JPH04305370A - Automatic welding equipment - Google Patents

Automatic welding equipment

Info

Publication number
JPH04305370A
JPH04305370A JP9322891A JP9322891A JPH04305370A JP H04305370 A JPH04305370 A JP H04305370A JP 9322891 A JP9322891 A JP 9322891A JP 9322891 A JP9322891 A JP 9322891A JP H04305370 A JPH04305370 A JP H04305370A
Authority
JP
Japan
Prior art keywords
welding
groove
layer
speed
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9322891A
Other languages
Japanese (ja)
Other versions
JPH0815665B2 (en
Inventor
Hiroshi Tachikawa
博 立川
Toshio Aoki
俊雄 青木
Tadaaki Tokuda
徳田 忠明
Iwao Shimizu
清水 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9322891A priority Critical patent/JPH0815665B2/en
Publication of JPH04305370A publication Critical patent/JPH04305370A/en
Publication of JPH0815665B2 publication Critical patent/JPH0815665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To provide an automatic welding equipment capable of performing optimum welding according to the change of a groove corner part and groove base width of a groove part without necessitating the large capacity data base. CONSTITUTION:The welding length L of the groove part, the groove part base widths WS and WE, a groove angle alpha and thickness (t) of the groove part at a welding start part and a welding completion part are inputted from an operation part in advance. A main control part 70 divides the welding length L from the welding start part to the welding completion part of the groove part equally into thirty-two areas, an address of among from zero to thirty-one is given to each area and the area of each welding layer in each of the thirty-two areas is obtained. Further, the welding speed of each welding layer at each layer from the zero address to the thirty-one address is calculated. A result calculated in this way is stored in a memory 71. A (y)-axis direction movement control part 62 controls a motor My to move a carriage part 20 based on the welding speed read-out from a common memory 72 and the welding speed of a welding torch part 50 is regulated to the specified speed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、主として建築に用いら
れる鉄骨部材等の開先部を自動で溶接する自動溶接装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic welding device for automatically welding grooves of steel frame members mainly used in construction.

【0002】0002

【従来の技術】建築用の鉄骨部材の溶接は溶接箇所が短
く又溶接箇所が多いため、従来より、かかる鉄骨部材の
溶接には移動や溶接準備が容易な軽量小型の直交型の自
動溶接装置が用いられている。
[Prior Art] Since the welding of architectural steel members involves short welding points and many welding points, welding of such steel members has conventionally been carried out using lightweight, compact orthogonal automatic welding equipment that is easy to move and prepare for welding. is used.

【0003】0003

【発明が解決しようとする課題】ところで、従来の自動
溶接装置では、開先部の開先角度が例えば35度や45
度である場合の各溶接条件(たとえば溶接速度)につい
てのデータをデータベース化し、自動溶接を行うときに
、そのデータベースから必要な条件を読みだして溶接を
行っている。このように従来の装置は各開先角度毎にデ
ータを記憶していたので、従来の装置では、すべての開
先角度についてデータを持つことはデータベースが巨大
なものとなるので、実現不可能であった。したがって、
従来の装置を使用するときには、工場等において鉄骨部
材を加工するときに、所定の開先角度になるように加工
しなければならず極めて不便であった。以上のように、
従来の自動溶接装置では、開先角度が例えば35度と4
5度というように、制限され、その間の角度、例えば3
8度や40度の開先角度は溶接データを持っていなかっ
たので、溶接することができないという問題があった。
[Problems to be Solved by the Invention] However, in conventional automatic welding equipment, the groove angle of the groove portion is, for example, 35 degrees or 45 degrees.
Data on each welding condition (for example, welding speed) for each welding speed is compiled into a database, and when performing automatic welding, the necessary conditions are read from the database and welding is performed. In this way, conventional equipment stores data for each groove angle, so it is impossible for conventional equipment to have data for all groove angles because the database would be huge. there were. therefore,
When using a conventional device, when processing a steel frame member in a factory or the like, processing must be performed so that a predetermined groove angle is obtained, which is extremely inconvenient. As mentioned above,
In conventional automatic welding equipment, the bevel angle is, for example, 35 degrees and 4 degrees.
5 degrees, and the angle between them, e.g. 3
Since we did not have welding data for groove angles of 8 degrees and 40 degrees, there was a problem that welding could not be performed.

【0004】また、従来の自動溶接装置では、開先部の
開先底面幅が溶接開始部と溶接終了部とで違っていると
、精度良く溶接することができなかった。これは、従来
の自動溶接装置では開先底面幅が変化する場合の許容範
囲(例えば6mmから9mm)が狭く、したがって例え
ば溶接終了部に近づくに連れて開先底面幅が広くなって
いる場合、各溶接層の厚さは溶接終了部に近いほどだん
だん薄くなり、上記の許容範囲を越えると融合不良等に
より溶接不良が発生することがあるからである。このた
め、例え鉄骨部材の開先部の開先角度が所定の角度に仕
上げられていても、位置合わせの際に両鉄骨部材の溶接
面を平行に配置することができなかったりすると、溶接
開始部と溶接終了部とで開先部の開先底面幅が違ってし
まうので、従来の自動溶接装置ではかかる鉄骨部材の開
先部を高精度に溶接することができなかった。
Furthermore, in the conventional automatic welding apparatus, if the width of the bottom surface of the groove differs between the welding start part and the welding end part, accurate welding cannot be performed. This is because conventional automatic welding equipment has a narrow tolerance range (for example, from 6 mm to 9 mm) when the groove bottom width changes, so for example, if the groove bottom width becomes wider as it approaches the welding end, This is because the thickness of each weld layer becomes thinner as it approaches the welding end, and if the above tolerance is exceeded, welding defects may occur due to poor fusion or the like. For this reason, even if the groove angle of the steel frame member is finished at a predetermined angle, if the welding surfaces of both steel frame members cannot be placed parallel during alignment, welding will start. Since the groove bottom width of the groove differs between the welding end portion and the welding end portion, conventional automatic welding equipment has been unable to weld the groove portion of such a steel frame member with high precision.

【0005】本発明は上記事情に基づいてなされたもの
であり、大容量のデータベースを必要とせずに、開先部
の開先角度、及び開先底面幅の変化に応じて最適の溶接
を行うことができる自動溶接装置を提供することを目的
とするものである。
The present invention has been made based on the above circumstances, and it is possible to perform optimal welding according to changes in the groove angle and groove bottom width of the groove portion without requiring a large-capacity database. The purpose of this invention is to provide an automatic welding device that can perform the following steps.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明に係る自動溶接装置は、溶接トーチ部の溶接
速度を制御して所定溶接長の開先部を溶接する自動溶接
装置において、前記溶接長を複数の領域に区分して、溶
接開始部と溶接終了部における前記開先部の開先底面幅
、開先角度及び開先部の高さに基づいて、前記各領域に
おける各溶接層の断面積を算出し、更に該断面積に応じ
て前記各領域の各溶接層毎に前記溶接トーチ部の溶接速
度を算出する算出手段と、該算出手段によって算出され
た情報を記憶する記憶手段と、該記憶手段から前記各領
域の各溶接層毎に情報を読み出して前記溶接トーチ部の
溶接速度を制御する速度制御手段とを設けたことを特徴
とするものである。
[Means for Solving the Problems] To achieve the above object, an automatic welding device according to the present invention is an automatic welding device for welding a groove portion of a predetermined welding length by controlling the welding speed of a welding torch portion. , the welding length is divided into a plurality of regions, and each region in each region is determined based on the groove bottom width, the groove angle, and the groove height of the groove at the welding start part and the welding end part. Calculating means for calculating a cross-sectional area of a welding layer and further calculating a welding speed of the welding torch portion for each welding layer in each region according to the cross-sectional area, and storing information calculated by the calculating means. The present invention is characterized in that it is provided with a storage means and a speed control means for reading out information for each welding layer in each region from the storage means and controlling the welding speed of the welding torch portion.

【0007】[0007]

【作用】本発明は前記の構成によって、溶接長を複数の
領域に区分して、溶接開始部と溶接終了部における開先
部の開先底面幅、開先角度及び開先部の高さに基づいて
、各領域における各溶接層の断面積を算出し、各領域の
各溶接層の断面積の大きさに応じて、各領域の各溶接層
を溶接するときの溶接速度を決定することにより、溶接
開始部と溶接終了部とで開先部の開先底面幅が異なって
いても、溶接層の肉厚を一定に維持して溶接を行うこと
ができる。また、各領域の各溶接層の断面積の大きさに
応じて、各領域の各溶接層の溶接速度を決定することに
より、一定の範囲内(例えば0度から60度)であれば
、開先部の開先角度がどのような値でも溶接層の肉厚を
一定にして溶接を行うことができる。更に、溶接の都度
、被溶接部材の開先部の状況に応じて、各領域の各溶接
層ごとにデータを形成するので、大容量のデータベース
は必要としない。
[Operation] With the above-described structure, the present invention divides the weld length into a plurality of regions, and adjusts the groove bottom width, groove angle, and groove height of the groove at the welding start part and the welding end part. Based on this, the cross-sectional area of each weld layer in each region is calculated, and the welding speed when welding each weld layer in each region is determined according to the size of the cross-sectional area of each weld layer in each region. Even if the groove bottom width of the groove portion differs between the welding start part and the welding end part, welding can be performed while maintaining the thickness of the weld layer constant. In addition, by determining the welding speed of each weld layer in each region according to the size of the cross-sectional area of each weld layer in each region, if it is within a certain range (for example, 0 degrees to 60 degrees), No matter what the groove angle of the tip, welding can be performed with the thickness of the weld layer constant. Furthermore, since data is created for each weld layer in each region depending on the condition of the groove of the welded member each time weld, a large-capacity database is not required.

【0008】[0008]

【実施例】以下に本発明の一実施例を図1乃至図4を参
照して説明する。図1は本発明の一実施例である自動溶
接装置の概略全体図、図2は本実施例装置を用いて溶接
する開先部の断面図、図3はその開先部の第1溶接層を
示す概略斜視図、図4は各領域における各溶接層の断面
積を算出するフローチャート、図5は各領域における各
溶接層の溶接速度を算出するフローチャートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a schematic overall view of an automatic welding device that is an embodiment of the present invention, FIG. 2 is a sectional view of a groove to be welded using the device of this embodiment, and FIG. 3 is a first welding layer of the groove. FIG. 4 is a flow chart for calculating the cross-sectional area of each weld layer in each region, and FIG. 5 is a flow chart for calculating the welding speed of each weld layer in each region.

【0009】図1に示す本実施例の自動溶接装置は、溶
接機10と制御装置100とからなり、溶接機10はレ
ール部11と、そのレール部11に沿って移動自在に構
成された台車部20と、台車部20に設けられた伸縮自
在な伸縮腕30を介して取着された溶接トーチ支持部4
0と、溶接トーチ支持部40によって支持された溶接ト
ーチ部50とを備える。
The automatic welding apparatus of this embodiment shown in FIG. 1 is composed of a welding machine 10 and a control device 100, and the welding machine 10 has a rail section 11 and a cart configured to be movable along the rail section 11. part 20 and a welding torch support part 4 attached via a telescopic arm 30 provided on the trolley part 20.
0, and a welding torch section 50 supported by a welding torch support section 40.

【0010】制御装置100は、モータMx により伸
縮腕30の伸縮を制御して溶接トーチ部50のx軸方向
における移動を調整するx軸方向移動制御部60と、モ
ータMy により台車部20を移動することにより溶接
トーチ部50のy軸方向における移動を調整するy軸方
向移動制御部(溶接速度制御手段)62と、モータMz
 により溶接トーチ支持部40のz軸方向における移動
を制御することにより溶接トーチ部50のz軸方向にお
ける移動を調整するz軸方向移動制御部64と、モータ
Mr により溶接トーチ部50の揺動を制御する揺動制
御部66と、装置全体を制御する主制御部70と、溶接
に必要なデータを記憶するメモリ71及び共有メモリ7
2と、操作用のスイッチやメータ等を有する操作部80
とを備える。尚、x,y,zは各々空間直行座標軸を表
している。また、74はI/Oポートである。
The control device 100 includes an x-axis direction movement control section 60 that controls the expansion and contraction of the telescoping arm 30 by a motor Mx to adjust the movement of the welding torch section 50 in the x-axis direction, and an x-axis direction movement control section 60 that controls the movement of the welding torch section 50 in the x-axis direction using a motor Mx. A y-axis direction movement control section (welding speed control means) 62 that adjusts the movement of the welding torch section 50 in the y-axis direction by
a z-axis direction movement control section 64 that adjusts the movement of the welding torch section 50 in the z-axis direction by controlling the movement of the welding torch support section 40 in the z-axis direction; A swing control section 66 that controls, a main control section 70 that controls the entire device, a memory 71 that stores data necessary for welding, and a shared memory 7.
2, and an operating section 80 having operating switches, meters, etc.
Equipped with. Note that x, y, and z each represent a spatial orthogonal coordinate axis. Further, 74 is an I/O port.

【0011】図示しない溶接用ワイヤ供給装置によって
送られた溶接用のワイヤは、溶接トーチ部50から送り
だされ、溶融されて開先部に積層される。図2は建築用
の鉄骨等の柱に梁を付ける場合のようにレ字状をした開
先部を8層に分けて溶接する場合を示している。一般に
建築用の鉄骨の場合、板厚が厚くなるので、このように
多層溶接になる。
A welding wire fed by a welding wire supply device (not shown) is sent out from the welding torch portion 50, melted, and laminated on the groove portion. FIG. 2 shows a case where a V-shaped groove is divided into eight layers and welded, as in the case of attaching a beam to a column such as a steel frame for construction. Generally, in the case of steel frames for construction, the plate thickness is thicker, so multilayer welding is used like this.

【0012】本実施例装置を用いて溶接するには、予め
開先部の溶接長L、溶接開始部と溶接終了部における開
先部の開先底面幅WS ,WE 、開先角度α及び開先
部の高さ(本実施例の場合は板厚)tを操作部より入力
する。これらの値の入力は手動で行っても良いし、自動
計測して入力してもよい。主制御部70は、これらの情
報に基づいて、余盛り高さが2〜4mmの範囲内に収ま
るように、板厚tから最適な溶接層の数と溶接層の厚さ
を決定し、その値に基づいて各領域の各溶接層の断面積
を算出する。
[0012] In order to weld using the apparatus of this embodiment, the welding length L of the groove, the groove bottom widths WS and WE of the groove at the welding start part and the welding end part, the groove angle α and the opening are determined in advance. The height t of the tip (plate thickness in this example) is input from the operation section. These values may be entered manually or may be automatically measured and entered. Based on this information, the main control unit 70 determines the optimal number of weld layers and the thickness of the weld layers from the plate thickness t so that the excess height falls within the range of 2 to 4 mm, and The cross-sectional area of each weld layer in each area is calculated based on the value.

【0013】今、主制御部70が、例えば図2に示すよ
うに溶接層の数を8、各溶接層の肉厚をt1 〜t8 
に決定すると、次に図3に示すように開先部の溶接開始
部から溶接終了部までの溶接長Lを32の領域に等分し
、各領域に付いて各々0から31までの番地を付し、そ
の32の領域の各々に於ける各溶接層の面積を求める。 一般的に溶接長Lは建築用鉄骨では最長で約300mm
であるので、32の領域に区分すれば、高精度の溶接制
御を行うことができる。尚、建築用の鉄骨部材は機械加
工されるので、開先底面幅の変化は直線的に変化する。 また、本実施例では板厚が34mmであるので、各溶接
層の肉厚はt1 ,t2 =6、t3 ,t4 =5、
t5 〜t8 =4mmに設定している。
Now, the main control section 70 sets the number of welding layers to 8 and the thickness of each welding layer to t1 to t8, for example, as shown in FIG.
Then, as shown in Figure 3, the weld length L from the welding start point to the welding end point of the groove is divided into 32 equal regions, and each region is assigned an address from 0 to 31. Then, the area of each weld layer in each of the 32 regions is determined. Generally, the maximum weld length L for architectural steel frames is approximately 300 mm.
Therefore, if the area is divided into 32 areas, highly accurate welding control can be performed. Note that since architectural steel members are machined, the groove bottom width changes linearly. In addition, in this example, the plate thickness is 34 mm, so the thickness of each weld layer is t1, t2 = 6, t3, t4 = 5,
The distance from t5 to t8 is set to 4 mm.

【0014】図2に示す溶接開始部の第1溶接層の面積
SS1(=S01)は、開先部の開先底面幅(第1溶接
層の底辺)をWS1(=W01)、第2溶接層の底辺を
WS2(W02)とすると、 SS1=WS1×t1 +t1 2 ×tan α/2
となる。ただし、本実施例では開先角度αは全溶接長に
わたって一定であるとする。また、このときの第2溶接
層の底辺WS2は、 WS2=WS1+t1 ×tan α となる。この第2溶接層の底辺W2 に基づいて第2溶
接層の面積を同様にして求める。以下同様にして溶接開
始部(領域0番地)における各溶接層の面積を順次算出
する。このようにして図4に示すように0番地から31
番地までの各領域について各溶接層の断面積を算出する
The area SS1 (=S01) of the first weld layer at the welding start point shown in FIG. If the bottom of the layer is WS2 (W02), then SS1=WS1×t1 +t1 2 ×tan α/2
becomes. However, in this example, the groove angle α is assumed to be constant over the entire weld length. Moreover, the bottom side WS2 of the second welding layer at this time is as follows: WS2=WS1+t1×tan α. The area of the second weld layer is similarly determined based on the base W2 of the second weld layer. Thereafter, the area of each weld layer at the welding start part (area address 0) is sequentially calculated in the same manner. In this way, as shown in Figure 4, from address 0 to 31
Calculate the cross-sectional area of each weld layer for each area up to the address.

【0015】次に、溶接開始部、すなわち0番地におけ
る第1溶接層の溶接速度(VS1=V01)を下式によ
って算出する。 VS1=溶着量/7.8×SS1 ただし、溶着量は溶接ワイヤの種類、ワイヤ供給速度及
び溶接電流等によって定まる定数、7.8は鉄の比重で
ある。また、ワイヤは1.2mm径のソリッドワイヤで
ある。以下図5に示すように0番地における各溶接層(
第2〜第8まで)の溶接速度を算出し、以下31番地ま
での各領域における各溶接層の溶接速度を算出する。 このようにして算出された結果はメモリ71に記憶され
る。記憶されたデータは、溶接長の領域を通過する毎に
取り出され共有メモリ72に送られ、モータ速度の指令
値となる。
Next, the welding speed (VS1=V01) of the first welding layer at the welding start point, that is, address 0, is calculated using the following formula. VS1=Welding amount/7.8×SS1 However, the welding amount is a constant determined by the type of welding wire, wire supply speed, welding current, etc., and 7.8 is the specific gravity of iron. Further, the wire is a solid wire with a diameter of 1.2 mm. As shown in Figure 5 below, each weld layer at address 0 (
(2nd to 8th) welding speeds are calculated, and the welding speeds of each welding layer in each area up to address 31 are calculated. The results calculated in this manner are stored in the memory 71. The stored data is taken out every time the welding length region is passed and sent to the shared memory 72, and becomes a command value for the motor speed.

【0016】本実施例装置を用いて、例えば鉄骨部材の
開先部を多層溶接するには、まず溶接する鉄骨部材の開
先部の溶接開始位置に、本実施例の溶接機10を配置す
る。次に、前述の如く開先部の開先角度、溶接開始部と
溶接終了部における開先底面幅、溶接長及び開先部の板
厚の値を測定して操作部80より、手動又は自動でこれ
らの値を設定する。
To perform multi-layer welding, for example, on a groove of a steel frame member using the apparatus of this embodiment, first the welding machine 10 of this embodiment is placed at the welding start position of the groove of the steel frame member to be welded. . Next, as mentioned above, the values of the groove angle of the groove, the groove bottom width at the welding start part and the welding end part, the welding length, and the plate thickness of the groove are measured, and the values are manually or automatically Set these values with .

【0017】主制御部70は設定された各値に基づいて
、溶接層の数及びその肉厚を決定し、更に上記の手順に
従って32の各領域の各溶接層毎の断面積から算出した
溶接速度をメモリ71に記憶する。y軸方向移動制御部
62は、共有メモリ72から読み出した溶接速度に基づ
いてモータMy を制御して台車部20の移動速度を制
御することにより溶接トーチ部50の溶接速度を所定の
速度とする。第1溶接層の溶接が終了すると、z軸方向
移動制御部64はモータMz を制御して溶接トーチ支
持部40を上方に移動することにより、第1溶接層の肉
厚分だけ溶接トーチ部50を上方に移動する。また、本
実施例のようにレ字状の開先部を溶接する場合には、x
軸方向における溶接開始位置が各溶接層毎に異なるので
、x軸方向移動制御部はモータMx を制御して伸縮腕
30の伸縮を調整することにより、各溶接層毎に溶接ト
ーチ部50の溶接開始位置を図2の点線Aで示すように
調整する。更に、揺動制御部66は各領域の各溶接層毎
にモータMr を制御して底面幅に応じた振幅となるよ
うに溶接トーチ部50を揺動することにより、被溶接部
材である鉄骨や前の溶接層を確実に溶かしながら溶接す
ることができる。尚、溶接の際には、図示しない溶接ガ
ス供給装置より、溶接用の炭酸ガスが供給される。
The main control unit 70 determines the number of weld layers and their wall thickness based on each of the set values, and further determines the weld thickness calculated from the cross-sectional area of each weld layer in each of the 32 regions according to the above procedure. The speed is stored in memory 71. The y-axis direction movement control section 62 controls the motor My based on the welding speed read from the shared memory 72 to control the moving speed of the truck section 20, thereby making the welding speed of the welding torch section 50 a predetermined speed. . When welding of the first welding layer is completed, the z-axis direction movement control section 64 controls the motor Mz to move the welding torch support section 40 upward, thereby moving the welding torch section 50 by the thickness of the first welding layer. move upward. In addition, when welding an L-shaped groove as in this example,
Since the welding start position in the axial direction differs for each welding layer, the x-axis direction movement control section controls the motor Mx to adjust the expansion and contraction of the telescopic arm 30, thereby welding the welding torch section 50 for each welding layer. Adjust the starting position as shown by dotted line A in FIG. Further, the swing control unit 66 controls the motor Mr for each welding layer in each region to swing the welding torch unit 50 so that the amplitude corresponds to the bottom width. It is possible to weld while reliably melting the previous weld layer. Note that during welding, carbon dioxide gas for welding is supplied from a welding gas supply device (not shown).

【0018】上記の本実施例装置によれば、被溶接鉄骨
部材の開先部の溶接長を32の領域に区分して各領域毎
に各溶接層の断面積を算出して、溶接速度を決定してい
るので、開先角度が約0度から60度位までの値であれ
ば、任意の角度の開先角度を有する被鉄骨部材を各溶接
層の肉厚を一定にして、精度良く溶接することができる
According to the apparatus of this embodiment, the weld length of the groove of the steel frame member to be welded is divided into 32 regions, the cross-sectional area of each weld layer is calculated for each region, and the welding speed is determined. As long as the groove angle is between approximately 0 degrees and 60 degrees, steel members with arbitrary groove angles can be accurately processed by keeping the wall thickness of each weld layer constant. Can be welded.

【0019】また、上記の本実施例装置によれば、被溶
接鉄骨部材の開先部の溶接長を32の領域に区分して各
領域毎に各溶接層の断面積を算出して、溶接速度を決定
しているので、溶接開始部と溶接終了部の開先底面幅が
違っても、その差が一定の範囲内(約0mm〜15mm
)であれば、各溶接層の肉厚を一定にして、精度良く溶
接を行うことができる。
Further, according to the apparatus of this embodiment, the weld length of the groove of the steel frame member to be welded is divided into 32 regions, the cross-sectional area of each weld layer is calculated for each region, and the welding is performed. Since the speed is determined, even if the groove bottom width at the welding start part and welding end part is different, the difference will be within a certain range (approximately 0 mm to 15 mm).
), the thickness of each welding layer can be kept constant and welding can be performed with high precision.

【0020】尚、上記の実施例では、鉄骨部材の開先部
がレ字状である場合について説明したが、本発明はこれ
に限られるものではなく、開先部の形状は逆レ字状、V
字状又はI字状等であってもよい。
[0020] In the above embodiment, the case where the groove portion of the steel frame member is in the shape of an inverted rectangle is explained, but the present invention is not limited to this. ,V
It may be in the shape of a letter or an I-shape.

【0021】更に、上記の実施例では、開先部の開先底
面幅が溶接開始部と溶接終了部とで異なる場合について
説明したが、開先底面幅は一定であってもよいのは当然
である。
Furthermore, in the above embodiments, the case where the groove bottom width of the groove portion is different between the welding start part and the welding end part is explained, but it goes without saying that the groove bottom width may be constant. It is.

【0022】また、上記の実施例では、αが一定の場合
について説明したが、αが変化する場合は、開先底面幅
が変化する場合と同様にして、αS とαE を32に
区分して各領域毎に、開先角度を算出し、その結果を用
いて各領域の面積を計算すれば、開先角度が変化する場
合にも、本発明を適用することができる。
Furthermore, in the above embodiment, the case where α is constant has been explained, but when α changes, αS and αE are divided into 32 in the same way as when the groove bottom width changes. By calculating the groove angle for each region and calculating the area of each region using the result, the present invention can be applied even when the groove angle changes.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、開
先部の溶接長を複数の領域に区分して、各領域における
各溶接層の断面積を算出し、この結果に基づいて各領域
の各溶接層毎に溶接速度を設定しているので、溶接開始
部と溶接終了部とで開先部の開先底面幅が異なる場合で
も、従来の装置に比べて許容範囲を大幅に大きくするこ
とができ、また開先角度が所定の角度範囲内であれば無
段階で任意の開先角度の開先部を高精度で溶接すること
ができる自動溶接装置を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the weld length of the groove portion is divided into a plurality of regions, the cross-sectional area of each weld layer in each region is calculated, and based on this result, each Since the welding speed is set for each weld layer in the area, even if the groove bottom width of the groove differs between the welding start and welding end, the allowable range is significantly larger than with conventional equipment. Furthermore, it is possible to provide an automatic welding device that can steplessly weld a groove portion having an arbitrary groove angle with high precision as long as the groove angle is within a predetermined angle range.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例である自動溶接装置の概略全
体図である。
FIG. 1 is a schematic overall view of an automatic welding device that is an embodiment of the present invention.

【図2】本実施例装置を用いて溶接する開先部の断面図
である。
FIG. 2 is a sectional view of a groove portion to be welded using the apparatus of this embodiment.

【図3】その開先部の第1溶接層を示す概略斜視図であ
る。
FIG. 3 is a schematic perspective view showing the first weld layer of the groove.

【図4】各領域における各溶接層の断面積を算出するフ
ローチャートである。
FIG. 4 is a flowchart for calculating the cross-sectional area of each weld layer in each region.

【図5】各領域における各溶接層の溶接速度を算出する
フローチャートである。
FIG. 5 is a flowchart for calculating the welding speed of each weld layer in each region.

【符号の説明】[Explanation of symbols]

10    溶接機 11    レール部 20    台車部 30    伸縮腕 40    溶接トーチ支持部 50    溶接トーチ部 60    x軸方向移動制御部 62    y軸方向移動制御部 64    z軸方向移動制御部 66    揺動制御部 70    主制御部 71    メモリ 72    共有メモリ 74    I/Oポート 80    操作部 100    制御装置 10 Welding machine 11 Rail part 20 Bogie part 30   Extendable arm 40 Welding torch support part 50 Welding torch part 60 x-axis direction movement control unit 62 Y-axis direction movement control unit 64 Z-axis direction movement control unit 66 Swing control section 70 Main control section 71 Memory 72 Shared memory 74 I/O port 80 Operation section 100 Control device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  溶接トーチ部の溶接速度を制御して所
定溶接長の開先部を溶接する自動溶接装置において、前
記溶接長を複数の領域に区分して、溶接開始部と溶接終
了部における前記開先部の開先底面幅、開先角度及び開
先部の高さに基づいて、前記各領域における各溶接層の
断面積を算出し、更に該断面積に応じて前記各領域の各
溶接層毎に前記溶接トーチ部の溶接速度を算出する算出
手段と、該算出手段によって算出された情報を記憶する
記憶手段と、該記憶手段から前記各領域の各溶接層毎に
情報を読み出して前記溶接トーチ部の溶接速度を制御す
る速度制御手段とを設けたことを特徴とする自動溶接装
置。
1. An automatic welding device for welding a groove portion of a predetermined welding length by controlling the welding speed of a welding torch portion, wherein the welding length is divided into a plurality of regions, and the welding speed at the welding start portion and the welding end portion is The cross-sectional area of each weld layer in each region is calculated based on the groove bottom width, groove angle, and groove height of the groove portion, and each of the weld layers in each region is calculated according to the cross-sectional area. Calculating means for calculating the welding speed of the welding torch portion for each welding layer; storage means for storing information calculated by the calculating means; and reading information for each welding layer in each region from the storage means. An automatic welding device comprising: speed control means for controlling the welding speed of the welding torch section.
JP9322891A 1991-03-30 1991-03-30 Automatic welding equipment Expired - Lifetime JPH0815665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9322891A JPH0815665B2 (en) 1991-03-30 1991-03-30 Automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9322891A JPH0815665B2 (en) 1991-03-30 1991-03-30 Automatic welding equipment

Publications (2)

Publication Number Publication Date
JPH04305370A true JPH04305370A (en) 1992-10-28
JPH0815665B2 JPH0815665B2 (en) 1996-02-21

Family

ID=14076686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9322891A Expired - Lifetime JPH0815665B2 (en) 1991-03-30 1991-03-30 Automatic welding equipment

Country Status (1)

Country Link
JP (1) JPH0815665B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049518A1 (en) * 1996-06-24 1997-12-31 Fanuc Ltd Arc welding method
JP2000084666A (en) * 1998-09-08 2000-03-28 Daihen Corp Method for automatically generating multi-layer sequence welding condition
JP2005081418A (en) * 2003-09-10 2005-03-31 Nippon Steel Corp Method for automatically controlling deposited amount of narrow bevel multilayer arc welding
CN110064816A (en) * 2018-01-24 2019-07-30 日铁住金溶接工业株式会社 Groove welding method and groove welder
CN113838327A (en) * 2021-09-07 2021-12-24 中船舰客教育科技(北京)有限公司 Virtual welding method and device with polymorphic weldment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859065B2 (en) 2014-06-04 2016-02-10 株式会社神戸製鋼所 Welding condition deriving device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049518A1 (en) * 1996-06-24 1997-12-31 Fanuc Ltd Arc welding method
US6177650B1 (en) 1996-06-24 2001-01-23 Fanuc Ltd. Arc welding method
JP2000084666A (en) * 1998-09-08 2000-03-28 Daihen Corp Method for automatically generating multi-layer sequence welding condition
JP2005081418A (en) * 2003-09-10 2005-03-31 Nippon Steel Corp Method for automatically controlling deposited amount of narrow bevel multilayer arc welding
CN110064816A (en) * 2018-01-24 2019-07-30 日铁住金溶接工业株式会社 Groove welding method and groove welder
JP2019126819A (en) * 2018-01-24 2019-08-01 日鉄溶接工業株式会社 Groove welding method and groove welding device
CN113838327A (en) * 2021-09-07 2021-12-24 中船舰客教育科技(北京)有限公司 Virtual welding method and device with polymorphic weldment and storage medium
CN113838327B (en) * 2021-09-07 2023-11-21 中船舰客教育科技(北京)有限公司 Virtual welding method and device with polymorphic weldment and storage medium

Also Published As

Publication number Publication date
JPH0815665B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US4977512A (en) Three dimensional simultaneous machining and measuring system
CN112975190B (en) Multilayer multi-pass welding method, device, equipment and system based on visual sensing
JP5620890B2 (en) Cutting method and cutting apparatus
JPH04305370A (en) Automatic welding equipment
US6821064B2 (en) Apparatus for compensating position errors of spindle head and machine tool provided with same
JPS6320638B2 (en)
JPH09123033A (en) Nc machining device
JPH04344872A (en) Automatic welding device
JPH01205891A (en) Method for controlling laser beam machine
JPH0647534A (en) Working device and surface plate for angle steel
JPH0581350B2 (en)
JP2908607B2 (en) Laser processing equipment
JPH02243258A (en) Planer type surface grinder
JP2566544B2 (en) Work processing method for three-dimensional laser processing machine
JP2554257B2 (en) Laser processing machine
JPH03248787A (en) Method and device for automatically correcting welding line in laser beam welding
JPH0569137A (en) Automatic welding device
JP2594435B2 (en) Laser processing equipment
JPS58202979A (en) Automatic welding set
JPS6233071A (en) Mig brazing welding method
JPH05293656A (en) Automatic welding method
JPS6018277A (en) Control device for groove welding
JPH05154657A (en) Vertical plate end face position detecting method for fillet welded joint in automatic welding equipment
JPH03110087A (en) Follow-up control method for three-dimensional laser beam machine
JP2817930B2 (en) How to use welding machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960820