JPS63252261A - Ac current measuring apparatus - Google Patents

Ac current measuring apparatus

Info

Publication number
JPS63252261A
JPS63252261A JP62087571A JP8757187A JPS63252261A JP S63252261 A JPS63252261 A JP S63252261A JP 62087571 A JP62087571 A JP 62087571A JP 8757187 A JP8757187 A JP 8757187A JP S63252261 A JPS63252261 A JP S63252261A
Authority
JP
Japan
Prior art keywords
flux density
magnetic field
current
winding
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087571A
Other languages
Japanese (ja)
Inventor
Terushi Katsuyama
勝山 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62087571A priority Critical patent/JPS63252261A/en
Publication of JPS63252261A publication Critical patent/JPS63252261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure AC to be measured accurately with a small device, by a method wherein a winding is applied on a small piece of a ferromagnetic body to make a detecting body and an electromotive force is measured as induced in the winding with changes in a magnetic field due to the AC being measured. CONSTITUTION:A small piece 11 of a ferromagnetic body with a large relative permeability and a large residual flux density and with a small holding force having a so-called angular magnetizing property is used and a winding 13 is applied on the circumference thereof to build a detecting body 15. When the detecting body 15 is arranged close to a conductor 16 to be detected, changes in a magnetic field due to an AC to be detected are detected with the detecting body 15 and an electromotive force is induced in the winding 13. The magnetic small piece 11 is linear in the relation between an external magnetic field and a flux density until the flux density reaches a saturation value, minimizing effect of hysteresis while rate of hourly change in the flux density is large. This enables accurate measurement of relatively large AC thereby miniaturizing the apparatus as a whole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電磁誘導を利用して交流電流を測定する装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for measuring alternating current using electromagnetic induction.

〔従来の技術〕[Conventional technology]

従来技術によるこの種の交流電流測定装置として第6図
に示す変流器(CT)や、第7図に示すクランプ式変流
器が知られている。第6図の変流器は鉄心1に被測定交
流電流11の流れる導体を一次巻線2とし前記の被測定
交流電流ilによる鉄心中の磁束変化で二次巻I!3に
誘起された二次電流12を負荷4である電流計で読み取
るか、あるいはこの負荷4を抵抗で構成してその両端の
電圧を測定ゝ− するものである、第7図のクランプ式変流器は鉄心5の
一部に開閉可能な開閉部6をもつ構造となっており、被
測定交流電流i1の流れる導体7を鉄心中に挿入して1
巻線8に誘起された二次電流12を第1図と同様な方法
で(1111定するので、測定装置を11の流れる回路
に挿入することなく測定できるという長所を備えている
As conventional alternating current measuring devices of this type, a current transformer (CT) shown in FIG. 6 and a clamp type current transformer shown in FIG. 7 are known. The current transformer shown in FIG. 6 has a primary winding 2 as a conductor through which an AC current 11 to be measured flows through an iron core 1, and a secondary winding I! In the clamp type modification shown in Fig. 7, the secondary current 12 induced in the load 4 is read by an ammeter which is the load 4, or the load 4 is composed of a resistor and the voltage across it is measured. The current device has a structure in which a part of the iron core 5 has an opening/closing part 6 that can be opened and closed, and a conductor 7 through which the AC current to be measured i1 flows is inserted into the iron core.
Since the secondary current 12 induced in the winding 8 is determined in the same manner as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の変流器はいずれも鉄心を備えるために数m程度の
大きさで構成されることになり、特に小型化が進められ
ている制御装置の制御回路の電流の測定が困難となって
きている。特に第6図の変流器を制御回路に絹み込んで
、二次巻線の出力を制御信号として利用する上で、変流
器の寸法の大きさが問題となっている。
All of the current transformers mentioned above are equipped with iron cores, so they are approximately several meters in size, making it difficult to measure the current in the control circuits of control devices, which are becoming increasingly miniaturized. There is. In particular, when the current transformer shown in FIG. 6 is incorporated into a control circuit and the output of the secondary winding is used as a control signal, the size of the current transformer poses a problem.

この発明は上記の問題点を解決して比較的大きな交流電
流を小型で正確に測定できる装置を提供することを目的
としている。
It is an object of the present invention to solve the above-mentioned problems and provide a small-sized device capable of accurately measuring relatively large alternating currents.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は比透磁率と残留磁束密度が大でいわゆる角形
の磁化特性をもちかつ保磁力の小さい強磁性体の小片が
、反磁界の作用により磁束密度が飽和値に達する近傍ま
で外部磁界と磁束密度との関係に直線性をもつようにな
ることと、保磁力が小さいためにヒステリシスの影響が
無視できること、さらには残留磁束密度が大きいために
磁束密度の時間変化上が大きいこととを利用して、小形
の交流電流測定装置を構成するものである。
In this invention, a small piece of ferromagnetic material with high relative magnetic permeability and residual magnetic flux density, so-called rectangular magnetization characteristics, and low coercive force is exposed to an external magnetic field and magnetic flux until the magnetic flux density reaches a saturation value due to the action of a demagnetizing field. It takes advantage of the fact that the relationship with density is linear, the coercive force is small so the effect of hysteresis can be ignored, and the residual magnetic flux density is large so the change in magnetic flux density over time is large. This constitutes a small alternating current measuring device.

