JPS63252671A - Control device for multilayer build welding robot - Google Patents

Control device for multilayer build welding robot

Info

Publication number
JPS63252671A
JPS63252671A JP8509887A JP8509887A JPS63252671A JP S63252671 A JPS63252671 A JP S63252671A JP 8509887 A JP8509887 A JP 8509887A JP 8509887 A JP8509887 A JP 8509887A JP S63252671 A JPS63252671 A JP S63252671A
Authority
JP
Japan
Prior art keywords
welding
conditions
layer
multilayer build
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8509887A
Other languages
Japanese (ja)
Other versions
JPH0825021B2 (en
Inventor
Yoshio Sawara
良夫 佐原
Tsutomu Ueda
上田 務
Keiichi Kurumaya
車谷 圭一
Norio Uchida
内田 典夫
Masatoshi Nakamura
雅敏 中村
Shiori Akitani
秋谷 志織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Sumikin Welding Industries Ltd
Original Assignee
Daikin Industries Ltd
Sumikin Welding Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Sumikin Welding Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62085098A priority Critical patent/JPH0825021B2/en
Publication of JPS63252671A publication Critical patent/JPS63252671A/en
Publication of JPH0825021B2 publication Critical patent/JPH0825021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To automatize welding work and to secede from the skillfulness in setting conditions by operating the conditions in welding work based on the preset data with specific basical conditions as the parameter and executing the control of a multilayer build welding robot. CONSTITUTION:At the time of working a multilayer build welding, the basic conditions of the selection in the single or plural number of build-up passes, the selection in a welding current value, the groove shape of the body to be welded, the presence or absence of backing or the kind, etc., are inputted from a basic conditions input means 10. The standard welding conditions of the torch aiming position in multilayer build welding, welding voltage value, welding speed, weaving conditions, etc., are then operated by an arithmetic means 12 based on the storage contents of a storage means 11 and according to the arithmetic results, the motion of a multilayer build welding robot is controlled by a control means 13 to automatically perform the multilayer build welding work. At that time, the inputting basic conditions are simplified and standardized into those which hardly need the experience and skill in the multilayer build welding work.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多層盛溶接ロボッ1への制御装置に係り、特に
、溶接条件設定の簡略化による溶接技術の脱技能化対策
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control device for a multi-layer welding robot 1, and in particular, to countermeasures for de-skilling welding techniques by simplifying welding condition settings.

(従来の技術) 従来より、多層盛溶接を行う多@帰溶接口・1;ツ1へ
の制御!ll装置として、例えば、特開昭59−509
69号公報に開示される如く、多層盛溶接の各パス毎に
、溶接トーチの狙い位置、溶接トーチの角度、溶接電流
値、溶接電圧値、溶接速度、ウィービング幅、停止時間
、ウィービング周波数、・・・等を寸べて入力づる方式
、あるいは、例えば特開昭60−37274@公報に開
示される如く、多I台盛溶接の条件を設定すると、その
条件に基づき1図【」以降の多層盛溶接を行うに必要な
溶接電流値、溶接電圧値、溶接速度などを自助的に法枠
して、その演等した値に応じて多層盛溶接作業を制御し
ようとする方式が知られている。
(Conventional technology) Conventionally, multi-return welding openings for multi-layer welding are controlled to 1; As a ll device, for example, Japanese Patent Application Laid-Open No. 59-509
As disclosed in Publication No. 69, for each pass of multilayer welding, the target position of the welding torch, the angle of the welding torch, the welding current value, the welding voltage value, the welding speed, the weaving width, the stopping time, the weaving frequency, . . . etc., and then input them. Alternatively, as disclosed in JP-A-60-37274@, for example, if the conditions for multi-I stack welding are set, the multi-layer welding after 1st figure There is a known method in which the welding current value, welding voltage value, welding speed, etc. necessary for performing welding welding are automatically determined and the multilayer welding work is controlled according to the calculated values. .

(発明が解決しようとす′る問題点) しかしながら、上記従来の方式のうち曲者のものては、
各層ごとの溶接条件を溶接作業者が入力ける必要がある
が、そのような作業条件を選定するには、盟富な経験と
熟練とを必要とし、簡易に使用できるところまで脱技能
化が進んでいないという問題がある。
(Problems to be Solved by the Invention) However, among the above conventional methods, the method of the composer is
It is necessary for the welding operator to input the welding conditions for each layer, but selecting such working conditions requires extensive experience and skill, and de-skilling has progressed to the point where it can be used easily. The problem is that it is not.

また、上記備考のものでは、上記のような問題を解決し
ようとジるものではあるが、多層盛溶接に必要な入力さ
れるべき基本条件として開先形状しか開示されてJjら
ず、しかも、具体的な演算手段の内容が開示されていな
いところから、実際に多層盛溶接作業の自動化を図るに
十分な機能を果たし冑ないものである。
In addition, although the above notes are intended to solve the above problems, only the groove shape is disclosed as the basic condition to be input necessary for multilayer welding, and furthermore, Since the details of the specific calculation means are not disclosed, it is difficult to achieve sufficient functionality to actually automate multi-layer welding work.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、入力されるべき基本条件として多層盛溶接につい
ての経験をほとんど必要としない溶接パラメータを12
!富な実験データから決定し、該基本条件を入力すれば
、R適な溶接作業条件が決定されて溶接ロボットにより
多層盛溶接が自動的に行われるようffNJ IIして
多層盛溶接作業の自動化と多層盛溶接作業条件決定の脱
技能化とをはかることにある。
The present invention has been made in view of the above, and its purpose is to provide 12 welding parameters that require almost no experience with multi-layer welding as basic conditions to be input.
! By determining from a wealth of experimental data and inputting the basic conditions, R suitable welding work conditions are determined and multi-layer welding is automatically performed by the welding robot. The aim is to eliminate the need for skill in determining work conditions for multi-layer welding.

