JPS63252496A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS63252496A
JPS63252496A JP8770887A JP8770887A JPS63252496A JP S63252496 A JPS63252496 A JP S63252496A JP 8770887 A JP8770887 A JP 8770887A JP 8770887 A JP8770887 A JP 8770887A JP S63252496 A JPS63252496 A JP S63252496A
Authority
JP
Japan
Prior art keywords
layer
gaas
algaas
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8770887A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aida
相田 宏之
Masazumi Kawaguchi
川口 昌純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8770887A priority Critical patent/JPS63252496A/en
Publication of JPS63252496A publication Critical patent/JPS63252496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To constrict currents positively, and to improve electric thermal characteristics by forming a p-n-p-n junction layer occupying sections except the selective diffusion region of an impurity onto a second clad layer shaped onto an active layer. CONSTITUTION:An n-AlGaAs first clad layer 12 is formed onto the surface of an n-GaAs semiconductor substrate 11 through an epitaxial crystal growth method. An n-GaAs active layer 13, an n-AlGaAs second clad layer 14, a p- AlGaAs current blocking layer 15, an n-AlGaAs current blocking layer 16, an a p-GaAs cap layer 17 are shaped onto the surface of the clad layer 12 through the epitaxial crystal growth method in succession, a region 20 into which Zn is diffused selectively is formed, and electrodes 18, 19 are shaped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体レーザ素子に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a compound semiconductor laser device.

〔従来の技術〕[Conventional technology]

屈折率導波型半導体レーザ素子では、活性層中に屈折率
分布をもった導波路を形成し、これが導波領域となって
水平横モードを決定する。従来、不純物の選択的ドーピ
ングにより活性層中に屈折率差を設ける不純物制御型で
は、第3図に示すように、n−GaAs基[(1)上に
n−Ajl!GaAsクラッド層(2)、n−GaAs
活性層(3)、n−AffiGaAsクラッド層(4)
、p−A/!GaAsの電流ブロック層(5)、n−G
aAsキャップ層を順次形成した後、不純物の選択拡散
によりキャップ層(7)から活性層(3)下のn−Aj
!GaAsクラッド層に入り込む領域(7)をp型に変
えである0発光は活性層p’6M域に閉じ込められたキ
ャリアによって行われ、活性層に平行な方向の水平横モ
ードは、活性層中のキャリア濃度差によって生じる屈折
率差によって制御される。また、電流の狭窄はn−Ga
As層(6)とp−AlGaAsブo 7り層(5)の
ρnヘテロ接合における逆方向バイアスを利用して行わ
れるか、あるいはn−GaAsキャップ層(6)上に絶
縁膜としてSi0g膜を形成し、p SJ!域のStO
□膜を選択エツチングにより除き、電極を形成すること
により行われる。
In a refractive index waveguide semiconductor laser device, a waveguide with a refractive index distribution is formed in the active layer, and this serves as a waveguide region to determine a horizontal transverse mode. Conventionally, in the impurity control type in which a refractive index difference is created in the active layer by selective doping of impurities, as shown in FIG. 3, n-GaAs base [n-Ajl! GaAs cladding layer (2), n-GaAs
Active layer (3), n-AffiGaAs cladding layer (4)
,p-A/! GaAs current blocking layer (5), n-G
After sequentially forming aAs cap layers, the n-Aj layer from the cap layer (7) under the active layer (3) is formed by selective diffusion of impurities.
! By changing the region (7) that enters the GaAs cladding layer to p-type, zero emission is performed by carriers confined in the p'6M region of the active layer, and the horizontal transverse mode in the direction parallel to the active layer is It is controlled by the difference in refractive index caused by the difference in carrier concentration. In addition, current constriction is caused by n-Ga
This is done by using a reverse bias in the ρn heterojunction between the As layer (6) and the p-AlGaAs cap layer (5), or by depositing a SiOg film as an insulating film on the n-GaAs cap layer (6). Form, p SJ! StO in the area
□This is done by removing the film by selective etching and forming electrodes.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながら、n−pへテロ接合面における逆方向バイ
アスにより電流プロングを行う場合、p−Aj!GaA
sブロック層(5)にドリフト電流が注入されて電流狭
窄が不完全になることがあり、また、拡散などの高温処
理をするとn−GaAsキャップ層(6)中にp電極材
が入り込み、n−p接合部の位置かへテロ界面からn−
GaAsキャップ層(6)中に移動し、電流ブロッキン
グ特性が変化するという問題がある。wA縁膜により電
流狭窄を行う場合、絶縁膜が歪を発生させたり、熱伝導
を悪くすることがある。また、p−拡散領域界面全体に
pn接合を形成するため、その一部にでも欠陥が存在す
ると電流リークの原因となりやすい、いずれの構造にお
いても、p電極(8)の接触面積が狭いため、接触抵抗
が大きくなるという問題がある。
However, when performing current prongs with reverse bias at the n-p heterojunction, p-Aj! GaA
Drift current may be injected into the s-block layer (5), resulting in incomplete current confinement, and when high-temperature treatments such as diffusion are performed, the p-electrode material may enter the n-GaAs cap layer (6), resulting in - From the position of the p junction to the hetero interface n-
There is a problem that it migrates into the GaAs cap layer (6) and changes the current blocking properties. When current confinement is performed using a wA edge film, the insulating film may cause distortion or impair heat conduction. In addition, since a pn junction is formed across the entire interface of the p-diffusion region, the presence of defects in even a portion of the junction tends to cause current leakage.In either structure, the contact area of the p-electrode (8) is small; There is a problem that contact resistance increases.

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、電流狭窄を確実に行うととも
に、p!極の接触面積を広げ、接触抵抗を低減すること
により、電気的及び熱的特性に優れた化合物半導体レー
ザ素子を提供することにある。
The present invention has been made in view of the above points.
The purpose of this is to ensure current confinement and p! The object of the present invention is to provide a compound semiconductor laser device with excellent electrical and thermal characteristics by increasing the contact area of the poles and reducing the contact resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明によれば半導体基板と
、該半導体基板上に形成された第1のクラッド層と、該
第1のクラッド層上に形成された活性層と、該活性層上
に形成された第2のクラッド層とから少なくとも構成さ
れ、不純物の選択的拡散により活性層中に屈折率の差を
有する屈折率導波型半導体レーザ素子において、第2の
クランド層上に、不純物の選択的拡散領域以外を占める
p−n−p−n接合層を形成することを特徴とする半導
体レーザ素子が提供される。
In order to achieve the above object, the present invention includes a semiconductor substrate, a first cladding layer formed on the semiconductor substrate, an active layer formed on the first cladding layer, and a semiconductor substrate formed on the active layer. In a refractive index waveguide semiconductor laser device, the semiconductor laser device is composed of at least a second cladding layer formed on the second cladding layer, and has a difference in refractive index in the active layer due to selective diffusion of impurities. A semiconductor laser device is provided, characterized in that a p-n-p-n junction layer is formed that occupies a region other than the selective diffusion region of the semiconductor laser device.

〔作用] 本発明の作用をその一実施例を示す第1図により説明す
る。
[Operation] The operation of the present invention will be explained with reference to FIG. 1 showing one embodiment thereof.

n−GaAs活性層03)上に、n−AlGaAsクラ
ッド104)、p−Aj2GaAsブロック層cつ、n
−Aj!GaAsブロック層0ω、p−GaAsキャッ
プ層07)を順次エピタキシャル成長させた後、Znを
選択的に拡散させてZn−拡散領域elを形成する。こ
の構造ではZn−拡散領域[相]のpの領域を除いてp
−n−p−nのサイリスタ構造が形成され、従来のn−
p−n)ランジスタ構造に比較して、電流はより確実に
Zn−拡散領域(至)に狭窄される。また、従来はp電
極のp拡散領域のみから電流は注入れていたが、本実施
例ではp電極全面から電流は注入され、p電極の接触抵
抗は低減される。
On the n-GaAs active layer 03), an n-AlGaAs cladding 104), a p-Aj2GaAs block layer c,
-Aj! After epitaxially growing a GaAs block layer 0ω and a p-GaAs cap layer 07 in sequence, Zn is selectively diffused to form a Zn-diffusion region el. In this structure, except for the p region of the Zn-diffusion region [phase], p
- n-p-n thyristor structure is formed, and conventional n-p-n thyristor structure is formed.
Compared to pn) transistor structures, the current is more reliably confined to the Zn-diffusion region. Further, conventionally, current was injected only from the p diffusion region of the p-electrode, but in this embodiment, current is injected from the entire surface of the p-electrode, reducing the contact resistance of the p-electrode.

〔実施例〕〔Example〕

以下図面に示した実施例に基づいて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明の一実施例を示す要部断面図で、n−G
aAs基板OD上に、n−AlGaAsクラッド層θり
、n−GaAs活性層03)、n−AffiGaAsク
ラッド層041. p−AI!、GaAsブロック層Q
51.n−AlGaAsブロックNOω、p−GaAs
キャップ層07)を順次エピタキシャル成長させた後、
Znを選択的に拡散させた領域QOを形成し、その後p
電極00を形成する。
FIG. 1 is a cross-sectional view of essential parts showing one embodiment of the present invention, and is
On the aAs substrate OD, an n-AlGaAs cladding layer θ, an n-GaAs active layer 03), an n-AffiGaAs cladding layer 041. p-AI! , GaAs block layer Q
51. n-AlGaAs block NOω, p-GaAs
After epitaxially growing the cap layer 07),
A region QO in which Zn is selectively diffused is formed, and then p
Form electrode 00.

第2図は本発明の他の実施例を示す要部断面図で、n−
AfGaAsブC17り層0ωの上にn−GaAsキャ
ップ層(21)を順次エピタキシャル成長させた後、Z
nを選択的に拡散させた領域な0を形成し、その上にp
−GaAsキャップ層0ηとp電極0[1)を形成する
。この場合においても、p電極0a全面から電流は注入
され接触抵抗を低減する。
FIG. 2 is a cross-sectional view of main parts showing another embodiment of the present invention.
After sequentially epitaxially growing an n-GaAs cap layer (21) on the AfGaAs film C17 layer 0ω, Z
A region 0 is formed by selectively diffusing n, and p
- Form a GaAs cap layer 0η and a p-electrode 0[1). Even in this case, current is injected from the entire surface of the p-electrode 0a, reducing contact resistance.

なお、本発明は実施例に示したG a A s / A
 lGaAs系化合物半導体に限定されることなく、例
えばInP/InGaAsPの化合物半導体を用いて実
施することもできる。また本発明を実施するに際して、
前記実施例のp型とn型を総て反対にすることも出来る
Note that the present invention is based on the G a A s / A
The present invention is not limited to IGaAs-based compound semiconductors, and may also be implemented using, for example, InP/InGaAsP compound semiconductors. Furthermore, when implementing the present invention,
It is also possible to reverse the p-type and n-type in the above embodiments.

〔発明の効果] 以上説明したように本発明によれば、活性層上に形成さ
れた第2のクラッド層上に、不純物の選択的拡散領域以
外を占めるp−n−p”n接合層を形成するため、電流
狭窄を確実にし、かつP電極の接触抵抗を低減するとい
う優れた効果がある。
[Effects of the Invention] As explained above, according to the present invention, a p-n-p"n junction layer is formed on the second cladding layer formed on the active layer, occupying a region other than the selective diffusion region of impurities. This has the excellent effect of ensuring current confinement and reducing contact resistance of the P electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる半導体レーザ素子の−実施例を
示す要部断面、第2図は本発明にかかる半導体レーザ素
子の他の実施例を示す要部断面図、第3図は従来の半導
体レーザ素子の一例を示す要部断面図である。 1.1l−n−GaAs基板、  2.12=−n −
AlGaAsクラッド層、 3.13・=n−GaAs
活性層、 4.14・n−A/l!GaAsクラッド層
、5.15−p−A1.GaAsブo 7り層、  6
 =−n−C;aAsキャップ層、  7・・・p−拡
散領域、8.1B−p電極、 9.19− n @極、
 16−n −A lGaAsブロック層、 17−p
−GaAsキ+ツブ層、 20・・・Zn−拡散領域。
FIG. 1 is a cross-sectional view of a main part showing an embodiment of a semiconductor laser device according to the present invention, FIG. 2 is a cross-sectional view of a main part showing another embodiment of a semiconductor laser device according to the present invention, and FIG. FIG. 2 is a cross-sectional view of a main part of an example of a semiconductor laser device. 1.1l-n-GaAs substrate, 2.12=-n −
AlGaAs cladding layer, 3.13・=n-GaAs
Active layer, 4.14·n-A/l! GaAs cladding layer, 5.15-p-A1. GaAs layer 7 layer, 6
=-n-C; aAs cap layer, 7...p-diffusion region, 8.1B-p electrode, 9.19-n@pole,
16-n -AlGaAs block layer, 17-p
-GaAs chip layer, 20...Zn- diffusion region.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板と、該半導体基板上に形成された第1のクラ
ッド層と、該第1のクラッド層上に形成された活性層と
、該活性層上に形成された第2のクラッド層とから少な
くとも構成され、不純物の選択的拡散により活性層中に
屈折率の差を有する屈折率導波型半導体レーザ素子にお
いて、第2のクラッド層上に、不純物の選択的拡散領域
以外を占めるp−n−p−n接合層を形成することを特
徴とする半導体レーザ素子。
At least a semiconductor substrate, a first cladding layer formed on the semiconductor substrate, an active layer formed on the first cladding layer, and a second cladding layer formed on the active layer. In a refractive index guided semiconductor laser device having a difference in refractive index in the active layer due to selective diffusion of impurities, a p-n- A semiconductor laser device characterized by forming a pn junction layer.
JP8770887A 1987-04-09 1987-04-09 Semiconductor laser element Pending JPS63252496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8770887A JPS63252496A (en) 1987-04-09 1987-04-09 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8770887A JPS63252496A (en) 1987-04-09 1987-04-09 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS63252496A true JPS63252496A (en) 1988-10-19

Family

ID=13922413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8770887A Pending JPS63252496A (en) 1987-04-09 1987-04-09 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS63252496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105234A (en) * 1988-11-29 1992-04-14 U.S. Philips Corporation Electroluminescent diode having a low capacitance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105234A (en) * 1988-11-29 1992-04-14 U.S. Philips Corporation Electroluminescent diode having a low capacitance

Similar Documents

Publication Publication Date Title
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
JPH0525389B2 (en)
JPS63140570A (en) Semiconductor device
US4967254A (en) Semiconductor device
JP2689057B2 (en) Static induction semiconductor device
JPS63252496A (en) Semiconductor laser element
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
CA1237538A (en) Lateral bipolar transistor
JP2708492B2 (en) Method for manufacturing semiconductor device
GB2151078A (en) Semiconductor devices
JPH05299771A (en) Semiconductor laser diode
JP3755107B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JPS61206263A (en) Hetero-bipolar type semiconductor device
JPS62147769A (en) Gto thyristor
JPS61139082A (en) Semiconductor light-emitting device
JPS62108569A (en) Semiconductor device
JPS63193573A (en) Waveguide type phototransistor
JPS61274360A (en) Semiconductor superlattice element
JPH0483346A (en) Bipolar transistor and its manufacture
JPH02211631A (en) Manufacture of horizontal bipolar transistor
JPS6366430B2 (en)
JPH04280435A (en) Bipolar transistor and manufacture thereof
JPS63252475A (en) Hetero junction bipolar transistor
JPS635564A (en) Hetero junction bipolar transistor
JPH0210747A (en) Semiconductor integrated circuit device and its manufacture