すなわち前記の強磁性体の小片に巻線を施して検出体と
し被測定交流電流による磁界の時間変化で巻線に誘起さ
れる起電力を測定する。この起電力は被測定交流電流値
の時間微分に比例するので。
That is, a small piece of the ferromagnetic material is wound with a wire and used as a detection object to measure the electromotive force induced in the winding due to the time change of the magnetic field caused by the alternating current to be measured. This electromotive force is proportional to the time derivative of the AC current value to be measured.

さらに積分回路を備えて検出体出力を積分して被測定交
流電流値相補の出力を得るように装置を構成する。しか
し被測定交流電流の波形が正弦波である場合には積分回
路を省略できる。
Furthermore, the apparatus is configured to include an integrating circuit so as to integrate the output of the object to be detected and obtain an output complementary to the value of the AC current to be measured. However, if the waveform of the AC current to be measured is a sine wave, the integrating circuit can be omitted.

この際前記の強磁性体の小片は保磁力Hcが交流電流の
作る磁界トIとその交流電流の相対的測定精度する。さ
らに反磁界係数Nが測定範囲における最大電流の作る磁
界)1maxと!空透磁率μ0との積を残留磁束密度B
rで除した商μoHmax/Brに対してN〉μOHm
aX/B r  となる形状を与えるようにする。
At this time, the coercive force Hc of the small piece of ferromagnetic material determines the relative measurement accuracy of the magnetic field I generated by the alternating current and the alternating current. Furthermore, the demagnetizing field coefficient N (magnetic field created by the maximum current in the measurement range) is 1max! The product of the air permeability μ0 is the residual magnetic flux density B
N〉μOHm for the quotient μoHmax/Br divided by r
A shape such as aX/B r is given.

〔作用〕    ・ 比透磁率と残留磁束密度が大きくかつ保磁力の小さい強
磁性体では、比透磁率と残留磁束密度とが大きいことに
より磁界Hに対する磁束密度Bは磁界Hが保磁力Hcに
相当する所で磁束密度が飽和値に津するまでB軸にほぼ
平行な直線となり、いわゆる角形の磁化特性を示す、さ
らに保磁力Hcが小さいため、前記の磁化特性はB軸と
ほぼ一致するものとみなせる。また強磁性体の形状を反
磁界係数がある程度大きいものとし、磁化の強さと比例
する反磁界の影響を受けやすくすると、残留磁束密度の
近傍まで磁束密度と磁界との間に比例関係が成!するよ
うになる。
[Effect] - In a ferromagnetic material that has a large relative magnetic permeability and residual magnetic flux density and a small coercive force, the magnetic flux density B for the magnetic field H is equivalent to the coercive force Hc due to the large relative magnetic permeability and residual magnetic flux density. At this point, the magnetic flux density becomes a straight line almost parallel to the B axis until it reaches the saturation value, exhibiting a so-called rectangular magnetization characteristic.Furthermore, since the coercive force Hc is small, the above magnetization characteristic almost coincides with the B axis. It can be considered. Furthermore, if the shape of the ferromagnetic material is made to have a somewhat large demagnetizing field coefficient and is susceptible to the influence of the demagnetizing field which is proportional to the strength of magnetization, a proportional relationship will be established between the magnetic flux density and the magnetic field up to the vicinity of the residual magnetic flux density! I come to do it.

測定する交流電流およびその時間変化率は、磁界および
その時間変化率と比例関係にあり、したがってこの強磁
性体の磁束密度およびその時間変化率は測定電流と比例
する。このためこの強磁性体に巻線を施して検出体とす
ると、検出体の巻線には測定電流の時間変化上すなわち
時間微分に比例する起電力が誘起される。そこでこの誘
起起電力を積分回路で時間的に積分して測定電流に比例
する出力を得る。測定電流の波形が正弦波であると、そ
の微分波形も正弦波となるので、この場合は積分回路を
省略でき、検出体のみで測定装置が構成できる。
The alternating current to be measured and its rate of change with time are proportional to the magnetic field and its rate of change with time, and therefore the magnetic flux density of this ferromagnetic material and its rate of change with time are proportional to the measured current. Therefore, when this ferromagnetic material is wound with a wire to form a detection object, an electromotive force proportional to the time change of the measured current, that is, the time differential, is induced in the winding of the detection object. Therefore, this induced electromotive force is temporally integrated by an integrating circuit to obtain an output proportional to the measured current. If the waveform of the measurement current is a sine wave, its differential waveform will also be a sine wave, so in this case, the integrating circuit can be omitted and the measuring device can be configured only with the detection object.