(問題点を解決するための手段) 上記目的を達成づるため本発明の解決手段番よ、第1図
に示でように、多層盛溶接ロボッl〜の制御装置として
、積層パス数の単複選択、溶接電流値の選択、被溶接体
のがD元形状a3よび突当の有無もしくは種類等の基本
条件を入力づる基本条件入力手段(10)と、該基本条
件をパラメータとした、多層盛溶接の各パス毎の1・−
チ狙い位置、溶接電流値、溶接電圧値、溶接速度および
ウィービング条件等の溶接作業条件をあらかじめ設定し
て記憶する記憶手段(11)と、上記基本条件入力手段
(10)の出力を受け、上記記憶手段(11)の記憶内
容に基づいて上記溶接作業条件の標準作業条件を演郷す
る演専手段(12)と、該演算手段(12)で演等され
た標準作業条件に基づいて多層盛溶接ロボットを制御す
る制at+手段(13)とを設ける構成としたものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the solution number of the present invention is as shown in FIG. , basic condition input means (10) for inputting basic conditions such as selection of welding current value, original shape A3 of the welded object, presence or absence or type of abutment, and multi-layer welding using the basic conditions as parameters. 1・− for each pass of
storage means (11) for presetting and storing welding work conditions such as target position, welding current value, welding voltage value, welding speed and weaving conditions; specialized means (12) for calculating the standard working conditions of the welding working conditions based on the stored contents of the storing means (11); This configuration includes a control means (13) for controlling the welding robot.

(作用) 以上の構成により、本発明では、多層盛溶接の作業時、
基本条件入力手段(10)から積層パス数の単複の選択
、溶接電流値の選択、被溶接体の開先形状、裏当の有無
もしくはその種類等の基本条件が入力されると、記・鷹
手段(11)の記憶内容に基づいて、演算手段(12)
により多層盛溶接の1〜−ヂ狙い位置、溶接電圧値、溶
接速度、ウィービング条件などの標準溶接条件がPfI
算され、該演算結果に応じて制御手段(13)により多
層盛溶接ロボッ1−の動作が制御され、多層盛溶接作業
が自vノ的に行われる。
(Function) With the above configuration, in the present invention, during multilayer welding work,
When basic conditions such as single or multiple selection of the number of lamination passes, selection of welding current value, groove shape of the workpiece, presence or absence of backing or its type are input from the basic condition input means (10), the Based on the memory contents of the means (11), the calculation means (12)
The standard welding conditions such as 1~-1 target position, welding voltage value, welding speed, and weaving conditions for multilayer welding are PfI.
The operation of the multi-layer welding robot 1- is controlled by the control means (13) according to the calculation result, and the multi-layer welding work is performed automatically.

そのとき、溶接作業者が入力しなければならない基本条
件はほとんど多層盛溶接作業についての経験と熟練とを
必要どしないものに単純化、標準化されている。よって
、多層盛溶接作業の自動化と溶接作業条件決定の脱技能
化とを図ることができる。
At that time, the basic conditions that the welding operator must input have been simplified and standardized to the point that almost no experience or skill in multi-layer welding work is required. Therefore, it is possible to automate the multi-layer welding work and to reduce the need for skill in determining the welding work conditions.

(実施例) 以下、本発明の実施例を図面に基づき説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図および第3図は本発明の実施例に係る司搬走行型
多層需溶接口11;ツ]・システムの概It8構成を示
し、(1)はアーム部に溶接用トーチ(2)を有するロ
ボット本体であって、該ロボット本体(1)はガイドレ
ール(3)の上をガイドレール(3)に泊って(T軸方
向)往復摺!lIするとともに、アーム部は、上記ガイ
ドレール(3)方向(T軸方向)とは直交する水平方向
(X軸方向)および垂直方向(Z軸方向)に往復摺動し
、さらに、上記トーチ(2)はアーム部に対し水平軸(
S軸)回りに回動し、以上によって、上記トーチ(2)
は互いに直交するX、Z、T軸の位置および垂直軸との
傾き角αが調節可能になされている。
FIGS. 2 and 3 show the general configuration of a mobile multi-layer welding port 11; The robot body (1) slides back and forth on the guide rail (3) (in the T-axis direction) while resting on the guide rail (3)! At the same time as the torch ( 2) is the horizontal axis (
S axis), and as a result of the above, the above-mentioned torch (2)
The positions of the mutually orthogonal X, Z, and T axes and the inclination angle α with respect to the vertical axis are adjustable.

また、第2図において、(5)は装置全体の制tllI
盤、(6)はガスボンベ、冷却水源、電力電源等に接続
されたトーチ(2)の出力電源装置、〈7)は上記出力
電源装置(6)にガスホース(C1)、冷却水ホース(
Cz)、パワーケーブル(C3)、送給制御ケーブル(
C4)等の配線、配管類を介して接続されるとともに、
それらの長さを調節し、さらに、それらを集約してなる
−木のコンジットケーブル(Co)を介して上記トーチ
(2)と接続されるワイヤ送給装置である。また、(C
5)は上記制η!l盤(5)とロボット本体(1)とを
信号の授受可能に接続するメイン制御ケーブル、(C8
)は制用+5!1i(5)と出力電源装置(6)とを信
号の授受可能に接続する上母線である。
In addition, in FIG. 2, (5) is the control tllI of the entire device.
board, (6) is the output power supply device of the torch (2) connected to the gas cylinder, cooling water source, electric power source, etc., and (7) is the output power supply device (6) connected to the gas hose (C1) and the cooling water hose (
Cz), power cable (C3), feed control cable (
C4) etc., and are connected via wiring and piping.
A wire feeding device is connected to the torch (2) through a wooden conduit cable (Co), which adjusts the length of these wires and aggregates them. Also, (C
5) is based on the above rule η! The main control cable (C8) connects the l board (5) and the robot body (1) so that signals can be exchanged.
) is an upper bus bar that connects the utility +5!1i (5) and the output power supply device (6) so that signals can be exchanged.

