement is rr
It is defined as 1.4 or more in sR5211.

又、スラグの平均的な化学組成は、C:40〜46重t
%2M:5〜8重量%?A:13〜15重fi%及びS
:61〜65重量%である。
In addition, the average chemical composition of slag is C: 40 to 46 weight tons.
%2M: 5-8% by weight? A: 13-15 weight fi% and S
:61 to 65% by weight.

現在日本で製造されているスラグのA含有率はほとんど
14重iks以上である。
The A content of most of the slags currently manufactured in Japan is 14 iks or more.

本発明に係るスラグは、A含有率が12重f%以下のも
のである。A含有率が12重量%以下のスラグは、C@
j、M源、A源、S源等をA源が12重量%以下となる
よう混合して製造できる。
The slag according to the present invention has an A content of 12% by weight or less. Slag with an A content of 12% by weight or less is C@
It can be produced by mixing J, M source, A source, S source, etc. such that the A source is 12% by weight or less.

本発明に係るスラグの使用量はセメント100重量部に
対し20重量部以上が好ましく、50重量部以上が更に
好ましい。
The amount of slag used in the present invention is preferably 20 parts by weight or more, more preferably 50 parts by weight or more, based on 100 parts by weight of cement.

20重量部未満では、効果が低く多いほど好ましい。If it is less than 20 parts by weight, the effect will be low, so the more it is, the better.

アルカリ骨材反応(以下アル骨反応という)を判定する
試験方法としては、骨材の反応性を調べるASTMC−
289の化学法とモルタルの膨張率を測定するA8TM
 C−227のモルタルパー法がある。
The test method for determining alkaline aggregate reaction (hereinafter referred to as alkaline bone reaction) is ASTM-
289 chemical method and A8TM to measure the expansion rate of mortar
There is a mortar par method for C-227.

本発明の抑制材の混合方法は、特に限定されるものでは
なく、又、コンクリートに通常使用される種々の混和剤
を併用することももちろん可能である。
The method of mixing the inhibitor of the present invention is not particularly limited, and it is of course possible to use various admixtures commonly used in concrete.

〔実施例〕〔Example〕

以下実施例を挙げて本発明を更に説明する。 The present invention will be further explained below with reference to Examples.

実施例 反応性骨材のオパール珪石(α−クリストバライト系)
(以下オパールという)及び、ASTMC−289化学
法によシ無害と判定された川砂を表−1の粒度分布のよ
うに粉砕、ふるい分けを行い表−2の割合で混合した。
Example reactive aggregate opal silica (α-cristobalite type)
(hereinafter referred to as opal) and river sand, which was determined to be harmless according to the ASTM C-289 chemical method, were crushed and sieved according to the particle size distribution shown in Table 1, and mixed in the proportions shown in Table 2.

表−’l    (wt%) 使用したスラグの化学組成を表−3、特性を表−4に示
す。
Table-'l (wt%) The chemical composition of the slag used is shown in Table-3, and the characteristics are shown in Table-4.

表−4 次にコンクリートの耐久性の促進効果をみるため次の試
験を実施した。試験に用いた、セメント組成を表−5に
示す。
Table 4 Next, the following test was conducted to see the effect of promoting concrete durability. Table 5 shows the cement composition used in the test.

表−5 (重量部) ゑ のモルタルパー法に準て行った。Table-5 (parts by weight) E It was carried out according to the mortar par method.

(1)  モルタル供試体の作製 ■モルタルの混線 セメント及び骨材を1:2になるようモルタルミキサー
に投入し、フロー値が200±1Onに入るように混練
水を調整しながら低速で60秒、高速で1分間混練した
(1) Preparation of mortar specimen ■Mortar mixing Cement and aggregate were put into a mortar mixer at a ratio of 1:2, and mixed at low speed for 60 seconds while adjusting the mixing water so that the flow value was 200 ± 1 On. The mixture was kneaded at high speed for 1 minute.

■モルタル供試体の作製 モルタル混練後直ちに型枠(JIS規格4X4×16c
rIL)に投入した。また膨張率測定用のボルト;供試
晶め込みを行った。
■ Preparation of mortar specimen Immediately after mixing the mortar, formwork (JIS standard 4x4x16c)
rIL). In addition, a bolt for measuring the expansion coefficient; a sample crystal was inserted.

(2)養生方法 ■モルタル成型後20°C190S R,H,以上で2
4±2時間養生 ■脱型後基長(ダイヤルデージ法)。
(2) Curing method ■ After mortar molding, 20°C 190S R, H, 2 or more
Curing for 4±2 hours ■ Base length after demolding (dialage method).

040℃、90%R,H,以上で所定材令まで養生。Cured at 040°C, 90% R, H or above until the specified material age.

■測定前には16時間以上20″C190%R,H。■ 20″C190%R,H for more than 16 hours before measurement.

以上の状態に置く。Put it in the above condition.

■測長はダイヤルデージを使用 ■測定後は40’C190S R,H,以上の状態に戻
す。
■Use a dial dage to measure length.■After measurement, return to 40'C190S R, H, or higher condition.

測定結果を我−5に示す。The measurement results are shown in Ga-5.

表−5 比較例である実験屑1,2においては1ケ月材令前に膨
張によるクラックの発生が認められたが、実施例である
実験7g63,4.5では観察されなかった。本発明に
よる実施例の膨張量は比較例と比べ著しく少ないことが
わかった。
Table 5 In Experiment Scraps 1 and 2, which are comparative examples, cracks due to expansion were observed before one month of age, but were not observed in Experiment 7g63 and 4.5, which are examples. It was found that the amount of expansion of the examples according to the present invention was significantly smaller than that of the comparative examples.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明の抑制材を用いるとアルカリ含有量
が数チと極端に多く、反応性骨材を含むコンクリートに
おいてアル骨反応による膨張はほとんど無く、コンクリ
ートの耐久性を向上させることができる。従って、これ
まで慎重な対策を必要とした条件でも本発明によればス
ラグの組成を特定化することによシ容易に対応すること
が可能となった。
As described above, when the suppressing material of the present invention is used, the alkali content is extremely high at several trillion, and in concrete containing reactive aggregate, there is almost no expansion due to the alkali-bone reaction, and the durability of the concrete can be improved. . Therefore, according to the present invention, it is now possible to easily deal with conditions that have hitherto required careful measures by specifying the composition of the slag.

Claims (1)

【特許請求の範囲】[Claims] (1)Al_2O_3含有率が12重量%以下である高
炉水砕スラグを用いることを特徴とするコンクリートの
アルカリ骨材反応抑制材。
(1) An alkaline aggregate reaction suppressing material for concrete, characterized by using granulated blast furnace slag having an Al_2O_3 content of 12% by weight or less.
JP8389587A 1987-04-07 1987-04-07 Alkali aggregate reaction inhibitor Expired - Lifetime JP2503226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8389587A JP2503226B2 (en) 1987-04-07 1987-04-07 Alkali aggregate reaction inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8389587A JP2503226B2 (en) 1987-04-07 1987-04-07 Alkali aggregate reaction inhibitor

Publications (2)

Publication Number Publication Date
JPS63252948A true JPS63252948A (en) 1988-10-20
JP2503226B2 JP2503226B2 (en) 1996-06-05

Family

ID=13815367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8389587A Expired - Lifetime JP2503226B2 (en) 1987-04-07 1987-04-07 Alkali aggregate reaction inhibitor

Country Status (1)

Country Link
JP (1) JP2503226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006168997A (en) * 2003-11-20 2006-06-29 Mitani Sekisan Co Ltd High-strength concrete-molded body and material to be charged in mold
JP2007031174A (en) * 2005-07-22 2007-02-08 Ube Ind Ltd Cement composition for alkali-silica reaction suppression and cement-containing composition
JP2008179510A (en) * 2007-01-24 2008-08-07 Taiheiyo Cement Corp Cement additive and cement composition
JP2016216343A (en) * 2015-05-18 2016-12-22 宇部興産株式会社 Cement composition and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006168997A (en) * 2003-11-20 2006-06-29 Mitani Sekisan Co Ltd High-strength concrete-molded body and material to be charged in mold
JP2007031174A (en) * 2005-07-22 2007-02-08 Ube Ind Ltd Cement composition for alkali-silica reaction suppression and cement-containing composition
JP2008179510A (en) * 2007-01-24 2008-08-07 Taiheiyo Cement Corp Cement additive and cement composition
JP2016216343A (en) * 2015-05-18 2016-12-22 宇部興産株式会社 Cement composition and manufacturing method therefor

Also Published As

Publication number Publication date
JP2503226B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
CN108793893A (en) Heat resistance concrete and preparation method thereof
JPH10152364A (en) Hydration curing product utilizing steel-making slag
Davis A review of pozzolanic materials and their use in concretes
US4505753A (en) Cementitious composite material
EP0188618A1 (en) High-strength hydraulic cement composition
JP6718551B1 (en) Powder quick-setting agent
JP2009227549A (en) Cement additive and cement composition
JPS63252948A (en) Alkali aggregate reaction inhibitor
WO2012052294A1 (en) Cement and liquid flash setting accelerator activator for sprayed concretes
JP2003137618A (en) Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them
JPH02120261A (en) Low heat cement composition
JP2002179451A (en) Concrete or mortar using slag aggregate
JPH10102058A (en) Grout
JPH0672747A (en) Injecting cement admixture and injecting material using the admixture
KR102144170B1 (en) Slag cement composition
JP3916325B2 (en) Grout material
JPS60180945A (en) Cement composition
JP2503235B2 (en) Curing accelerator
JP3124578B2 (en) Cement admixture and cement composition
JP2021017379A (en) Cement admixture, expansion material, and cement composition
JP2000034150A (en) Suppressant for heat of hydration of cement and cement composition
JPH0559855B2 (en)
Hanna et al. Evaluation of the activity of pozzolanic materials
Rehsi et al. High-magnesia portland cements: studies on cements prepared with reagent-grade chemicals
WO2023219029A1 (en) Geopolymer composition, geopolymer cured body, and method for producing geopolymer cured body