前記の強磁性体の保磁力Hcが測定電流の作る磁界Hと
その測定電流の相対的測定精度との積Hεと変形される
。この2Hcは前記の強磁性体のヒステリシスの幅に相
当するので、この2HC/H<εという関係は測定電流
の作る磁界に対してヒステリシスの影響が測定精度以下
になることを示すものである。また反磁界係数Nが測定
範囲における最大電流の作る磁界)1maxと真空透磁
基μ0との積を残留磁束密度Brで除した商μ6 Hm
ax/Hrに対してN〉μ6 Hmax/Brとなる形
状を与えると、この関係はNHr/μo > Hmax
と変形され、かツN B r/ μ6は残留磁束密度B
rを与える磁界Hrに等しいため、 −前記の変形され
た関係はHr >Hmaxすなわち測定範囲における最
大電流の作る磁界HmaXは磁束を飽和させる磁界より
小さいので、前記の反磁界係数を与えることにより、測
定範囲における直線性が保たれる。さらに残留磁束密度
が太きいために磁束密度の時間変化率を大きくできるの
で1強磁性体の小片に施した巻線に十分な大きさの起電
力が誘起される。
The coercive force Hc of the ferromagnetic material is transformed into the product Hε of the magnetic field H generated by the measurement current and the relative measurement accuracy of the measurement current. Since this 2Hc corresponds to the width of the hysteresis of the ferromagnetic material, the relationship 2HC/H<ε indicates that the influence of hysteresis on the magnetic field created by the measurement current is less than the measurement accuracy. In addition, the demagnetizing field coefficient N is the quotient μ6 Hm obtained by dividing the product of the magnetic field produced by the maximum current in the measurement range (1max) and the vacuum permeability base μ0 by the residual magnetic flux density Br.
If we give a shape where N〉μ6 Hmax/Br for ax/Hr, this relationship becomes NHr/μo > Hmax
, and N B r/μ6 is the residual magnetic flux density B
Since it is equal to the magnetic field Hr that gives r, - the above modified relationship is Hr > Hmax, that is, the magnetic field HmaX created by the maximum current in the measurement range is smaller than the magnetic field that saturates the magnetic flux, so by giving the above demagnetizing field coefficient, Linearity is maintained over the measurement range. Furthermore, since the residual magnetic flux density is large, the time rate of change of the magnetic flux density can be increased, so that a sufficiently large electromotive force is induced in the winding formed on the small piece of ferromagnetic material.

〔実施例) 第1図はこの発明の実施例を示した斜視図である。比透
磁率と残留磁気が大きく保持力の小さい強磁性体として
厚さ約IμmのCO系アモルファス合金の薄帯を用い、
これを幅約1mi&、長さ10101lに切断した小片
を積層し、厚さ約Q、71mの角柱状強磁性体片IJと
する。この角柱状強磁性体片INこ直径Q、11mの極
く細い絶縁鋼線12で巻線13を施し、さらに全体に点
線で示す樹脂などのモールド14を施して検出体15を
構成する。この検出体15を交流電流iの流れている導
体16に接触させるかあるいは適当な距離をおくかして
配置する。交流電流iの作る磁界Hは矢印で示した方向
を向いており、角柱状強磁性体片11の1 *m x 
O,7mの面が磁界の方向とほぼ垂直になるように設置
する。上記の構成の角柱状強磁性体片1】においては保
磁力Hcは0.4A・m 、最大比透磁率μSは2.5
xlO,飽和磁束密度BSハ0.55 ’l’ 、残留
磁束密度は0.457 a反磁界係数Nは約0.015
である。反磁界係数については後に述べる。
[Embodiment] FIG. 1 is a perspective view showing an embodiment of the present invention. A thin strip of CO-based amorphous alloy with a thickness of approximately I μm was used as a ferromagnetic material with high relative permeability and residual magnetism and low coercive force.
This was cut into pieces of about 1 mi wide and 10101 l long, and the pieces were laminated to form a prismatic ferromagnetic piece IJ with a thickness of about Q and 71 m. This prismatic ferromagnetic piece IN is wound with an extremely thin insulated steel wire 12 having a diameter Q of 11 m, and a detection body 15 is constructed by applying a mold 14 made of resin or the like to the entire body as shown by dotted lines. The detecting body 15 is placed in contact with the conductor 16 through which the alternating current i flows, or is placed at an appropriate distance. The magnetic field H created by the alternating current i is directed in the direction shown by the arrow, and is 1 * m x of the prismatic ferromagnetic piece 11.
Install it so that the 7m plane is almost perpendicular to the direction of the magnetic field. In the prismatic ferromagnetic piece 1 with the above configuration, the coercive force Hc is 0.4 A・m, and the maximum relative permeability μS is 2.5.
xlO, saturation magnetic flux density BS is 0.55 'l', residual magnetic flux density is 0.457 a, demagnetizing field coefficient N is approximately 0.015
It is. The demagnetizing field coefficient will be discussed later.

検出体15の出力は絶縁鋼線12に接続された接続導線
】7を介して積分器18に与えられる。後に説明するよ
うに、この積分器18が導体16を流れる電流iに相当
する出力を与える。電流iが正弦波の場合はこの積分器
18を省略することが可能である。
The output of the detector 15 is given to an integrator 18 via a connecting conductor 7 connected to an insulated steel wire 12. As will be explained later, this integrator 18 provides an output corresponding to the current i flowing through the conductor 16. If the current i is a sine wave, this integrator 18 can be omitted.

ここでこの発明による測定原理を説明する。The measurement principle according to the present invention will now be explained.

保磁力が小さく比透磁率と残留磁束密度の大きな強磁性
体の磁化の強さJと外部磁界14との関係を第2図に実
線で示す。この強磁性体は磁界Hに対する磁化の強さJ
の文上りが大きく、いわゆる角形の磁化特性をもつ。し
かし実際には磁化され 。
The relationship between the magnetization strength J of a ferromagnetic material having a small coercive force and a large relative magnetic permeability and residual magnetic flux density and the external magnetic field 14 is shown by a solid line in FIG. This ferromagnetic material has magnetization strength J in response to magnetic field H
The magnetic field has a large rise, and has a so-called rectangular magnetization characteristic. However, it is actually magnetized.

た磁性体は、その磁性体自身の磁極が作る磁界の影響を
うける。この゛磁界を反磁界といい、その方向は外部の
磁界の方向すなわち磁化の方向と反対である。すなわち
外部の磁界をH,、%磁性体内部の磁界をB21反磁界
をHdとすれば B2:= 8l−Hd             +1
1であり、Hdは で与えられる。ここでNは反磁界係数、Jは磁化の強さ
、μ0は真空透磁率である。(11、(21式より外部
磁界H1は で示される。第1図に実線で示したJとHとの関係は強
磁性体外部の磁界と内部の磁界とが同等すなわちH=8
2としたものであり、B2とJとの関係を示すものであ
る。したがって実線で示した特性をB2: f TJI
であられせば、実際の磁化の強さJと外部磁界Hとの関
係は(3)式でt−t=H,とじてとなる。これはJ軸
についての特性f IJIに(2)式で与えられる直線
すなわちJ軸についての勾配か−μO である直線についての各Jの値に対応するHの値を加え
たものとして示され、その結果は第2図の点線のように
なる。
A magnetic material is affected by the magnetic field created by the magnetic material's own magnetic poles. This magnetic field is called a demagnetizing field, and its direction is opposite to the direction of the external magnetic field, that is, the direction of magnetization. That is, if the external magnetic field is H, the magnetic field inside the magnetic body is B21, and the demagnetizing field is Hd, then B2:= 8l-Hd +1
1, and Hd is given by. Here, N is the demagnetizing field coefficient, J is the magnetization strength, and μ0 is the vacuum permeability. (11, (From equation 21, the external magnetic field H1 is expressed as
2 and shows the relationship between B2 and J. Therefore, the characteristics shown by the solid line are B2: f TJI
If so, the relationship between the actual magnetization strength J and the external magnetic field H is expressed as t−t=H in equation (3). This is expressed as the characteristic f IJI about the J-axis plus the value of H corresponding to each value of J about the straight line given by equation (2), that is, the slope about the J-axis, or the straight line whose slope is −μO. The result looks like the dotted line in Figure 2.

一般に磁束密度Bと磁界Hとの関係は B=μ、 H+ J             (51
で与えられるが%強磁性体ではJ)μ、HであるためB
=Jと考えてよい。したがって第2図に示すJとHの関
係はそのままBと11との関係に噴きかえることができ
る。特に第2図のように比透磁率と残留磁束密度Brの
大きい強磁性体では、磁束密度Bと磁界日との関係は%
磁束密度が残留磁束密jl Brより小さい場合には保
持力をHcとするとl]2=±Hc         
      (61で与えられるので1反磁界の影響を
考慮した場合の磁束密度Bと磁界Hとの関係は(41式
においてJ =B、 flJl==f(Bl=±Hc 
  とおくことによって第2図の点線の特性は H=±Hc + N             171
μO で与えられる。(71式よりBを求めると磁WHに対し
て二つの磁束密度Bl、 B2が得られる。
Generally, the relationship between magnetic flux density B and magnetic field H is as follows: B=μ, H+ J (51
However, in ferromagnets, J) μ, H, so B
= J. Therefore, the relationship between J and H shown in FIG. 2 can be directly converted into the relationship between B and 11. In particular, for ferromagnetic materials with large relative magnetic permeability and residual magnetic flux density Br as shown in Figure 2, the relationship between magnetic flux density B and magnetic field day is %
If the magnetic flux density is smaller than the residual magnetic flux density jl Br, let the coercive force be Hc, then l]2=±Hc
(Since the relationship between the magnetic flux density B and the magnetic field H when considering the influence of one demagnetizing field is given by
By setting, the characteristic of the dotted line in Figure 2 becomes H=±Hc + N 171
It is given in μO. (When B is calculated from Equation 71, two magnetic flux densities Bl and B2 are obtained for the magnetic WH.

u、=N (HHc )           (81
1h=ぜ(H+Hc )          +9+1
31# Bzとの差ΔBをとると ΔB = 2 、 HC(10) である。さらにBl、 B2の算術平均としてのBを考
えると、 となる。(1])式は磁束密度Bが磁界Hに比例するこ
とを示している。したがって保磁力HCの十分に小さい
強磁性体を選定すれば、Bに対してΔBが十分小となっ
てヒステリシスの影響を無視できて、磁束密度Bと磁界
Hとの間には(1])式によって与えられる比例関係が
成文するようになる。この場合保磁力Hcの満すべき条
件については後に述べる。
u,=N (HHc) (81
1h=ze(H+Hc) +9+1
Taking the difference ΔB from 31#Bz, ΔB = 2, HC(10). Furthermore, considering B as the arithmetic mean of Bl and B2, it becomes. Equation (1) shows that the magnetic flux density B is proportional to the magnetic field H. Therefore, if a ferromagnetic material with a sufficiently small coercive force HC is selected, ΔB will be sufficiently small with respect to B and the influence of hysteresis can be ignored, and the relationship between the magnetic flux density B and the magnetic field H will be (1]) The proportional relationship given by the formula comes to be codified. The conditions that the coercive force Hc should satisfy in this case will be described later.

この強磁性体で角柱状強磁性体片11を形成し。A prismatic ferromagnetic piece 11 is formed from this ferromagnetic material.

これに巻線を施して検出体15として交流電流五の流れ
ている導体16の近傍に配置すると、電磁誘導により巻
線に誘起される起電力eは巻線を通る磁束をΦとすると
1時間をtとして で与えられる。K1は定数である。−力測定電流lによ
る検出体14近傍の磁界Hは H= K27.(13) で与えられる。K2は定数、eは角柱状強磁性体片11
の中心と導体16の厚さ方向の中央との距離である。(
12) 、 (13)式とB、Hの間の比例関係を示す
(1])式とから i e=に3石             (14)が導か
れ、したがって ”                 (15)”°に
fedt となる。すなわち巻線に誘起された起電力eを積分器1
8によって積分することによって、積分器IBは測定電
流iに相当する出力を与える。ただし測定電流波形が正
弦波である場合には、その積分波形も正弦波であるため
、積分器18を省略することができる。以上がこの発明
の装置による測定原理である。
When this is wound with a wire and placed as a detecting object 15 near the conductor 16 through which an alternating current 5 flows, the electromotive force e induced in the winding by electromagnetic induction will be 1 hour when the magnetic flux passing through the winding is Φ. is given as t. K1 is a constant. -The magnetic field H near the detection object 14 due to the force measurement current l is H=K27. (13) is given by. K2 is a constant, e is a prismatic ferromagnetic piece 11
This is the distance between the center of the conductor 16 and the center of the conductor 16 in the thickness direction. (
12) From equation (13) and equation (1) showing the proportional relationship between B and H, 3 stones (14) are derived for i e=, and therefore "(15)" becomes fedt. In other words, the electromotive force e induced in the winding is transferred to the integrator 1.
By integrating by 8, the integrator IB provides an output corresponding to the measured current i. However, when the measured current waveform is a sine wave, the integral waveform is also a sine wave, so the integrator 18 can be omitted. The above is the principle of measurement by the apparatus of this invention.

既に記したようにこの発明による装置を構成するために
は強磁性体の保磁力Hcが十分に小さく。
As already mentioned, the coercive force Hc of the ferromagnetic material is sufficiently small in order to construct the device according to the present invention.

ヒステリシスの影響が無視できることが必要であり、こ
れを実現するための条件を説明する。
It is necessary that the influence of hysteresis can be ignored, and the conditions for achieving this will be explained.

測定電流iの相対的測定誤差をξとすれば、測定電流i
とそれの作る磁界との比例関係および(11)式の比例
関係を考慮して である。ここでΔi、ΔHε、ΔBεはそれぞれ電流の
測定誤差、Δiに対応する磁界および磁束密度の変動範
囲である。したがってヒステリシスの影響が測定上問題
とならないためには(10) 、 (11) e (1
6)式である。この(13)式からヒステリシスの影響
が無視できる条件として Hc <+ Hε               (1
8)が与えられる0以上が強磁性体の保磁力Hcの満す
べき条件の説明である。
If the relative measurement error of the measured current i is ξ, then the measured current i
This is done by considering the proportional relationship between the magnetic field and the magnetic field it creates, and the proportional relationship of equation (11). Here, Δi, ΔHε, and ΔBε are the current measurement error, and the variation range of the magnetic field and magnetic flux density corresponding to Δi, respectively. Therefore, in order for the influence of hysteresis not to be a problem in measurement, (10), (11) e (1
6) is the formula. From this equation (13), the condition under which the influence of hysteresis can be ignored is Hc <+ Hε (1
8) is given, which explains the condition that the coercive force Hc of the ferromagnetic material must satisfy.

一方(l])式で示される磁束密度Bと磁界Hとの間の
比例関係は、電流の測定範囲全域にわたって成Vするこ
とが必要であり、その条件について説明する。
On the other hand, the proportional relationship between the magnetic flux density B and the magnetic field H expressed by equation (l) needs to be established over the entire current measurement range, and the conditions will be explained below.

上記の条件に対しては測定範囲における最大電流の作る
磁界)’maXによる磁束密度が飽和しないことが前提
となる。そのためには第2図かられかるように飽和磁束
密度BSより小さい聾留磁束密度Brを目安とし、この
Brに相当する磁束密度を与える磁界HrよりI]ma
Xが小であればよい。すなわちである。(19)式より であることが導かれる。これは強磁性体片の反磁界係数
Nが満すべき条件である。すなわち第2図の点線の特性
の傾斜はNが小となれば大となり。
For the above conditions, it is assumed that the magnetic flux density due to the magnetic field )'maX produced by the maximum current in the measurement range does not saturate. To do this, as shown in Figure 2, a deafening magnetic flux density Br smaller than the saturation magnetic flux density BS is used as a guide, and a magnetic field Hr that gives a magnetic flux density equivalent to this Br is I]ma.
It is sufficient if X is small. In other words. It is derived from equation (19). This is a condition that the demagnetizing field coefficient N of the ferromagnetic piece must satisfy. In other words, the slope of the characteristic shown by the dotted line in FIG. 2 increases as N decreases.

直線性の成文する磁界の範囲がせまくなるので、Nが測
定に必要な磁界の大きさに応じである程度大でなければ
ならぬことを示している。Nは強磁性体片の形状に依存
し、磁極の影響をうけやすい形状のものほどその値が大
きい。すなわち磁界の方向に平行な長さをもつ強磁性体
片では、その長さの磁界の方向に垂直な断面積に対する
比が小さいほど、すなわち長さが短いはどNが大となる
This indicates that N must be large to some extent depending on the magnitude of the magnetic field required for measurement, since the range of the magnetic field where linearity is expressed becomes narrow. N depends on the shape of the ferromagnetic material piece, and the value is larger as the shape is more susceptible to the influence of the magnetic pole. That is, in a ferromagnetic piece having a length parallel to the direction of the magnetic field, the smaller the ratio of the length to the cross-sectional area perpendicular to the direction of the magnetic field, that is, the shorter the length, the larger the N becomes.

以上が強磁性体の反磁界係数の満すべき条件の説明であ
る。
The above is an explanation of the conditions that the demagnetizing field coefficient of a ferromagnetic material must satisfy.

第3図は第1図に示した実施例によって電流を測定した
結果であって、導体電流は50Hzの正弦波である。検
出体15の出力を増幅した後積分器に与えており、測定
電流の実効値と積分器の出力電圧との関係を示したもの
である。導体電流は導体16に直列に接続した電流計に
よって測定した値であって、装置の出力は50Aまでの
測定電流に対して直線関係にある。
FIG. 3 shows the results of measuring the current according to the embodiment shown in FIG. 1, and the conductor current is a 50 Hz sine wave. The output of the detection body 15 is amplified and then fed to the integrator, and shows the relationship between the effective value of the measured current and the output voltage of the integrator. The conductor current is measured by an ammeter connected in series with the conductor 16, and the output of the device is linearly related to the measured current up to 50A.

この場合の導体16の中央部に設置された検出体15の
中心における磁界HはMKS単位によってH= −!−
log(πゴq石+ヨー)   (21)aπ   T
+t      T+t で与えられる。ここでiは電流値、aは導体16の幅、
tは゛導体16の厚み、Tは検出体15の厚みである。
In this case, the magnetic field H at the center of the detecting body 15 installed at the center of the conductor 16 is H=-! in MKS units. −
log (π stone + yo) (21) aπ T
+t is given by T+t. Here, i is the current value, a is the width of the conductor 16,
t is the thickness of the conductor 16, and T is the thickness of the detection body 15.

これは導体16の厚みtが導体16の幅aにくらべて薄
いので、導体16の中央を原点とし、幅方向にX軸をと
り、導体16を幅dx、厚さtの導体の集合体と考える
と幅dxの導体を流れる電流が検出体の中心に作る磁界
dHが となることから 見 H=2f2dH によって導いたものである。
This is because the thickness t of the conductor 16 is thinner than the width a of the conductor 16, so with the center of the conductor 16 as the origin and the X axis in the width direction, the conductor 16 can be defined as an aggregate of conductors with a width dx and a thickness t. Considering this, the magnetic field dH created at the center of the detection object by a current flowing through a conductor with width dx is derived from H=2f2dH.

第1図に示した実施例ではa=1(111層、 i’=
3am。
In the embodiment shown in FIG. 1, a=1 (111 layers, i'=
3am.

t = 1 mmであり、最大測定電流50A(実効値
)による磁界1−1を(21)式によって求めると電流
のピーク値すなわち70.71に対する磁界HはH= 
3708Am−’となる。
t = 1 mm, and when the magnetic field 1-1 due to the maximum measured current of 50 A (effective value) is calculated using equation (21), the magnetic field H for the peak value of the current, that is, 70.71, is H =
3708 Am-'.

この磁界に対して強磁性体の保磁力Hcについて(18
)式で与えられる条件を適用すると1通常要求される相
対的測定精度は最大測定値の0.1〜0.5%であるか
ら(18)式において H=3708Am  、  i=0.1%=10  と
すると11c <1.85 Am−”        
 (24)である。この実施例では既に記したようにH
c=Q、 4 Am”であるので(18)式の条件が満
足されていることがわかる。
Regarding the coercive force Hc of the ferromagnetic material in response to this magnetic field (18
) Applying the conditions given by formula 1 Since the normally required relative measurement accuracy is 0.1 to 0.5% of the maximum measured value, in formula (18), H = 3708Am, i = 0.1% = 10, then 11c <1.85 Am-”
(24). In this example, as already mentioned, H
Since c=Q, 4 Am'', it can be seen that the condition of equation (18) is satisfied.

さらに反磁界係数Nについて(20)式を適用すると、
  μQ = 4πxlO、8m2)(= 3708 
Am−’ 、  Br=0.45Tであることから N>0.0104             (25)
となる。既に記したように角柱状強磁性体片11は長さ
10n1幅約I IImの薄板を厚さ9.7 fitに
積層してあり、断面は比較的正方形に近く、また断面に
比して長さが長い。薄板の積層であるため実質断面積は
みかけの断面積の90%程度であるとして、この角柱状
強磁性体片1】を断面積等価の丸棒で置きかえると、そ
の等価直径・dはd : Q、 91nとなる。したが
って直径に対する長さの比にはに==11.1である。
Furthermore, applying equation (20) to the demagnetizing field coefficient N, we get
μQ = 4πxlO, 8m2) (= 3708
Since Am-' and Br=0.45T, N>0.0104 (25)
becomes. As already mentioned, the prismatic ferromagnetic material piece 11 is made by laminating thin plates with a length of 10n and a width of about IIIm to a thickness of 9.7fit, and the cross section is relatively close to a square, and the length is longer than the cross section. It's long. Assuming that the actual cross-sectional area is about 90% of the apparent cross-sectional area since it is a stack of thin plates, if this prismatic ferromagnetic piece 1 is replaced with a round bar with an equivalent cross-sectional area, its equivalent diameter d is d: Q, it becomes 91n. Therefore, the length to diameter ratio is ==11.1.

丸棒についてのkとNとの関係は、第4図に示すBoz
orthによるもの(Bozorth著: Ferro
m−agn6tism、 D、 Van No5tra
nd、 P、849 (1951) )がよく知られて
おり、これについてに=11.1に対応するNを内挿し
て求めるとN=0.015となる。これにより(23)
式の条件にしたがって反磁界係数に関する(20)式の
条件が満されていることが示される。
The relationship between k and N for a round bar is shown in Figure 4.
By Bozorth: Ferro
m-agn6tism, D, Van No5tra
nd, P, 849 (1951)) is well known, and by interpolating N corresponding to =11.1, N=0.015 is obtained. With this (23)
It is shown that the condition of equation (20) regarding the demagnetizing field coefficient is satisfied according to the conditions of the equation.

出力、下方の波形が測定電流のものである。測定電流の
波形と積分器の出力波形は全く同一で、波形の歪んでい
る電流でもこの発明の装置は問題な(測定できることを
示している。
Output, the lower waveform is of the measured current. The waveform of the measured current and the output waveform of the integrator are exactly the same, indicating that the device of the present invention can measure even currents with distorted waveforms.

強磁性体として用いたアモルファス合金は高周波特性も
きわめてすぐれており、  100 kHz程度の高周
波領域まで使用することができる。しかも高周波の場合
は磁束密度の時間変化系が大ヲ妊るので、これにともな
って磁性体の断面積を小さくでき、巻線の巻数も少なく
できるので、検出体15をさらに小形にできる。
The amorphous alloy used as the ferromagnetic material also has extremely excellent high frequency characteristics and can be used up to a high frequency range of about 100 kHz. Moreover, in the case of high frequencies, the time-varying system of magnetic flux density becomes large, so that the cross-sectional area of the magnetic material can be reduced, and the number of turns of the winding can also be reduced, so that the detection body 15 can be made even smaller.

〔発明の効果〕〔Effect of the invention〕

この発明によれば比透磁率と残留磁束密度が大きく、保
磁力が小さく1反磁界係数がある程度の大きさとなる形
状の強磁性体の小片に巻線を施した検出体で交流電流を
電磁誘導番こよって測定するようにしたので、装置を測
定電流の流れる回路に接続することなく測定ができる。
According to this invention, alternating current is induced by electromagnetic induction using a detecting body made of a wire wound around a small piece of ferromagnetic material that has a large relative magnetic permeability and residual magnetic flux density, a small coercive force, and a certain degree of 1 demagnetizing field coefficient. Since the measurement is carried out depending on the current, the measurement can be carried out without connecting the device to a circuit through which the measurement current flows.

また強磁性体は保磁力が小さいのでヒステリシスの影響
が無視できて精度の良い測定が可能となり、残留磁束密
度が大きいことによって磁束密度の時間変化率が大とな
り、巻線からは十分な大きさの誘起起電力が得られるた
め検出器を大幅に小形化できる。さらに比透磁藁と残留
磁束密度が大きいことと反磁界係数がある程度の大きさ
であることとによって広い範囲番こわたって出力の線形
性が失なわれない。
In addition, since the coercive force of ferromagnetic materials is small, the effect of hysteresis can be ignored and highly accurate measurements can be made.The large residual magnetic flux density increases the rate of change in magnetic flux density over time, and the magnetic The induced electromotive force can be obtained, so the detector can be significantly downsized. Furthermore, the linearity of the output is not lost over a wide range due to the relative permeability of the straw, the large residual magnetic flux density, and the fact that the demagnetizing field coefficient is of a certain level.

一方電流波形を正確に検出できるので、測定電流の最大
値、平均値、実効値のいずれもが測定可能であり、装置
の出力を制御信号として利用したり、さらには電源の電
圧との乗算回路を用いて電力を演算させることもできる
。強磁性体にアモルファス合金を用いると高い周波数ま
で測定できるので高周波回路への適用も可能である。
On the other hand, since the current waveform can be detected accurately, it is possible to measure the maximum value, average value, and effective value of the measured current, and the output of the device can be used as a control signal, and even a multiplication circuit with the voltage of the power supply can be used. It is also possible to calculate the power using . When an amorphous alloy is used as the ferromagnetic material, it is possible to measure up to high frequencies, so it can also be applied to high frequency circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す斜視図、第2図は僑磁
性体の磁化の強さおよび磁束密度と磁界との関係を模式
的に示したグラフ、第3図は装置の出力電圧と測定電流
との関係を示すグラフ、第4図は強磁性体の丸棒におけ
る長さと直径との化第7図は従来技術によるそれぞれ異
なる交流電流測定装置の原理図である。 1】:角状強磁性体片、13:巻線、15:検出体、1
8:積分器。
Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a graph schematically showing the relationship between the magnetization strength of the magnetic material and the magnetic flux density, and the magnetic field, and Fig. 3 is the output voltage of the device. FIG. 4 is a graph showing the relationship between the current and the measured current, and FIG. 4 is a graph showing the relationship between the length and diameter of a ferromagnetic round bar. FIG. 7 is a diagram showing the principle of different alternating current measuring devices according to the prior art. 1]: Square ferromagnetic piece, 13: Winding wire, 15: Sensing object, 1
8: Integrator.

Claims (1)

【特許請求の範囲】 1)電磁誘導を利用して交流電流を測定する装置におい
て、比透磁率と残留磁束密度が大きくかつ保磁力の小さ
い強磁性体小片に巻線を施した検出体と、前記の巻線に
接続される積分回路とのうち、少なくとも前記の検出体
を備え、前記強磁性体小片は保磁力Hcが前記の交流電
流の作る磁界Hとその交流電流の相対的測定精度εとの
積Hεに対してHc≦Hε/2であり、また反磁界係数
Nが測定範囲における最大電流の作る磁界H_m_a_
xと真空透磁率μ_0との積を残留磁束密度Brで除し
た商μ_0H_m_a_x/Brに対してN>μ_0H
_m_a_x/Brとなる形状をもつことを特徴とする
交流電流測定装置。 2)特許請求の範囲第1項記載の装置において、強磁性
体がアモルファス合金磁性体であることを特徴とする交
流電流測定装置。 3)特許請求の範囲第1項または第2項記載の装置にお
いて、強磁性体小片が磁界の方向にほぼ垂直に配置され
る面をもつ角柱状に形成されていることを特徴とする交
流電流測定装置。
[Scope of Claims] 1) A device for measuring alternating current using electromagnetic induction, comprising: a detection body formed by winding a small piece of ferromagnetic material having high relative magnetic permeability and residual magnetic flux density and low coercive force; The integrating circuit connected to the winding includes at least the detecting body, and the ferromagnetic small piece has a coercive force Hc that is equal to the magnetic field H created by the alternating current and the relative measurement accuracy ε of the alternating current. Hc≦Hε/2, and the demagnetizing field coefficient N is the magnetic field H_m_a_ produced by the maximum current in the measurement range.
For the quotient μ_0H_m_a_x/Br, which is the product of x and vacuum permeability μ_0 divided by the residual magnetic flux density Br, N>μ_0H
An alternating current measuring device characterized by having a shape of _m_a_x/Br. 2) An alternating current measuring device according to claim 1, wherein the ferromagnetic material is an amorphous alloy magnetic material. 3) The device according to claim 1 or 2, characterized in that the small ferromagnetic piece is formed into a prismatic shape with a surface arranged substantially perpendicular to the direction of the magnetic field. measuring device.
JP62087571A 1987-04-09 1987-04-09 Ac current measuring apparatus Pending JPS63252261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087571A JPS63252261A (en) 1987-04-09 1987-04-09 Ac current measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087571A JPS63252261A (en) 1987-04-09 1987-04-09 Ac current measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63252261A true JPS63252261A (en) 1988-10-19

Family

ID=13918685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087571A Pending JPS63252261A (en) 1987-04-09 1987-04-09 Ac current measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63252261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
WO2019181543A1 (en) * 2018-03-20 2019-09-26 Ntn株式会社 Ct-type current sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201460A (en) * 1993-12-08 1995-08-04 Tocco Inc Coil monitoring equipment
WO2019181543A1 (en) * 2018-03-20 2019-09-26 Ntn株式会社 Ct-type current sensor

Similar Documents

Publication Publication Date Title
US4059798A (en) Method and apparatus for measuring the current flowing in a workpiece
JP3457102B2 (en) Magnetic position sensor
US4774465A (en) Position sensor for generating a voltage changing proportionally to the position of a magnet
US4891992A (en) Torque detecting apparatus
Stupakov Local non-contact evaluation of the ac magnetic hysteresis parameters of electrical steels by the Barkhausen noise technique
JPH05264699A (en) Field measuring apparatus
JP2001264360A (en) Dc current detector
JP2615342B2 (en) Variable magnetoresistance magnetometer for measuring parameters of magnetic materials
EP0360574B1 (en) Current sensor having an element made of amorphous magnetic metal
JPS63252261A (en) Ac current measuring apparatus
Son A new type of fluxgate magnetometer using apparent coercive field strength measurement
KR102330162B1 (en) current sensor
JPH10332745A (en) Electric current sensor
Meydan et al. Linear variable differential transformer (LVDT): linear displacement transducer utilizing ferromagnetic amorphous metallic glass ribbons
Augustyniak et al. Multiparameter magnetomechanical NDE
JPH04296663A (en) Current measuring device
Macintyre Magnetic field sensor design
JP3618425B2 (en) Magnetic sensor
RU2805248C1 (en) Device for measuring the magnetic characteristics of a ferromagnet
JP2020165716A (en) Gradient magnetic field sensor
JP4128651B2 (en) Magnetic sensor
JP2668785B2 (en) Small differential transformer
JPS6263811A (en) Potentiometer
JPH011970A (en) current detection device
JPS631253Y2 (en)