そして、上記制御盤(5)には装置全体の制御を行う制
御装置F¥(8)が内蔵され、制σIJ盤(5)のケー
シング上部の前面にはブラウン管よりなる表示装置P1
(9)が設けられており、さらに、制御盤(5)には遠
隔操作により制御111(5>内部の制御装置(8)に
指令信qを出力するとともに、多[A盛溶接を行うに必
要な積層パス数の単視選択、溶接電流値の選択、被溶接
体の開先形状および突当の有無もしくは種類等の基本条
件を入力Jる基本条件入力手段としての教示ボックス(
10)が信号腺を介して接続されている。
The control panel (5) has a built-in control device F (8) that controls the entire device, and a display device P1 consisting of a cathode ray tube is mounted on the front of the upper part of the casing of the control σIJ panel (5).
(9) is provided, and the control panel (5) also outputs a command signal q to the internal control device (8) by remote control, and also outputs a command signal q to the internal control device (8). A teaching box (as a basic condition input means) for inputting basic conditions such as single-view selection of the required number of lamination passes, selection of welding current value, groove shape of the workpiece, presence or absence or type of abutment, etc.
10) are connected via a signal gland.

第1図は上記制御装置(8)の内部構成および外部の各
は器との信号接続を概略的に示し、(11)は上記教示
ボックス(10)から入力される多層盛溶接を行うに必
要な上記基本条件をパラメータとした「多層盛溶接の各
パス毎の1−−チ狙い位置、溶接電流値、溶接電圧値、
溶接速度およびウィービング条件」等の溶接作業条件を
あらかじめ設定して記°澹する記憶手段としてのROM
、(12)は上記教示シ1;ツクス(10)の指令に応
じ、上記ROM(11)の記憶内容に基づいて、入力さ
れた基本条(jに適合Jる標準作業条f↑すなわち溶接
の各パス毎の1−多層盛溶接の各パス毎のトーチ狙い位
置、溶接電流値、溶接電圧値、溶接速度おJ、びウィー
ビング条件」等を演nする演樟手段としての演算装置、
(13)は該演q手段(12)で演算された標準作業条
件に基づいて多層盛溶接ロボッ1−を制御する制御手段
としてのCPLIである。そして、(15)は上記CP
IJ(13)の制御信qを受けて、その内容を言iB信
号に変換j゛る信号変換装置であり、て、該信号変換装
置(15)により変換された古語信号に応じて、その内
容が上記表示装置(8)で表示されるようになされてい
る。
Figure 1 schematically shows the internal configuration of the control device (8) and the signal connections with external devices, and (11) is necessary for performing multilayer welding, which is input from the teaching box (10). Using the above basic conditions as parameters, "1--chi target position, welding current value, welding voltage value,
ROM as a storage means to set and record welding work conditions such as welding speed and weaving conditions in advance
, (12) is based on the stored contents of the ROM (11) in response to the command of the teaching 1; a computing device as a calculation means for calculating the torch target position, welding current value, welding voltage value, welding speed, weaving conditions, etc. for each pass of multi-layer welding;
(13) is a CPLI as a control means for controlling the multi-layer welding robot 1- based on the standard working conditions calculated by the calculation means (12). And (15) is the above CP
This is a signal conversion device that receives the control signal q of the IJ (13) and converts the content into an iB signal, and converts the content according to the archaic language signal converted by the signal conversion device (15). is displayed on the display device (8).

なお、(14)は古き込まれた制御プログラム等を記憶
゛するR A Mである。
Note that (14) is a RAM that stores old control programs and the like.

以下、予め上記ROM(11)に設定されている上記基
本条件をパラメータどした溶接作業条件の内容について
説明する。
Hereinafter, the contents of the welding work conditions using the basic conditions set in advance in the ROM (11) as parameters will be explained.

まず、積層パス数として、第4図又は第5図に示″g1
層1パス又は7層多パスの2種類の積層方式のうちいず
れかの選択、溶接電流値Δiとして高電流偵へ11、中
電流値A M N低電流値ALのいずれかの選択が行わ
れる。また、被溶接体の開先形状として、第6図〜第8
図にそれぞれ示すし型、V型および水平隅肉の3種類の
開先形状に応じて、し型およびV型については板厚し、
開先角IUθ、ルー1−フェイス+(、ルートギャップ
Gの値、水平隅肉については被溶接体の脚長XおよびZ
の値が入力される。そして、上記ROM(11)には、
選択された溶担電流値へに対する溶接電圧値Vおよび溶
接速度■の値が下記第1表のように予め設定されている
First, as the number of lamination passes, "g1" shown in FIG. 4 or FIG.
One of two types of lamination methods, 1-layer pass or 7-layer multi-pass, is selected, and the welding current value Δi is selected from high current value 11 and medium current value A M N low current value AL. . In addition, the groove shape of the welded object is shown in Figs. 6 to 8.
According to the three types of groove shapes shown in the figure, diamond-shaped, V-shaped, and horizontal fillet, the plate thickness for diamond-shaped and V-shaped is determined,
Bevel angle IUθ, Rou1-Face+(, Root gap G value, For horizontal fillets, leg lengths X and Z
The value is entered. And in the ROM (11),
The values of the welding voltage value V and the welding speed (■) for the selected welding current value are preset as shown in Table 1 below.

第  1  表 1.1層多パスの積層方式の詩 溶接電圧Vおよび溶接速度Vの値は、上記第1表にした
がって決定される。なお、ウィービングは行わない。
Table 1: Values of welding voltage V and welding speed V for one-layer multi-pass lamination method are determined according to Table 1 above. Note that weaving is not performed.

■91層1パスの積層方式の時 溶接電圧値Vは上記第1表と同じ値に設定されている。■When using 91-layer 1-pass lamination method The welding voltage value V is set to the same value as in Table 1 above.

そして、溶接速度Vは開先形状に応じて−a的に定まる
各層におけるウィービング幅wnと溶接電流(laAi
 どの関数として求められるように設定されている。す
なわら、 v= f (Ai、Wn )            
 (11ただし、ウィービング幅W r+が大きくなる
どきには溶接速度Vが小さくなるように、すなわちウィ
ービング幅Wnが変化しても略一定のビードj9さΔT
(I述)が(Qられるように設定されている。
The welding speed V is determined by the weaving width wn in each layer and the welding current (laAi
Which function is set to be found. That is, v= f (Ai, Wn)
(11 However, as the weaving width W r+ increases, the welding speed V decreases, that is, the bead j9 length ΔT remains approximately constant even if the weaving width Wn changes.
(I-mentioned) is set to be (Q).

な(1′3、ウィービング速度vwは高電流値A Hお
よび中電流1直AMに対してはvw+、、低電流値AL
に対してはV IN2とそれぞれ一定に定められている
(1'3, weaving speed vw is vw+ for high current value A H and medium current 1 direct AM, low current value AL
and VIN2, respectively.

そして、上記によって、溶接電流値A1溶接電圧値V、
溶接速度Vが定まると、単位長さ当りの溶肴金、用量が
定まるので、その結果から、被溶接体の各層を溶接した
ときのビード厚さ6丁(第4図お上び″;55図参照)
が求まることになり、その値が予めROM(11)に設
定されている。
According to the above, welding current value A1 welding voltage value V,
Once the welding speed V is determined, the amount of molten metal per unit length is determined, and from the result, the bead thickness when welding each layer of the welded object is 6 teeth (Fig. 4) (see figure)
is determined, and its value is set in advance in the ROM (11).

以上が多1鍔盛溶接の一般的な作業条件であるが、多層
盛溶接を行うに当たっては、初層、中間Mおよび最終の
仕上げ層に対して各々別個のプログラムに応じた作業条
件が設定されている。以下、説明づる。
The above are the general working conditions for multi-layer welding, but when performing multi-layer welding, the working conditions are set according to separate programs for the first layer, intermediate M, and final finishing layer. ing. I will explain below.

A、初層における作業条件 初層におCプる作業条件は、被溶接体の開先形状のうち
のルー1−ギャップGと、実力の有無もしくはその種類
に対して以下のように一義的に設定されている。
A. Working conditions for the first layer The working conditions for the first layer C are unique with respect to the groove shape of the workpiece to be welded, roux 1-gap G, and the presence or absence of ability or type. is set to .

(1)突当がないとき V=V。(1) When there is no emergency V=V.

V=VQ 1層1パスで溶接ゴるが、ウィービングは行わない。こ
こで、Vo、Voは予め求められた初層溶接条件値であ
る。但し、G>Go (Goは上記Vo、Voで溶は落
ちない最大のルートイ1zツ1幅)′r:は作業条件と
して不適当なためエラー表示がなされる。
V=VQ One layer is welded in one pass, but weaving is not performed. Here, Vo and Vo are initial layer welding condition values determined in advance. However, G>Go (Go is the maximum route width 1z x 1 width in which the melt does not fall in Vo, Vo)'r: is inappropriate as a working condition, so an error message is displayed.

(21突当金(同種類の金属)の時 +a+  Q≦G+  (G+ はストレー1〜溶接の
時の標準ビード幅)の時 上記第1表のV、vの値に従い、ウィービングは行わな
い。
(21 When using abutment (same type of metal)+a+ Q≦G+ (G+ is the standard bead width for straight 1 to welding) Weaving is not performed according to the values of V and v in Table 1 above.

山IG+<G≦G2  (G2はV、vに対応した最大
ウィービング幅)の時 上記1層1パス方式における(1)式の条件にしたがっ
て、ウィービングを行う。ただし、G〉G2ではエラー
表示を1゛る。
When the peak IG+<G≦G2 (G2 is V, the maximum weaving width corresponding to v), weaving is performed according to the condition of equation (1) in the one-layer, one-pass method. However, if G>G2, the error display will be 1.

(3)  裏当材(1ラミツク材料)の時V=V2 v=y2 W=W2 の条件でウィービングを行なう。(3) When using backing material (1 lamic material) V=V2 v=y2 W=W2 Weaving is performed under the following conditions.

ここで、V2.V2 、W2は使用づる実力Hに対して
予め求められた最適訂接条イ′1である。ただし、G<
G3およびG>G4  <G3 、G4はそれぞれ使用
する裏当材に対して予め求められた最適なルートギャッ
プ範囲の最小および最大幅)では、エラー表示を覆る。
Here, V2. V2 and W2 are the optimum cutting points A'1 determined in advance for the actual ability H used. However, G<
G3 and G>G4 <G3, G4 is the minimum and maximum width of the optimal root gap range determined in advance for the backing material used, respectively), the error display is covered.

なお、既に一部溶接済みの被溶接体についても多層盛溶
接を行うことができ、そのときには、既溶接部分の幅E
oに応じて、以下のように作業条件が設定されている。
Note that multilayer welding can also be performed on objects to be welded that have already been partially welded, and in that case, the width E of the already welded portion
According to o, work conditions are set as follows.

f41Eo≦(E+  (E+はストレート溶接時の標
準ビード幅)の時 上記(2Jの(a)と同じ条件が設定されている。
When f41Eo≦(E+ (E+ is the standard bead width during straight welding), the same conditions as in (a) of 2J above are set.

(51E+<Eo≦E2  (E2はウィービング溶接
が可能な最大幅)の時 上記(′2Jの市)と同じ条件が設定されている。
When (51E+<Eo≦E2 (E2 is the maximum width that allows weaving welding), the same conditions as above (city of '2J) are set.

(61E>E2の時 エラー表示(溶接不可能) B、中間層における溶接条件 (イ)1層1パス積層方式による時 上記(1)式にしたがったウィービング条件に応じて各
層毎に多層盛溶接を行うように設定されている。
(Error display when 61E>E2 (welding impossible) is set up to do so.

(ロ)1店多パス積層方式による時 第9図に示すように、中間「1層目の溶接部分の幅をE
n1各パス毎のX方向のシフト吊をΔX、各層における
パス数をmとすると、m回のシーノドによる溶接を行っ
た時の余り(未溶接部分)rは下記[2)式で表される
(b) When using the one-store multi-pass lamination method, as shown in Figure 9, the width of the welded part of the intermediate "first layer" should be set to E.
n1 If the shift in the X direction for each pass is ΔX, and the number of passes in each layer is m, the remainder (unwelded part) r when welding by m sea nodes is expressed by the following formula [2] .

r=E−<K十m・ΔX )          +2
1ここに、Kは溶接を開始づる位置と被溶接体の壁面ど
の距離であって、壁面にアンダカツ1−等が発生しない
ように求められた経験値である。また、−ト記シフト吊
ΔXは、電流条件により、高電流時には、ΔX1((高
電流に対応した標準ビード幅)、中電流時にはΔXM 
(中電流に対応した標準ビード幅)、低電流時にはΔX
L  (低電流に対応した標準ビード幅)に設定されて
いる。
r=E-<K0m・ΔX) +2
1 Here, K is the distance between the welding start position and the wall surface of the object to be welded, and is an empirical value determined to prevent undercuts from occurring on the wall surface. In addition, depending on the current conditions, the shift suspension ΔX in -g is ΔX1 ((standard bead width corresponding to high current) at high current, and ΔXM at medium current.
(Standard bead width corresponding to medium current), ΔX at low current
It is set to L (standard bead width compatible with low current).

そして、余りrの値に応じて、以下のように溶接処理が
おこなれるように設定されている。
Then, according to the value of the remainder r, settings are made so that the welding process can be performed as follows.

+a+r<0の時 次の層の溶接に移行でる。When +a+r<0 Now we can move on to welding the next layer.

〈b)0≦r≦ΔXの時 (m+1>パス目の溶接を行う。<b) When 0≦r≦ΔX (M+1>pass welding is performed.

そのとき、1−−ヂ(2)の傾き角αは、し型j3よび
水平隅肉についてはその開先形状に応じて定められてい
る。なお、V型の時には、1−一チ〈2)は垂直方向に
立てるように設定されている。
At this time, the inclination angle α of 1--di (2) is determined according to the shape of the groove for the groove j3 and the horizontal fillet. In addition, when it is V-shaped, 1-1chi<2) is set to stand vertically.

C1最柊仕上げ層にJ3りる溶接処理 第10図に示すように(但し、し型開先形状の場合のみ
例示でる)、開先上端の幅をE1既溶接部分の上面から
開先上端までの距離8dとすると、距[dの値に応じて
、以下のように最終仕上げを行うように設定されている
(各開先形状について共通)。
J3 welding process on C1 most holly finish layer As shown in Figure 10 (however, only the case of a diamond-shaped groove shape is shown), the width of the upper edge of the groove is adjusted from the upper surface of the E1 welded part to the upper edge of the groove. When the distance is 8d, the final finishing is set as follows according to the value of the distance [d (common for each groove shape).

tll”N閃1パス積層方式の時 +a+  O< d < d +  < d+は最終層
の溶接部fiに対づる標準ピード高さの50%程度の1
lfI)の時(E −e ) mmのウィービング幅で
1パス溶接仕上げを行う。ここで、eはノ&終仕上りビ
ード形状を考慮した一定値である。
tll''N flash 1-pass lamination method +a+ O< d < d + < d+ is 1, which is about 50% of the standard peed height for the welded part fi of the final layer.
lfI), one pass welding finish is performed with a weaving width of (E-e) mm. Here, e is a constant value taking into account the shape of the bead and the final finishing bead shape.

山) dl≦d≦d2 (d2は最終層の溶接条件に対
づ′る標準ビード高さの75%程度の値)の時 2パス仕上げによる。1パス目はその前のパスと同じウ
ィービング条件で溶接を行い、2パス1」は1パス目よ
り所定値だけ広いウィービング幅で溶接を行う。
When dl≦d≦d2 (d2 is approximately 75% of the standard bead height based on the final layer welding conditions), two-pass finishing is performed. In the first pass, welding is performed under the same weaving conditions as in the previous pass, and in the second pass, welding is performed with a weaving width wider by a predetermined value than in the first pass.

tC+d2≦d≦d3 (但し、d3は次層のZ軸シフ
ト吊)、の詩 2パス仕上げににる。1パス目は開先形状に基づく計n
値のウィービングg W nに応じて溶接を行い、2パ
ス目は1パス目より所定値だ()広いウィービング幅で
溶接を行う。
tC+d2≦d≦d3 (however, d3 is the Z-axis shift of the next layer), which is a 2-pass finish. The first pass is the total n based on the groove shape.
Welding is performed according to the value of weaving g W n, and the second pass is performed with a weaving width that is a predetermined value () wider than the first pass.

(山 d>d3の1待 d≦d3になるまで通常の条件で溶接を行い、その後、
上記(al〜telのいずれかの場合に応じて上記設定
条件で溶接を行う。
(Welding is carried out under normal conditions until 1 wait d≦d3 of mountain d>d3, and then
Welding is performed under the above setting conditions according to any of the above (al to tel).

(2)1層多パス積層方式の時 +a+  d≦d1の時 溶接電流値にかかわらず1層仕上げを行う。(2) When using single layer multi-pass lamination method +a+ When d≦d1 Performs one-layer finishing regardless of the welding current value.

市+  d1≦d≦d3の時 溶接電流値に応じて、高電流値のときには溶接速度を所
定速度だCプ下ばて1層仕上げを行い、中電流値又は低
電流値の時には通常の条件で1層仕上げを行う。
When d1≦d≦d3, according to the welding current value, when the current value is high, the welding speed is set to the specified speed.One layer of finishing is performed on the lower part of C, and when the current value is medium or low, the welding speed is set to the specified speed, and when the current value is medium or low, normal conditions are applied. Finish one layer with .

+c+d>d3の時 d≦d1になるまで通常の条件で溶接を行い、d≦d3
になると、上記各条fl(a+〜山)に応じて1層イJ
上げを行う。
When +c+d>d3, welding is performed under normal conditions until d≦d1, and d≦d3.
Then, according to each article fl(a+~mountain) above, 1 layer IJ
Do a raise.

なお、さらに、ユーナーの希望に応じて最終仕上げ後さ
らに溶接して溶接部分を盛上げるいわゆる余盛を形成で
きるようにもなされている。
In addition, it is also possible to further weld the welded part after the final finishing according to the user's wishes to form a so-called extra weld.

以上のように予め多層盛溶接の作業条件を設定されてい
るPCI(11)の記憶内容に基づいて、多層盛溶接の
作業時、上記教示ボックス(10)から溶接の基本条件
、作業条件等が対話方式により入力されると、演算装′
F1(12)により多層盛溶接作業として@適と思われ
る標準作業条件が法枠され、該法枠結果に応じてCPU
(13)によりロボッ1〜本体(1)のX、Z、T軸方
向に沿った運動と、トーチ(2)の傾き角αとが制ti
l+されるとともに、トーチ(2)の溶接出力が出力電
源装置(6)を介して制御され、溶接作業が行われる。
Based on the memory contents of the PCI (11) in which the working conditions for multi-layer welding are set in advance as described above, the basic welding conditions, working conditions, etc. When entered interactively, the arithmetic unit'
F1 (12) sets the standard working conditions that are considered suitable for multi-layer welding work, and the CPU
(13) controls the movement of the robot 1 to the main body (1) along the X, Z, and T axes and the inclination angle α of the torch (2).
At the same time, the welding output of the torch (2) is controlled via the output power supply device (6), and welding work is performed.

その制御を第4図のフローチャートに基づき説明するに
、ステップS1で多層盛溶接作業を行うためのプログラ
ムを読み出すべきか否かを判別し、Noであればステッ
プS2で多層盛溶接を行う被溶接体の種類に従っていず
れかの開先形状を選択し、それぞれの開先形状に応じて
、以下のように基本条件の入力を行う。すなわち、V型
の開先形状を選択しlζ場合、表示装置(9)の表示画
面に示されたV型開先形状(第7図参照)の各部位に対
応する被溶接体の実際の寸法d3よび条f[に応じて、
ステップS3で板厚tの値、ステップS4で開先角度α
の値、ステップS5でルートフェイス!犬の値、ステッ
プS6でルー1〜ギヤツプGの値、ステップS7で裏当
Hの有無、ステップS8で余盛J9さhの値を上記教示
ボックス(10)から設定する。一方、ステップS2で
し型開先形状を選択した場合、表示画面に示されたし型
開先形状(第6図参照)の各部位に対応づる被溶接体の
実際の寸法および条件に応じて、ステップ89〜S;3
で上記ステップ83〜S8と同様にして板厚t1聞先角
度0、ルートフェイス[く、ルートギヤツブG等の値J
3よび実力材の有無を入力する。また、ステップS2で
水平隅肉を選択した場合、ステップS 14で表示画面
に示された水平隅肉開先形状(第8図参照)の各部位に
対応する被溶接体の脚長XおよびZの値を入力する。
The control will be explained based on the flowchart of FIG. 4. In step S1, it is determined whether or not a program for performing multi-layer welding work should be read out. If No, in step S2, the welded object is subjected to multi-layer welding. Select one of the groove shapes according to the type of body, and input the basic conditions according to each groove shape as follows. In other words, when a V-shaped groove shape is selected, the actual dimensions of the welded object corresponding to each part of the V-shaped groove shape (see Fig. 7) shown on the display screen of the display device (9). d3 and article f [in accordance with
The value of plate thickness t is determined in step S3, and the groove angle α is determined in step S4.
The value of root face in step S5! The dog value, the values of loop 1 to gap G in step S6, the presence or absence of backing H in step S7, and the value of excess J9h in step S8 are set from the teaching box (10). On the other hand, if the groove shape is selected in step S2, the shape of the groove is determined according to the actual dimensions and conditions of the workpiece corresponding to each part of the groove shape shown on the display screen (see Figure 6). , step 89~S;3
Then, in the same manner as in steps 83 to S8 above, set the plate thickness t1, the tip angle 0, the value J of the root face [ku, root gear G, etc.]
3 and the presence or absence of skilled materials. In addition, if horizontal fillet is selected in step S2, the leg lengths Enter the value.

以上にJ:す、被溶接体の開先形状等の条f1の入力を
終了覆ると、ステップS +sで既に一部溶接されたも
のを途中から溶接する場合には表示画面の各開先形状(
第6図〜第8図)にしたがって既溶接幅Eoを入力し、
ステップS +sで表示画面に示された溶接方法すなわ
ち積層パス数の単複2つの方式(第4図又は第5図参照
)に基づき、1層1パス積層方式又は1層多パス積層方
式いずれかの選択を行い、ステップS 17で溶接方向
どして往復溶接又は片道溶接のいずれかを選択し、ステ
ップS +sで使用電流値として3つの値すなわち高電
流値へ)(、中電流値Δ閃および低電流値ALのうちい
ずれかを選択する。
After completing the input of item f1 such as the groove shape of the workpiece to be welded, if you want to weld from the middle of something that has already been partially welded in step S +s, each groove shape on the display screen. (
Input the already welded width Eo according to Figs. 6 to 8),
Based on the welding method shown on the display screen in step S+s, that is, the number of lamination passes (single or double) (see Figure 4 or Figure 5), either the one-layer one-pass lamination method or the one-layer multi-pass lamination method is selected. After making a selection, in step S17 the welding direction is changed to either reciprocating welding or one-way welding, and in step S+s, three values are used as the current value, that is, a high current value (, medium current value Δflash and Select one of the low current values AL.

以上ステップS+=S+aにより多層盛溶接を行う為の
基本条件の入力を終了すると、制御装置(8)の内部で
演輝装置(12)により、上記1くOM(11)に予め
設定されている多層盛溶接のデータに基づき標準作業条
件が濾算され、ステップS 19で推奨条件の一覧表と
して表示装置(9)に表示される(次頁第2表参照)。
When the input of the basic conditions for performing multi-layer welding is completed in step S+=S+a, the above-mentioned OM (11) is preset by the control device (12) inside the control device (8). Standard working conditions are filtered based on the multilayer welding data and displayed on the display device (9) as a list of recommended conditions in step S19 (see Table 2 on the next page).

そして、特殊な条件等があり、推奨条件を一部変更する
必要があるときには変更し、ステップS ?oで作業条
件の決定が完了すると、ステップ821,822,82
9でRAM(14)に実際の溶接線を教示、記・圓さぜ
、ステップ824.S25で上記教示データと各溶接条
件に関するデータとを関連付けるとともに、これをロボ
ット本体(1)側に転送し、ロボット本体(1)側では
、ステップSに、S27において上記で入力された溶接
作業条件、すなわち、多層盛溶接の初層、中間層、in
仕上げ層にお(プる溶接電流1+fiA、溶接電圧値V
1溶接速度V1積層パス方式の単複、ウィービング幅W
n、トーチ(2)のX軸方向のシフト吊ΔX、ビード厚
さΔTに相当するZ軸方向へのシフト吊などに基づいて
多層盛溶接が行われる。なお、この溶接に際しては、ス
フツブ829でアークセンサ(アーク電流の変動によっ
て溶接部の上下方向への変位を検出づる手段、図示せず
)によって、ビード表面位置の変化、すなわち前層まで
のピード厚さΔ’り総削が検出され、演n装置(12)
の演算値からのずれがある場合には、上記溶接作業条件
が自動的に修正されるようになされている。
Then, if there are special conditions and it is necessary to partially change the recommended conditions, make the changes and proceed to step S? When the determination of the working conditions is completed in step o, steps 821, 822, 82
At step 9, the actual welding line is taught to the RAM (14), recorded and completed, and step 824. In S25, the teaching data and data regarding each welding condition are associated, and this is transferred to the robot body (1) side, where the welding work conditions entered above in step S27 are transferred to the robot body (1) side. , that is, the first layer, intermediate layer, and in multilayer welding.
Welding current 1 + fiA, welding voltage value V
1 welding speed V1 stacking pass method, weaving width W
Multi-layer welding is performed based on n, shift suspension ΔX of the torch (2) in the X-axis direction, shift suspension in the Z-axis direction corresponding to the bead thickness ΔT, and the like. During this welding, an arc sensor (a means for detecting vertical displacement of the welded part by fluctuations in arc current, not shown) is used in the short tube 829 to detect changes in the bead surface position, that is, the bead thickness up to the previous layer. When the total cutting is detected, the operation device (12)
If there is a deviation from the calculated value, the welding work conditions are automatically corrected.

一方、上記ステップS1において、すでに設定されたプ
ログラムを読出して多層盛溶接作業を行うべきYESの
場合には、ステップ81〜S +aの基本条件の入力を
省略し、ステップSL9に移行づる。
On the other hand, in the case of YES in the above step S1 to read out the already set program and perform the multilayer welding work, the input of the basic conditions in steps 81 to S+a is omitted and the process proceeds to step SL9.

したがって、上記実施例においては、溶接電流値A、?
jl溶接体の開先形状、積層パス数の単複の選択、失当
の有無ηjよびその梯類を入ツノすれば、H?>’Jc
’?l (12) k:にV)、予メROM (11)
 Ic設定されている層高な実験により求められたデー
タに基づいて、多層盛溶接の標準作業条件が演算されろ
。そのとき、溶接作業者が判断しなCプればならないパ
ラメータはVV4層パス方式のと、溶接用。
Therefore, in the above embodiment, the welding current value A, ?
If we include the groove shape of the welded body, the selection of the number of lamination passes, the presence or absence of misalignment ηj, and its ladder, then H? >'Jc
'? l (12) k: to V), preliminary ROM (11)
Calculate the standard working conditions for multi-layer welding based on the data obtained through experiments with the layer height set Ic. At that time, the parameters that the welding operator must judge are those for the VV four-layer pass method and those for welding.

流値AだCブであって、しかもそれらのパラメータは数
個の値から選択Jれば良いように中純化、標準イヒされ
ているので、はとんど多層盛溶接作業についての経験と
熟練とを必要としない。よって、多層盛溶接作業の自動
化と溶接作業条件決定の脱技能化とを図ることができる
The flow values are A and C, and these parameters are intermediately purified and standardized so that only a few values can be selected, so it is necessary to have experience and skill in multi-layer welding work. and does not require. Therefore, it is possible to automate the multi-layer welding work and to reduce the need for skill in determining the welding work conditions.

また、上記ROM<11)に設定されている作業:1!
1−flの内容番よ、豊富な実験データから求められた
ちのであるので、多層盛溶接を行う前に予め溶接条件を
求めるための実験等は必要でなく、例えばその形状等に
ついて1個しか溶接を行わないような少量の被溶接体に
刻しても自動化を図ることができる。
Also, the work set in the above ROM<11): 1!
The content number of 1-fl has been determined from a wealth of experimental data, so there is no need to conduct experiments to determine the welding conditions before performing multilayer welding, and for example, only one weld can be welded for the shape, etc. Automation can be achieved even when engraving a small amount of objects to be welded that do not need to be welded.

さらに、特に上記実施例では、作業条件の決定時に対話
方式によって表示装置(9)の表示画面を見ながら、必
要な入力を行っていくので、入力のミスが少なくしかも
入力のための所要時間が類くて済むという利点を有する
Furthermore, especially in the above embodiment, the necessary input is made interactively while looking at the display screen of the display device (9) when determining the working conditions, so there are fewer input errors and the time required for input is reduced. It has the advantage that it only needs to be similar.

(発明の効果) 以上説明したように、本発明によれば、多層盛溶接の積
層パス数の単複選択、溶接電流値の選択および被溶接体
の開先形状等の基本条件を入力すれば、該基本条件をパ
ラメータとして予め設定されたデータに基づき溶接作業
条件を演算して、該演算結果に応じて多層盛溶接ロポッ
!・の制御を行うようにしたので、多層i溶接作業の自
動化と溶接条件決定の脱技能化とを図ることができる。
(Effects of the Invention) As explained above, according to the present invention, by inputting basic conditions such as single or multiple selection of the number of lamination passes in multilayer welding, selection of welding current value, and groove shape of the workpiece, Welding work conditions are calculated based on data set in advance using the basic conditions as parameters, and multi-layer welding is performed according to the calculation results! Since the above control is performed, it is possible to automate the multi-layer i-welding work and reduce the skill level of determining welding conditions.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は多1邑盛溶接ロ
ボッ!−の制’iII装置の内部栴成図、第2図は多層
盛溶接ロボット装置の全体構成図、第3図はロボット本
体のX−Z面内の動作範囲を示す図、第4図および第5
図はそれぞれ1層多パスおよび1層1パスの積層方式の
説明図、第6図〜第8図は?!1溶接体のし型、■型、
水平隅肉の開先形状をそれぞれ示づ図、第9図は1層多
パス積層方式における中間層の余り処理説明図、第10
図は多層盛溶接仕上げ1Gの溶接処邪の説明図、第11
図はCPLIによる制ζVを示すフローチセートである
。 (10)・・・教示ボックス(基本条件入力手段)、(
11)・・・r(OM(記憶手段)、(12)・・・法
枠装置(演算手段)、(13)−CPU (制611手
段)第2図 第3図 第9図 第10図 E2X’ 第6図 第7図 第8図 第11図
The drawings show an embodiment of the present invention, and FIG. 1 shows a welding robot! - Figure 2 is an overall configuration diagram of the multilayer welding robot equipment; Figure 3 is a diagram showing the operating range of the robot body in the X-Z plane; Figures 4 and 2 are 5
The figures are explanatory diagrams of the lamination method of 1 layer multi-pass and 1 layer 1 pass, respectively, and Figures 6 to 8 are? ! 1 Welded body mold, ■ mold,
Figures showing the groove shapes of horizontal fillets, Figure 9 is an explanatory diagram of how to handle the surplus of the intermediate layer in the single layer multi-pass lamination method, Figure 10
The figure is an explanatory diagram of the welding process for multilayer welding finish 1G, No. 11.
The figure is a flow chart showing the control of ζV by CPLI. (10)...Teaching box (basic condition input means), (
11)...r(OM (storage means), (12)...legal frame device (computation means), (13)-CPU (system 611 means) Fig. 2 Fig. 3 Fig. 9 Fig. 10 E2X ' Figure 6 Figure 7 Figure 8 Figure 11

Claims (1)

【特許請求の範囲】[Claims] (1)積層パス数の単複選択、溶接電流値の選択、被溶
接体の開先形状および裏当の有無もしくは種類等の基本
条件を入力する基本条件入力手段(10)と、該基本条
件をパラメータとした、多層盛溶接の各パス毎のトーチ
狙い位置、溶接電流値、溶接電圧値、溶接速度およびウ
ィービング条件等の溶接作業条件をあらかじめ設定して
記憶する記憶手段(11)と、上記基本条件入力手段(
10)の出力を受け、上記記憶手段(11)の記憶内容
に基づいて上記溶接作業条件の標準作業条件を演算する
演算手段(12)と、該演算手段(12)で演算された
標準作業条件に基づいて多層盛溶接ロボットを制御する
制御手段(13)とを備えてなる多層盛溶接ロボットの
制御装置。
(1) A basic condition input means (10) for inputting basic conditions such as single or multiple selection of the number of lamination passes, selection of welding current value, groove shape of the workpiece, presence or absence or type of backing; A storage means (11) for presetting and storing welding work conditions such as torch aiming position, welding current value, welding voltage value, welding speed, and weaving conditions for each pass of multilayer welding as parameters, and the above-mentioned basic Condition input means (
a calculation means (12) which receives the output of step 10) and calculates standard working conditions of the welding work conditions based on the stored contents of the storage means (11); and standard working conditions calculated by the calculation means (12). A control device for a multi-layer welding robot, comprising: control means (13) for controlling the multi-layer welding robot based on the following.
JP62085098A 1987-04-07 1987-04-07 Control device for multi-layer welding robot Expired - Fee Related JPH0825021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085098A JPH0825021B2 (en) 1987-04-07 1987-04-07 Control device for multi-layer welding robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085098A JPH0825021B2 (en) 1987-04-07 1987-04-07 Control device for multi-layer welding robot

Publications (2)

Publication Number Publication Date
JPS63252671A true JPS63252671A (en) 1988-10-19
JPH0825021B2 JPH0825021B2 (en) 1996-03-13

Family

ID=13849134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085098A Expired - Fee Related JPH0825021B2 (en) 1987-04-07 1987-04-07 Control device for multi-layer welding robot

Country Status (1)

Country Link
JP (1) JPH0825021B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270384A (en) * 1988-09-02 1990-03-09 Kawada Kogyo Kk Automatic multilayer sequence arc welding process
JP2018001220A (en) * 2016-07-04 2018-01-11 株式会社神戸製鋼所 Welding condition making method in downward welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919076A (en) * 1982-07-23 1984-01-31 Kawasaki Steel Corp Automatic multi-layer build-up welding method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919076A (en) * 1982-07-23 1984-01-31 Kawasaki Steel Corp Automatic multi-layer build-up welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270384A (en) * 1988-09-02 1990-03-09 Kawada Kogyo Kk Automatic multilayer sequence arc welding process
JPH0581350B2 (en) * 1988-09-02 1993-11-12 Kawada Kogyo Kk
JP2018001220A (en) * 2016-07-04 2018-01-11 株式会社神戸製鋼所 Welding condition making method in downward welding
US10744583B2 (en) 2016-07-04 2020-08-18 Kobe Steel, Ltd. Welding condition generating method in flat position welding

Also Published As

Publication number Publication date
JPH0825021B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
CN105345237B (en) A kind of vertical masonry joint submerged-arc welding automatically controls the device and its process of seam center
US6479793B1 (en) Method for controlling a welding apparatus and corresponding control device
KR880002554B1 (en) Numerially controlled cutting method
JP2716052B2 (en) Processing method and apparatus and processing quality control method
CA1298882C (en) Automatic working method and automatic working machine
CN101274386B (en) One side welding device and one side welding method
CN107570897A (en) A kind of wire filling laser welding wire feed rate control method, apparatus and system
CN113352317A (en) Multilayer and multi-pass welding path planning method based on laser vision system
KR102584173B1 (en) Welding control method of portable welding robot, welding control device, portable welding robot and welding system
US4816640A (en) Automatic arc-welding method
CN101433991A (en) Stitch pulsation welding device
EP0145934A2 (en) Tool display method and device for machining apparatus equipped with numerical control unit
JPS63252671A (en) Control device for multilayer build welding robot
US4410786A (en) Method of aligning a welding torch with a seam to be welded and of welding such seam
US4785155A (en) Automatic welding machine path correction system
CN108515264A (en) A method of for improving ultra-narrow gap laser welding efficiency
US4644124A (en) Wire electrode type electrical discharge machining method
JP3261516B2 (en) Automatic welding method and automatic welding device
JP2002292467A (en) Control device for welding robot
JPS62173077A (en) Method and device for automatic multi-layer welding
JPS5916675A (en) Multi-layer welding method
JPH0612484B2 (en) Automatic welding method
CN115971709A (en) Multipoint budget welding process
JPS60213423A (en) Present position displaying method in wire-cut electric discharge machining device
JPS6133773A (en) Method for following up welding groove

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees