JPH0581350B2 - - Google Patents

Info

Publication number
JPH0581350B2
JPH0581350B2 JP63220197A JP22019788A JPH0581350B2 JP H0581350 B2 JPH0581350 B2 JP H0581350B2 JP 63220197 A JP63220197 A JP 63220197A JP 22019788 A JP22019788 A JP 22019788A JP H0581350 B2 JPH0581350 B2 JP H0581350B2
Authority
JP
Japan
Prior art keywords
welding
root gap
teaching
conditions
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63220197A
Other languages
Japanese (ja)
Other versions
JPH0270384A (en
Inventor
Tetsuro Yamazaki
Masamitsu Goto
Toshio Wakameda
Susumu Kuryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP22019788A priority Critical patent/JPH0270384A/en
Publication of JPH0270384A publication Critical patent/JPH0270384A/en
Publication of JPH0581350B2 publication Critical patent/JPH0581350B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は多層盛り自動アーク溶接法に関する
ものであり、特に柱や梁の仕口部などの突合せ溶
接部に対する自動溶接ロボツト用として好適なテ
イーチングプレイバツク方式のデータコンピユー
タを利用した多層盛り自動アーク溶接法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a multi-layer automatic arc welding method, and is particularly suitable for teaching for automatic welding robots for butt welds such as joints of columns and beams. This paper relates to a multi-layer automatic arc welding method using a playback type data computer.

〔従来の技術〕[Conventional technology]

鉄骨製作において、工程の大部分を占めるのは
溶接であり、柱や梁などの長さ方向の隅肉溶接は
自動化が進んでいるが、溶接部の多い仕口部は溶
接線が短いためにいまだに手作業で行われること
が多く、熟練技術者の確保が将来的にあやぶまれ
ている。このため、自動溶接ロボツトを仕口部の
溶接に使用する試みが種々なされているが、一般
的な溶接ロボツトでは対象部材を限定して導入さ
れるため、ロボツトのもつ溶接条件が少なく、し
かもその特定の溶接条件をロボツト自体の内部メ
モリに持たせてしまつたものが殆どである。
In steel frame fabrication, welding accounts for the majority of the process, and although fillet welding in the longitudinal direction of columns and beams is increasingly automated, welding at joints with many welds is difficult due to the short weld line. Much of the work is still done by hand, making it difficult to secure skilled technicians in the future. For this reason, various attempts have been made to use automatic welding robots for welding joints, but since typical welding robots are introduced for a limited number of parts, the robots have only a few welding conditions. In most cases, specific welding conditions are stored in the internal memory of the robot itself.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

鉄骨仕口部の溶接は多層盛りで溶接で行われる
が、多層盛り溶接では、板厚、開先角度、ルート
ギヤツプ値、ワイヤ径などの組合せで膨大な数の
溶接条件が必要となり、また溶接施工に必要なパ
ス数も条件毎にかなり異なつてくる。そこで従来
の溶接ロボツトでは記憶されるべきメモリの容量
が限られていることから所有できる溶接条件も限
定され、従つてデジタルカセツトテープ等の補助
記憶装置を用いて記憶容量不足を補つているが、
必要に応じてテープから主メモリに溶接条件をロ
ードする際に、テープでは情報をシリアルに記憶
して読み出すためローデイングに長時間を要して
しまう欠点がある。また従来の溶接ロボツトには
例えばアークセンサ方式の倣いを備えたものもあ
るが、多層盛り溶接ではその原理上、初層で検出
した溶接線を倣うため、初層の倣い精度が最終的
なビード外観や溶接欠陥の有無に大きく影響する
ほか、初層溶接後に起こる熱変形については有効
な補正機能を持たず、さらに突合せ溶接で起こり
がちな継手の目違い、肌隙、テーパ状ルートギヤ
ツプ等の条件トラブルに対処するには、効果なテ
レビジヨンカメラ等のイメージセンサを付設しな
ければならなかつた。
Welding of steel frame joints is performed by multi-layer welding, but multi-layer welding requires a huge number of welding conditions, including combinations of plate thickness, groove angle, root gap value, wire diameter, etc. The number of passes required for this also varies considerably depending on the conditions. Therefore, conventional welding robots have a limited memory capacity, which limits the welding conditions that can be stored. Therefore, auxiliary storage devices such as digital cassette tapes are used to compensate for the lack of storage capacity.
When loading welding conditions from tape to main memory as necessary, tape has the disadvantage that it takes a long time to load the information because it is stored and read out serially. In addition, some conventional welding robots are equipped with an arc sensor method for tracing, but in multi-layer welding, the principle is to trace the weld line detected in the first layer, so the tracing accuracy of the first layer will affect the final bead. In addition to greatly affecting the appearance and presence or absence of welding defects, it does not have an effective correction function for thermal deformation that occurs after the first layer welding, and conditions such as joint misalignment, skin gaps, and tapered root gap that tend to occur in butt welding. To deal with the problem, it was necessary to install an effective image sensor such as a television camera.

この発明は、前述のような従来技術の欠点を解
決して、倣いセンサ用いずに、例えばオペレータ
による手元操作等により開先形状の計測結果を板
厚等の条件と共にインプツト、溶接の始終端をテ
イーチングするだけで自動的に多層盛り溶接を行
う小形可搬式の溶接ロボツトを実現できる多層盛
り自動アーク溶接法を提供しようとするものであ
り、さらには直線溶接区域のテーパ状ルートギヤ
ツプにも溶接区間の始端終端の開先精度をインプ
ツトするだけで自動的に対応できる前記溶接法を
提供することである。
This invention solves the drawbacks of the prior art as described above, and allows the measurement results of the groove shape to be input along with conditions such as plate thickness by an operator's hand operation, for example, without using a tracing sensor, and to determine the start and end of welding. The aim is to provide a multi-layer automatic arc welding method that can realize a small, portable welding robot that automatically performs multi-layer welding simply by teaching. It is an object of the present invention to provide the above-mentioned welding method which can automatically handle the welding process simply by inputting the groove precision at the start and end ends.

〔課題を解決するための手段〕[Means to solve the problem]

本願の第1発明に係る多層盛り自動アーク溶接
法では、前述の課題を達成するために、横向き突
合せ、下向き突合せ、隅肉などの溶接種別と開先
の形状および角度の別毎に、溶接速度、溶接電
流、ウイービング幅、ワイヤ送給速度、層数等に
応じた複数の溶接条件を、種々の板厚値とルート
ギヤツプ値とをパラメータとして予め実験により
求めてデータベース化しておき、被溶接継手の直
線溶接区間の始端と終端との位置をテイーチング
によつて設定すると共に、このテイーチング時に
前記直線溶接区間の始端と終端の各ルートギヤツ
プ値を記憶させ、前記直線溶接区間の途中のルー
トギヤツプ修正値を前記記憶値から直線補間して
求めておき、被溶接継手の板厚と始端のルートギ
ヤツプ値とに対応した溶接条件を前記データベー
スから読み出して、この読み出した溶接条件で前
記溶接区間の始端から溶接を開始し、溶接中に始
端からの溶接距離が予め定められた値になる度に
前記直線補間で求めたルートギヤツプ修正値に対
応した溶接条件を前記データベースから読み出し
て溶接条件の修正を行うことにより、溶接速度と
ウイービング幅の変化でパス毎の余盛り量をほぼ
一定に保ちながら前記直線溶接区間の終端まで自
動溶接するものである。
In the multi-layer automatic arc welding method according to the first invention of the present application, in order to achieve the above-mentioned problems, the welding speed is adjusted for each welding type such as side butt, downward butt, and fillet, and for each groove shape and angle. , multiple welding conditions according to welding current, weaving width, wire feed speed, number of layers, etc. are determined in advance by experiments using various plate thickness values and root gap values as parameters, and are compiled into a database. The positions of the start and end of the straight welding section are set by teaching, and during this teaching, the respective root gap values at the start and end of the straight welding section are memorized, and the root gap correction values in the middle of the straight welding section are set as described above. The welding conditions are obtained by linear interpolation from the memorized values, and the welding conditions corresponding to the plate thickness of the joint to be welded and the root gap value at the starting end are read out from the database, and welding is started from the starting end of the welding section using the read welding conditions. Then, each time the welding distance from the start end reaches a predetermined value during welding, the welding conditions corresponding to the root gap correction value obtained by the linear interpolation are read from the database and the welding conditions are corrected. Automatic welding is performed to the end of the straight welding section while keeping the surplus amount for each pass almost constant by changing speed and weaving width.

さらに本願第2発明の多層盛り自動アーク溶接
法においては、前記第1発明の特徴に加えて、テ
イーチング時の始端と終端の位置情報および各端
ルートギヤツプ値からルート中心の軌跡を計算し
てトーチの移動軌跡を前記中心軌跡に沿わせるも
のである。
Furthermore, in the multi-layer automatic arc welding method of the second invention of the present application, in addition to the features of the first invention, the locus of the center of the route is calculated from the position information of the starting end and the ending end at the time of teaching and the root gap value of each end, and the trajectory of the torch is The movement locus is made to follow the center locus.

〔作用〕[Effect]

本発明の溶接法は、特に仕口部などの数10cm程
度の直線溶接区間に対する多層盛り溶接ロボツト
向けのものである。従つて横向き溶接と下向き溶
接が主であるが、勿論、隅肉溶接や狭開先溶接に
も適用可能である。
The welding method of the present invention is particularly suitable for multilayer welding robots for straight welding sections of several tens of centimeters such as joint sections. Therefore, it is mainly applied to horizontal welding and downward welding, but it is of course also applicable to fillet welding and narrow gap welding.

対数の溶接条件を完全にソフトウエアに組み込
むことはソフトウエアの構築上の問題と主メモリ
の記憶容量の面から現実には殆ど実現性がない。
In reality, it is almost impossible to completely incorporate logarithmic welding conditions into software due to software construction problems and main memory storage capacity.

例えば断面計算の溶着量が得られても、ヒード
外観、溶込み、欠陥などを満足させるとは限らな
い。下向き溶接でも、溶込み不足、オーバーラツ
プ、アンダーカツト等が起こり得るし、まして横
向き溶接ではビードの垂れや外観などにも問題が
残る。
For example, even if the amount of welding in a cross-sectional calculation is obtained, it does not necessarily satisfy the appearance, penetration, defects, etc. of the weld. Even when welding downward, insufficient penetration, overlapping, undercuts, etc. may occur, and when welding sideways, problems such as bead sagging and appearance remain.

そこで本発明では実際にテストピースを使い、
種々な板厚、ルートギヤツプ幅、開先角度等に対
して最適と思われる条件を例えば熟練者の目で作
成し、これをデータベースとして蓄積して利用す
る方式を採用している。
Therefore, in the present invention, we actually use a test piece,
For example, we use a method in which conditions considered to be optimal for various plate thicknesses, root gap widths, bevel angles, etc. are created by experts, and these are stored and used as a database.

すなわち本発明においては、被溶接継手の板厚
と、溶接始終端のルートギヤツプ値とデータ入力
して、例えばフロツピーデイスクに記憶しておい
た前記データベースから対応する溶接条件を検索
する一方、テイーチングによつて例えば母材と裏
当て金との角などの狙い易いところをトーチに教
示して、入力されたルートギヤツプ値によつて最
適なトーチ移動軌跡を内部計算し、このときテー
パ状ルートギヤツプで前記始終端のルートギヤツ
プ値が異なる場合は、そのルートギヤツプ値の溶
接進行に伴う変化に対応して各パス毎の余盛り高
さを一定に保つように溶接速度とウイービング幅
とを変化させるものである。
That is, in the present invention, the plate thickness of the joint to be welded and the root gap values at the start and end of welding are input, and the corresponding welding conditions are searched from the database stored on a floppy disk, for example. Therefore, the torch is taught an easy-to-target location, such as the corner between the base material and the backing metal, and an optimal torch movement trajectory is internally calculated based on the input root gap value. When the root gap values at the ends are different, the welding speed and weaving width are changed in response to the change in the root gap value as welding progresses, so as to keep the excess height for each pass constant.

溶接条件のデータベースの作成に関しては、各
ワイヤ径毎に溶接電流・電圧の変化に対する溶着
量の変化を測定し、例えばパソコン上で溶着量か
ら狙い位置を決定して一旦データベース化し、作
成した溶接条件で実際に溶接施工して超音波検査
などにより欠陥の無いことを確認してデータを採
用するのがよい。またこの溶接条件のデータベー
スは板厚とルートギヤツプを検索キーとして作成
し、下向き、横向きといつた溶接姿勢の違いと開
先角度別にフロツピーデイスクに分けて登録して
用いるのがよく、これは板厚やルートギヤツプは
溶接対象毎に異なることが大いが、溶接姿勢や開
先角度はあまり変わらないためである。これによ
り、溶接対象の設計基準が変わればフロツピーデ
イスクに交換して溶接することになり、現場オペ
レータの選択ミスも起こりにくくなる。
To create a database of welding conditions, we measure the change in the amount of welding due to changes in welding current and voltage for each wire diameter, determine the target position from the amount of welding on a computer, create a database, and create a database of the welding conditions. It is better to actually perform welding work and confirm that there are no defects using ultrasonic inspection, etc., and then use the data. In addition, it is best to create a database of welding conditions using plate thickness and root gap as search keys, and register them separately on floppy disks according to the welding position (downwards, sideways, etc.) and groove angle. This is because although the thickness and root gap vary depending on the object to be welded, the welding posture and groove angle do not change much. As a result, if the design standards for the welding object change, the floppy disk will have to be replaced during welding, making it difficult for on-site operators to make selection mistakes.

突合せ溶接の開先加工は、ガス切断や開先加工
機(機械式切削機)等で行なわれ、開先角度は火
口のセツトや切削ミルによつてほぼ設計基準通り
に守られているのが通常であるが、ルートギヤツ
プは、ガス切断機のレールと溶接部材切断線(開
先線)の平行度や、他の部材との組み付け、仕上
がり寸法の関係等から、始端と終端とでルートギ
ヤツプの異なるテーパーギヤツプになることがあ
る。従来の多層盛り自動アーク溶接法では、この
ようなギヤツプの変化には対応しておらず、これ
に対応するにはルートギヤツプの変化に従つて適
宜教示点を設け、そこで溶接条件を変更するとい
う手法を採用するのが通常である。この場合、ギ
ヤツプの変化量毎、例えば全長500mmの溶接線で
始終端のルートギヤツプが6mmから8mmへ変化す
る場合と、6mmから10mmへ変化する場合とでは、
その教示する点数・使用する溶接条件の選択が異
なり、また溶接条件の変化量を細かくとらないと
ステツプ状にビード幅が変化する結果となり、溶
接欠陥を生じる原因ともなる。
Beveling for butt welding is performed using gas cutting or a beveling machine (mechanical cutting machine), etc., and the beveling angle is kept almost in accordance with the design standards by setting the tip and using a cutting mill. Normally, the root gap differs between the starting and ending ends due to the parallelism of the rail of the gas cutting machine and the welding part cutting line (bevel line), assembly with other parts, finished dimensions, etc. This may result in a taper gap. Conventional multi-layer automatic arc welding methods cannot handle such changes in the gap, and in order to deal with this, a method is to set appropriate teaching points according to changes in the root gap and change the welding conditions there. is usually adopted. In this case, for each gap change, for example, in a weld line with a total length of 500 mm, the root gap at the beginning and end changes from 6 mm to 8 mm, and from 6 mm to 10 mm.
The number of points to be taught and the selection of welding conditions used are different, and if the welding conditions are not changed minutely, the bead width will change in steps, which may cause welding defects.

そこで本発明は、始めに始端と終端の各ルート
ギヤツプ値を計測して入力し、始端と終端の開先
断面の原点を教示することにより、パソコン上で
溶接線に沿つた開先断面変化を直線補間によつて
空間的にシミユレートし、溶接の進行と共に補間
したルートギヤツプ値に対応した溶接条件に修正
しつつ、この溶接条件によつてトーチ軌跡と、溶
接速度およびウイービング幅の変化量とを決定し
て溶接施工する。すなわち開先断面に変化があつ
ても、溶接速度およびウイービング幅の変化で余
盛り量を一定に保ち、かつ必要な溶込みを確保す
る。この場合、教示された始端と終端の2点間を
溶接進行方向の一定距離毎に分割して仮想の点を
設け、各仮想点で溶接速度およびウイービング幅
を変更して、階段状となる変化を疑似的に直線化
する。
Therefore, the present invention first measures and inputs each root gap value at the start end and end end, and then teaches the origin of the groove cross section at the start end and end end, so that changes in the groove cross section along the welding line can be measured in a straight line on a personal computer. The welding conditions are simulated spatially through interpolation, and as the welding progresses, the welding conditions are corrected to correspond to the interpolated root gap value, and the torch trajectory, welding speed, and amount of change in weaving width are determined based on these welding conditions. Perform welding work. That is, even if there is a change in the groove cross section, the amount of excess build-up is kept constant by changing the welding speed and weaving width, and the necessary penetration is ensured. In this case, virtual points are created by dividing the taught starting and ending points at regular distances in the direction of welding progress, and the welding speed and weaving width are changed at each virtual point to create a step-like change. to pseudo-linearize.

本発明の特徴と利点を一層理解するために、本
発明の好ましい実施例を図面と共に説明すれば以
下の通りである。
In order to better understand the features and advantages of the present invention, preferred embodiments of the present invention will be described below with reference to the drawings.

〔実施例〕〔Example〕

第1図に本発明の実施に用いる多層盛り溶接ロ
ボツトシステムの構成を示す。本実施例に係るシ
ステムはテイーチングプレイバツク方式のもので
あり、互いにケーブルとホース類で結ばれた構成
となつている。第1図において、1はコントロー
ラボツクス、2は溶接電源、3は水冷機、4はシ
ールドガスボンベ、5は溶接ワイヤ送給装置、6
は走行レール、7はロボツト本体、8は溶接トー
チ、9はテイーチングボツクスである。
FIG. 1 shows the configuration of a multilayer welding robot system used for carrying out the present invention. The system according to this embodiment is of a teaching playback type, and is configured to be connected to each other by cables and hoses. In Fig. 1, 1 is a controller box, 2 is a welding power source, 3 is a water cooler, 4 is a shielding gas cylinder, 5 is a welding wire feeding device, and 6 is a welding wire feeder.
1 is a traveling rail, 7 is a robot body, 8 is a welding torch, and 9 is a teaching box.

ロボツト本体7は直交3軸(X、Y、Z)とト
ーチ回転軸(k)との4軸構成で第2図にその具体例
の詳細ご示してある。
The robot main body 7 has a four-axis configuration consisting of three orthogonal axes (X, Y, Z) and a torch rotation axis (k), and a specific example thereof is shown in detail in FIG.

第2図において、ロボツト本体7は走行レール
6を挟んでそれに沿つて転動するガイド車輪77
を底面に有する外側ケース71と、外側ケース7
1内に図示しないスライドガイドによつて支持さ
れ送り軸機構72によつてX軸方向に進退移動す
る内側ボツクス73と、内側ボツクス73の先端
に取り付けられたY軸ユニツト74と、Y軸ユニ
ツト74の送り軸機構75によつてY軸方向に昇
降移動するK軸ユニツト76とを備えている。前
記レール6には長さ方向にラツクネジ61が取付
けられており、前記外側ケース71に固定された
モータ71aがラツク61とピニオンギアを介し
て係合し、その回転によつてロボツト本体7をZ
軸方向にレール6に沿つて移動される。また前記
内側ボツクス73を進退移動させる送り軸機構7
2は、外側ケース71に支持されたモータ73a
によつて駆動される。さらに前記K軸ユニツト7
6を昇降移動させる送り軸機構75は、Y軸ユニ
ツト74に支持されたモータ74aによつて駆動
される。K軸ユニツト76には、トーチ8をZ軸
と平行なK軸周りに回動させるトーチウイービン
グモータ76aが取り付けられている。尚、78
はこのモータ76aによつて回動されるトーチ8
を保持するトーチブラケツトであり、トーチ軸心
をK軸中心から偏心させている。これにより、横
向きT型溶接でレール6を被溶接部材に直接乗せ
てセツトした場合でも、回動軸のモータ76aと
部材との干渉を避け、回動中心でトーチを保持し
た場合よりもトーチを水平に寝かせることができ
るようになつている。またウイービングした場合
のワイヤ先端の軌跡は変わらないが、溶接アーク
はワイヤの軸方向へ飛ぶ性質があるので、開先に
対してワイヤが水平に近くなり、ビードの垂れを
防止することもできるようになつている。一方、
下向き溶接の場合にはビードの真上からモータ7
6aを偏らせているので、溶接の輻射熱からモー
タを保護できるようになつている。
In FIG. 2, the robot body 7 has guide wheels 77 that roll along the travel rail 6.
an outer case 71 having on the bottom surface, and an outer case 7
1, an inner box 73 supported by a slide guide (not shown) and moved forward and backward in the X-axis direction by a feed shaft mechanism 72, a Y-axis unit 74 attached to the tip of the inner box 73, and a Y-axis unit 74. A K-axis unit 76 that moves up and down in the Y-axis direction by a feed shaft mechanism 75 is provided. A rack screw 61 is attached to the rail 6 in the longitudinal direction, and a motor 71a fixed to the outer case 71 engages with the rack 61 via a pinion gear, and its rotation causes the robot body 7 to move in the Z direction.
It is moved along the rail 6 in the axial direction. Also, a feed shaft mechanism 7 for moving the inner box 73 forward and backward.
2 is a motor 73a supported by the outer case 71;
driven by. Furthermore, the K-axis unit 7
A feed shaft mechanism 75 that moves the robot 6 up and down is driven by a motor 74a supported by a Y-axis unit 74. A torch weaving motor 76a is attached to the K-axis unit 76 for rotating the torch 8 around the K-axis parallel to the Z-axis. In addition, 78
is the torch 8 rotated by this motor 76a.
This is a torch bracket that holds the torch, and the torch axis is eccentric from the K-axis center. As a result, even when the rail 6 is placed directly on the workpiece for horizontal T-type welding, interference between the rotating shaft motor 76a and the workpiece can be avoided, and the torch can be moved more easily than when the torch is held at the center of rotation. It is designed so that it can be laid down horizontally. Furthermore, although the trajectory of the wire tip does not change when weaving, the welding arc tends to fly in the axial direction of the wire, so the wire becomes nearly horizontal to the groove, which also prevents the bead from sagging. It's getting old. on the other hand,
In the case of downward welding, start the motor 7 from just above the bead.
Since 6a is biased, the motor can be protected from the radiant heat of welding.

尚、好ましくは各軸モータともパルスモータを
用い、特にK軸モータ76aのピニオン駆動には
溶接中のトーチウイービングを円滑に行なうため
にバツクラツシユの殆どない例えばハーモニツク
ドライブギア等を用いるのがよい。
Preferably, a pulse motor is used for each axis motor, and in particular, for the pinion drive of the K-axis motor 76a, it is preferable to use a harmonic drive gear or the like, which has almost no backlash, to ensure smooth torch weaving during welding.

また第2図で79はトーチケーブルの支柱であ
り、本体1がレール6上を移動する際にトーチケ
ーブルがレール等に引つ掛からないようにするた
めのものである。
Further, in FIG. 2, reference numeral 79 is a support for the torch cable, which is used to prevent the torch cable from getting caught on the rail or the like when the main body 1 moves on the rail 6.

レール6は引溶接部材に図示しないクランプま
たは磁石などによつてセツトされるが、ここでは
その構造は説明するまでもない。
The rail 6 is set to the pull welding member by a clamp or magnet (not shown), but its structure does not need to be explained here.

溶接機の構成は、通常の溶接機電源2に水冷循
環装置3を付設して、トーチ8に水冷タイプのも
のを用いている。コントローラ1は、例えば16ビ
ツトのパソコンを用いており、フロツピーデイス
ク10のためのドライブ装置11をつないでい
る。テイーチングボツクス9はテイーチング時の
ロボツトの操作、溶接条件の選択・確認などの一
切の操作を行うためのものである。
The configuration of the welding machine is such that a water cooling circulation device 3 is attached to a normal welding machine power supply 2, and a water cooling type torch 8 is used. The controller 1 uses, for example, a 16-bit personal computer, and is connected to a drive device 11 for a floppy disk 10. The teaching box 9 is used to perform all operations such as operating the robot during teaching and selecting and confirming welding conditions.

さて、本実施例のシステムにおける多層盛り溶
接では、溶接姿勢と開先角度に応じたフロツピー
デイスク10を選んでコントローラ1にかけ、板
厚とルートギヤツプ値の計測結果をテイーチング
ボツクス9から入力して、溶接始端と終端のテイ
ーチングデータのもとにフロツピーデイスクの溶
接条件データを展開して溶接する。この場合、所
望の通りの溶接を行なうにはワイヤ送給量を適正
に把握して安全に制御することが望ましい。
Now, in multi-layer build-up welding in the system of this embodiment, the floppy disk 10 is selected according to the welding posture and groove angle, the controller 1 is applied, the measurement results of plate thickness and root gap value are inputted from the teaching box 9, Welding is performed by developing the welding condition data of the floppy disk based on the teaching data of the welding start and end points. In this case, in order to perform the desired welding, it is desirable to appropriately grasp and safely control the wire feed amount.

例えば溶接ワイヤの比重をρ(鉄系ワイヤの場
合はρ=7.85g/cm3)、ワイヤ単重をW(ワイヤ径
1.2mmの場合W=8.88g/m、ワイヤ径1.4mmの場
合W=12.45g/m、ワイヤ径1.6mmの場合W=
15.90g/m)、溶接速度をWv〔mm/sec〕、ビード
溶着断面積をSi(但しiは1、2、3……n:層
数)、ワイヤ送給量(速度)をWf〔mm/sec〕とす
ると、 Si=(α・W・Wf)/(ρ・Wv)〔mm2〕 のように簡単に表すことができる。ここではαは
スパツタやスラグによる減少率を表わす係数であ
る。多層盛りは上式のSiを層数nについて総和を
求め、これが開先断面Spを規定通りに埋めるもの
として溶接を行なう。すなわち、式で表わせば次
の通りである。
For example, the specific gravity of welding wire is ρ (for iron wire, ρ = 7.85 g/cm 3 ), and the wire unit weight is W (wire diameter
For 1.2mm, W = 8.88g/m, for wire diameter 1.4mm, W = 12.45g/m, for wire diameter 1.6mm, W =
15.90g/m), the welding speed is W v [mm/sec], the bead weld cross-sectional area is S i (where i is 1, 2, 3...n: number of layers), and the wire feed rate (speed) is W When f [mm/sec], it can be easily expressed as S i =(α·W·W f )/(ρ·W v ) [mm 2 ]. Here, α is a coefficient representing the rate of decrease due to spatter and slag. For multilayer stacking, the sum of S i in the above equation is calculated for the number of layers n, and welding is performed assuming that this sum fills the groove cross section S p as specified. That is, it can be expressed as follows.

Spoj=1 Si この一括予測ともいえる方式は前記ワイヤ送給
量を正確に管理することによつて充分な精度での
制御が可能であり、溶接制御機構が簡単になると
共に作業速度が高速化できる点が利点である。
S p = oj=1 S iThis method, which can be called a batch prediction, enables control with sufficient accuracy by accurately managing the wire feed amount, which simplifies the welding control mechanism and The advantage is that the work speed can be increased.

テーパ状ルートギヤツプに対しては、前述した
ように、はじめて直線溶接区間の始端と終端のル
ードギヤツプ値を入力し、始端と終端の開先断面
の原点位置を教示することにより、コントローラ
1内で開先断面を空間的にシミユレートし、溶接
条件によつてトーチ軌跡、溶接速度・ウイービン
グ幅の変化量を決定して余盛り量が一定に保たれ
るように、かつ必要な溶込みが得られるように溶
接施工する。この場合の教示された始端と終端の
2点間の直線補間は、2点間を溶接進行方向(Z
軸方向)の所定距離毎に分割して、複数の分割仮
送点をつなぐ疑似的な直線化を行なう。これを第
3図と共に具体的に説明する。第3図において、
例えば下向きレ形開先で、開先角度35度、板厚30
mm、始端ルートギヤツプ6mm、終端ルートギヤツ
プ10mmの場合を例に挙げている。教示は、第3図
で始端のと終端の2点のみであり、これら教
示点はこの場合は母材31と裏当て金32との角
部である。前記点をXYZ直交座標の原点(0、
0、0)とし、第1パスの条件として、例えば始
端のトーチ狙い位置はルートギヤツプの半分のシ
フト量(X1=3mm)を与えて点(3、0、0)
とし、始端でのウイービング幅Ww1はルートギヤ
ツプと等しくWw1=6mm、更に溶接速度Wv=300
mm/minと定めるものとする。始端ルートギヤツ
プRg1=6mm、終端ルートギヤツプRg2=10mmで
あるので、終端のシフト量X2は、始終端のルー
トギヤツプの比から、 6:3=10:X2 W2=3*10/6=5mm となり、溶接長を500mmとすると、始端狙い位置
(3、0、0)から終端倣い位置(5、0、500)
までを結ぶ直線が第1パスのトーチ軌跡となる。
同様にウイービング幅もルートギヤツプ変化に合
せて、 6:6=10:Ww2 Ww2=6*10/6=10mm とし、始端Ww1=6mmから終端Ww2=10mmへ徐々
に増加させる。
For a tapered root gap, as mentioned above, by first inputting the root gap values at the start and end of the straight weld section and teaching the origin positions of the groove cross section at the start and end, the groove can be adjusted in the controller 1. The cross section is simulated spatially, and changes in the torch trajectory, welding speed, and weaving width are determined according to the welding conditions so that the amount of excess metal is kept constant and the necessary penetration is obtained. Perform welding work. In this case, linear interpolation between the two taught starting and ending points is performed in the welding direction (Z) between the two points.
axial direction) and performs pseudo-linearization that connects a plurality of divided temporary feeding points. This will be explained in detail with reference to FIG. In Figure 3,
For example, with a downward curved bevel, the bevel angle is 35 degrees, and the plate thickness is 30.
mm, the start end root gap is 6 mm, and the end root gap is 10 mm. The teaching points are only two points, the starting end and the ending end in FIG. 3, and these teaching points are the corners of the base material 31 and the backing metal 32 in this case. The above point is the origin of the XYZ orthogonal coordinates (0,
0, 0), and as a condition for the first pass, for example, the torch target position at the starting end is set to point (3, 0, 0) by giving half the shift amount of the root gap (X 1 = 3 mm).
The weaving width W w1 at the starting end is equal to the root gap, W w1 = 6 mm, and the welding speed W v = 300.
It shall be defined as mm/min. Since the starting end root gap R g1 = 6 mm and the ending end root gap R g2 = 10 mm, the end shift amount X 2 is calculated from the ratio of the starting end root gap, 6 : 3 = 10: 5mm and the welding length is 500mm, from the starting end target position (3, 0, 0) to the end tracing position (5, 0, 500)
The straight line connecting the points up to the point becomes the torch locus of the first pass.
Similarly, the weaving width is set to 6:6=10:W w2 W w2 =6*10/6=10 mm, and gradually increases from the starting end W w1 = 6 mm to the ending end W w2 = 10 mm.

ここで同じ溶接速度で全長を溶接すると、溶着
金属量が一定であるから、余盛り量が一定となら
ない。そこで溶接速度をルートギヤツプの変化に
応じて加減し、たとえば上記のように終端に向つ
てルートギヤツプが広がる場合には、溶接速度を Wv−Wv*(Rg2−Rg1)*β によつて遅くする。尚、βは溶接速度に関するパ
ラメータで、ルートギヤツプ値の差1mmにつき例
えば3〜5%程度の速度変化とするが、季節によ
る周囲温度の変化、余熱の有無による母材温度の
変化、使用ワイヤ等によつて変化するので、テイ
ーチングボツクス9から修正入力できるようにし
ておくのがよい。
If the entire length is welded at the same welding speed, the amount of deposited metal will be constant, so the amount of surplus will not be constant. Therefore, the welding speed is adjusted according to the change in the root gap. For example, when the root gap widens toward the end as shown above, the welding speed is adjusted by W v − W v * (R g2 − R g1 ) * β. Slow down. Note that β is a parameter related to welding speed, and the speed changes by, for example, about 3 to 5% per 1 mm difference in root gap value, but it may vary due to changes in ambient temperature depending on the season, changes in base material temperature due to the presence or absence of residual heat, wires used, etc. Therefore, it is better to be able to input corrections from the teaching box 9.

このようにして途中の仮送点でも同様の計算で
軌跡、ウイービング幅、溶接速度を決定する。
尚、仮想点は、テイーチングにより移動パルス数
が既知であるので、それを等分割するように、例
えば溶接線長が500mm程度では数10mm程度の間隔
に取れば充分であるが、ルートギヤツプのテーパ
の程度によつては階段状のビート形状となる場合
もあるので、前記Y軸モータ74aやK軸モータ
76aなどの制御の分解能を適合した範囲内で短
い間隔に取るのがよい。
In this way, the locus, weaving width, and welding speed are determined by similar calculations at intermediate feeding points as well.
Since the number of moving pulses of the virtual points is known through teaching, it is sufficient to equally divide the virtual points at intervals of several tens of millimeters when the welding line length is about 500 mm, but if the taper of the root gap Depending on the degree, the beat shape may be stepped, so it is preferable to set short intervals within a range that suits the resolution of control of the Y-axis motor 74a, K-axis motor 76a, etc.

第2パス以降では、Y軸方向へのシフト位置で
のルートギヤツプ値を同様に計算して溶接条件を
求める、例えばY軸シフト量を5mmとすると、第
2パスのルートギヤツプは、 始端では、6+tan35°*5=9.5mm 終端では、10+tan35°*13.5mm となる。
From the second pass onwards, the root gap value at the shift position in the Y-axis direction is calculated in the same way to obtain the welding conditions. For example, if the Y-axis shift amount is 5 mm, the root gap of the second pass is 6 + tan 35 degrees at the starting end. *5=9.5mm At the end, it becomes 10+tan35°*13.5mm.

以後のパスでも同様にして計算が行なわれる。 Calculations are performed in the same way in subsequent passes.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、倣いセ
ンサを用いずに、オペレータが開先に計測して板
厚等の条件と共に手元でインプツトし、溶接の始
終端をテイーチングすうだけで自動的に多層盛り
溶接を行なう小形可搬式の溶接ロボツトを実現で
きるものであり、さらには直線溶接区間のテーパ
状ルートギヤツプにも溶接区間の始端終端の開先
精度をインプツトするだけで自動的に対応できる
ので、自動化率の低かつた鉄骨仕口部の多層盛り
溶接作業の自動化に顕著な効果を奏することが可
能である。
As described above, according to the present invention, without using a tracing sensor, the operator measures the groove and inputs it at hand along with conditions such as plate thickness, and automatically teaches the start and end of welding. It is possible to realize a small, portable welding robot that performs multi-layer welding on the welding section, and it can also automatically handle tapered root gaps in straight welding sections by simply inputting the groove accuracy at the start and end of the welding section. , it is possible to produce a remarkable effect in automating the multi-layer welding work of steel frame joints, which has a low automation rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いるロボツトシステ
ムの構成を示す説明図、第2図はロボツト本体の
具体的実施例を示す断面図、第3図はテーパ状ル
ートギヤツプの直線補間による計算法を示す説明
図である。 1:コントローラボツクス、2:溶接電源、
3:水冷機、4:シールドガスボンベ、5:溶接
ワイヤ送給装置、6:走行レール、7:ロボツト
本体、8:溶接トーチ、9:テイーチングボツク
ス、71:外側ケース、72:送り軸機構、7
3:内側ボツクス、74:Y軸ユニツト、75:
送り軸機構、76:K軸ユニツト。
Fig. 1 is an explanatory diagram showing the configuration of a robot system used to carry out the present invention, Fig. 2 is a sectional view showing a specific embodiment of the robot body, and Fig. 3 shows a calculation method using linear interpolation for a tapered root gap. It is an explanatory diagram. 1: Controller box, 2: Welding power source,
3: water cooler, 4: shield gas cylinder, 5: welding wire feeder, 6: running rail, 7: robot body, 8: welding torch, 9: teaching box, 71: outer case, 72: feed shaft mechanism, 7
3: Inner box, 74: Y-axis unit, 75:
Feed axis mechanism, 76: K axis unit.

Claims (1)

【特許請求の範囲】 1 横向き突合せ、下向き突合せ、隅肉などの溶
接種別と開先の形状および角度の別毎に、溶接速
度、溶接電流、ウイービング幅、ワイヤ送給速
度、層数等に応じた複数の溶接条件を、種々の板
厚値とルートギヤツプ値とをパラメータとして予
め実験により求めてデータベース化しておき、被
溶接継手の直線溶接区間の始端と終端との位置を
テイーチングによつて設定すると共に、このテイ
ーチング時に前記直線溶接区間の始端と終端の各
ルートギヤツプ値を記憶させて前記直線溶接区間
の途中のルートギヤツプ修正値を前記記憶値から
直線補間して求めておき、被溶接継手の板厚とル
ートギヤツプ値とに対応した溶接条件を前記デー
タベースから読み出して、この読み出した溶接条
件で前記始端から溶接を開始し、溶接中に始端か
らの溶接距離が予め定められた値になるたびに前
記直線補間で求めたルートギヤツプ修正値に対応
した溶接条件を前記データベースから読み出して
溶接条件の修正を行なうことにより、溶接速度と
ウイービング幅の変化でパス毎の余盛り量をほぼ
一定に保ちながら前記直線溶接区間の終端まで自
動溶接することを特徴とする多層盛り自動アーク
溶接法。 2 テイーチング時の始端と終端の位置情報およ
び各端ルートギヤツプ値からルート中心の軌跡を
計算してトーチの移動軌跡を前記中心軌跡に沿わ
せることを特徴とする請求項1に記載の多層盛り
自動アーク溶接法。
[Claims] 1. Welding speed, welding current, weaving width, wire feeding speed, number of layers, etc. for each type of welding such as side butt, downward butt, and fillet, and for each type of groove shape and angle. A plurality of welding conditions are obtained in advance through experiments using various plate thickness values and root gap values as parameters and are compiled into a database, and the positions of the start and end of the straight weld section of the joint to be welded are set by teaching. At the same time, during this teaching, each root gap value at the start and end of the straight welding section is memorized, and a root gap correction value in the middle of the straight welding section is obtained by linear interpolation from the memorized values, and the plate thickness of the joint to be welded is determined. Welding conditions corresponding to and root gap value are read from the database, welding is started from the starting end under the read welding conditions, and each time the welding distance from the starting end reaches a predetermined value during welding, the straight line is By reading the welding conditions corresponding to the root gap correction value obtained by interpolation from the database and correcting the welding conditions, the straight line welding is performed while keeping the excess amount for each pass almost constant by changing the welding speed and weaving width. A multi-layer automatic arc welding method that is characterized by automatic welding to the end of the section. 2. The multi-layer automatic arc according to claim 1, wherein a locus of the center of the route is calculated from the positional information of the starting end and the end at the time of teaching and root gap values of each end, and the moving locus of the torch is made to follow the center locus. Welding method.
JP22019788A 1988-09-02 1988-09-02 Automatic multilayer sequence arc welding process Granted JPH0270384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22019788A JPH0270384A (en) 1988-09-02 1988-09-02 Automatic multilayer sequence arc welding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22019788A JPH0270384A (en) 1988-09-02 1988-09-02 Automatic multilayer sequence arc welding process

Publications (2)

Publication Number Publication Date
JPH0270384A JPH0270384A (en) 1990-03-09
JPH0581350B2 true JPH0581350B2 (en) 1993-11-12

Family

ID=16747410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22019788A Granted JPH0270384A (en) 1988-09-02 1988-09-02 Automatic multilayer sequence arc welding process

Country Status (1)

Country Link
JP (1) JPH0270384A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825020B2 (en) * 1991-05-17 1996-03-13 新日本製鐵株式会社 Automatic welding equipment
FR2678190B1 (en) * 1991-06-28 1995-07-07 Commissariat Energie Atomique METHOD AND SYSTEM FOR COMPUTER ASSISTED WELDING BASED ON THE VISION OF THE WELDING SCENE.
JPH0679463A (en) * 1992-09-04 1994-03-22 Kawasaki Heavy Ind Ltd Robot provided with welding condition changing function
JP2000084666A (en) * 1998-09-08 2000-03-28 Daihen Corp Method for automatically generating multi-layer sequence welding condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240902A (en) * 1975-09-27 1977-03-30 Sharp Corp Accent device for voice compund equipment
JPS57124576A (en) * 1981-01-28 1982-08-03 Mitsubishi Electric Corp Control device for automatic welding
JPS6182980A (en) * 1984-09-29 1986-04-26 Nippon Kokan Kk <Nkk> Deciding method of multilayer welding condition
JPS63252671A (en) * 1987-04-07 1988-10-19 Daikin Ind Ltd Control device for multilayer build welding robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240902A (en) * 1975-09-27 1977-03-30 Sharp Corp Accent device for voice compund equipment
JPS57124576A (en) * 1981-01-28 1982-08-03 Mitsubishi Electric Corp Control device for automatic welding
JPS6182980A (en) * 1984-09-29 1986-04-26 Nippon Kokan Kk <Nkk> Deciding method of multilayer welding condition
JPS63252671A (en) * 1987-04-07 1988-10-19 Daikin Ind Ltd Control device for multilayer build welding robot

Also Published As

Publication number Publication date
JPH0270384A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US10843285B2 (en) Welding device
US6492618B1 (en) Automatic weld head alignment and guidance system and method
JP2716052B2 (en) Processing method and apparatus and processing quality control method
US4390775A (en) Automatic and self-adapting process for fusion-welding a joint between two surfaces
JP3079485B2 (en) Automatic welding equipment for square steel pipes
JPH0581350B2 (en)
JP2518740B2 (en) Automatic welding equipment for corrugated panels
JP2553915B2 (en) Automatic welding method for cylindrical containers
JP4341172B2 (en) Control method of torch position in multi-layer welding
JPH08215841A (en) Circumference butting welding equipment of fixed tube
JPH0813433B2 (en) Automatic processing equipment
JPS6313791B2 (en)
JPH0428695Y2 (en)
JPS595072B2 (en) Automatic welding method using a general-purpose welding robot
JP2824914B2 (en) Control method of welding torch for welding robot
JPH04305370A (en) Automatic welding equipment
JPH0647171B2 (en) Welding controller
JPS6365426B2 (en)
JPH064194B2 (en) Welding method by arc welding robot
JPH0471632B2 (en)
JP2832630B2 (en) Welding line profiling control method
JPS59185570A (en) Automatic welding device
JP3520631B2 (en) Laser processing machine
JPH0461750B2 (en)
JPS6216744B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees