JP4128651B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP4128651B2
JP4128651B2 JP12165398A JP12165398A JP4128651B2 JP 4128651 B2 JP4128651 B2 JP 4128651B2 JP 12165398 A JP12165398 A JP 12165398A JP 12165398 A JP12165398 A JP 12165398A JP 4128651 B2 JP4128651 B2 JP 4128651B2
Authority
JP
Japan
Prior art keywords
magnetic
inner core
coil
magnetic sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12165398A
Other languages
Japanese (ja)
Other versions
JPH11304893A (en
Inventor
一郎 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP12165398A priority Critical patent/JP4128651B2/en
Publication of JPH11304893A publication Critical patent/JPH11304893A/en
Application granted granted Critical
Publication of JP4128651B2 publication Critical patent/JP4128651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁性体の磁気特性を検知するためのセンサに関するものである。
【0002】
【従来の技術】
従来の磁気センサの1例として、特願平7−169334号「磁気センサ」〔特開平8−338864号公報参照〕において提示されている空芯の励磁コイルを用いるものでは、一般的な磁気ヘッドに見られる細長いヘッドギャップを持たないため、円形に巻かれた励磁コイルの作る励磁磁界の方向(磁界ベクトル)は、励磁コイルの端面上で全方向を向いている。
このため異方性を有する強磁性体片をその励磁コイルの端面に配置された検知コイルを用いて検出しようとした場合、強磁性体が端面上でいかなる方向を向いても異方性の磁化容易軸に磁界ベクトルが一致して、強磁性体が磁化され、それにより、磁気特性の検出が容易になる。図4は従来の空芯形磁気センサの構造図を示す。ここで、11は非磁性材料の空芯ボビン、12は検知出力をとり出す検知コイル、13は補償コイル、14は励磁電流を流す励磁コイルである。しかし、この磁気センサが作る矢印A1 が示す如き磁界の磁束は自由空間を通るいわゆる開磁路を形成するものであるため、近傍にある鉄などの強磁性材、あるいは銅などの導電性金属の影響を受けやすい欠点がある。そのため、このような空芯形磁気センサを搬送装置等の導電金属を含む一般的な機器に組み込むことは極めて難しく、使用される範囲が限られている。
【0003】
次に、周辺の金属体からの影響度について述べる。
図4に示されたような従来の全方向性空芯形磁気センサでは、励磁コイル14によって作られる磁界は自由空間に磁気センサの数倍程の大きな広がりを持っている。そのため、近傍に磁気材料があると検知コイル12と補償コイル13が交差する磁束間に差異が生じ、励磁磁界による大きな信号を両コイル12,13の各出力の差動合成により相殺することができなくなり、被検出物による磁束変化を効率よく検知することが困難になる。近傍にある磁気材料以外にも銅,アルミニウムなどの導電性金属においても過電流により発生する磁界により同様の問題が発生する。
【0004】
また、従来のギャップ型磁気センサでは、自由空間を通る磁界は極めて狭いギャップ部分のみであるので近傍にある磁性材料の影響をほとんど受けない。しかし、一方このような磁気センサの欠点として、従来からの直線ギャップ型磁気センサに比べ、検出部分が狭いことが上げられる。
【0005】
図5は従来のギャップ型磁気ヘッド15の外観図であって、磁気ギャップ16の作る磁界は矢印A2 にて示すように一方向である。図6はある種の異方性を有する強磁性体の磁化容易軸方向(a)と磁化困難軸方向(b)の磁化特性例である。
【0006】
図6(a)(b)で示した特性を持つ強磁性体片17を図5の磁気ヘッドで図7に示すように配置して検出すると、磁気ヘッド15の作る磁界方向A2 と矢印A3 で示す磁化容易軸の方向が一致している場合には、図7(a)のように磁化容易軸方向の磁化特性がパルス信号として得られる。
一方、磁化方向A2 と磁化容易軸の方向A3 とが一致していない場合には、図7(b)のように磁化強度に比例した歪みの少ない正弦波状信号が得られるものが一般的である。検出した信号と磁性体の特性との対応の関係を判別し、真偽判別を行うためには、異方性を有する磁性体片の場合、常に磁化方向と試験片の磁化容易軸方向とが同一方向を向いている必要がある。
【0007】
【発明が解決しようとする課題】
本発明は、このような従来技術の欠点を考慮し、近傍の強磁性体又は導電性金属体の影響が少なくかつ、被検出対象物である異方性磁性体の検出方向に無関係に磁気特性が検知できる磁気センサを提供するものである。
【0008】
【課題を解決するための手段】
この目的を達成するために、本発明による磁気センサは、棒状の強磁性体材料で形成された内芯と、
該内芯の中央部に配置された励磁コイルと、
該内芯の一端部に配置された検知コイルと、
該内芯の他端部に配置された補償コイルと、
該内芯の一端と他端で一様な微小ギャップを形成し、かつ、該内芯,該励磁コイル,該検知コイルおよび該補償コイルを包囲するように配置された筒形の強磁性体材料で形成された外芯と、
を備えた構成を有している。
【0009】
【発明の実施の形態】
本発明による磁気センサは異方性のある強磁性体片の磁気特性を読み取り方向に関係なく、しかも検出センサ周辺にある磁性材、あるいは金属体の影響の少ない磁気センサが次のような構造によって可能である。
【0010】
図1は本発明による磁気ヘッド10のギャップ部分を示す外観図(a)と縦断面図(b)であり、1は内芯、2は外芯、3は検知コイル、4は補償コイル、5は励磁コイルである。端面上の内芯1と外芯2間で連続した円形ギャップ7を有しており、励磁コイル5で発生した励磁磁界は内芯1と外芯2を矢印A0 のように通り、ギャップ7の位置で強い磁束密度をもつ。磁気ベクトルはギャップ7にほぼ垂直に交さするので、ギャップ7が円形であれば図1(a)矢印A00のように水平方向全ての向きに存在することになる。
【0011】
磁気異方性を持つ強磁性体片を上記の磁気ヘッド10上に置いた場合に、検知コイル3に得られる信号強度は、
e:検知信号, φ:磁束としたときファラデーの法則から、
【数1】
e=−dφ/dt ……(1)
【0012】
B:磁束密度、 s:検知コイル3のなす閉曲面としたとき、
【数2】
e=−(d/dt)(∫Bds) ……(2)
H:磁界、 μ:被検出物の透磁率としたとき
【数3】
e=−(d/dt)(∫μHds) ……(3)
【0013】
ここで、被検出物の透磁率μは異方性であり印加磁界に対して方向特性を持つから、θ:印加磁界と被検出物とのなす角としたとき
【数4】
μ=μ(θ) ………(4)
式(3)に代入すると、
【数5】
e=−(d/dt)(∫∫μ(θ)Hdθds) ……(5)
【0014】
このことから、異方性を有する磁気材料を本発明による磁気ヘッド10で検出した場合、異方性の方向特性は各方向での積分値として検知することができ、360度積分されるので、被検出物の磁化容易軸とセンサとのなす角が任意であっても同じ検出信号が得られる。積分値として検知された検出信号と従来の磁気センサによる磁気容易軸のみでの検出信号を比較すると多少の差異はあるが、材料判別には充分であるとの結果を得た。
【0015】
図2のごとく互いの影響が少ないため複数の磁気センサ10を並べて置くことができ、この欠点も解消できる。
このような並べて置いた磁気センサ10は被検出物20が小さくかつ通過位置が定まらない場合の検出センサとして用いることができる。
【0016】
【実施例】
図3に本発明の磁気センサの具体的実施例の縦断面図(a)と平面図(b)を示す。
1は磁気センサの内芯であり、円柱の如き棒状をなす、比透磁率約2400のフェライト材からなる。2は外芯であり、円筒の如き筒形をなし、内芯1と同じ材料からなる。また組立て上容易なように外芯2は中心において上下に分離できるようになっている。内芯1および外芯2はフェライト以外にもパーマロイあるいはセンダストのような軟磁性材であってもよい。3は検知コイルであり、0.075φの導線が内芯1の上端近くに置かれたボビンに100ターン巻かれている。4は補償コイルであり、検知コイル3と同じく100ターン巻かれ、内芯1の下端に置かれる。5は励磁コイルであり、0.3φの導線が200ターン巻かれている。6は内芯1を固定するための固定用スペーサであり、内芯1と外芯2の間は0.3mmの円形間隔が保たれている。
【0017】
励磁コイル5に正弦波状電流を流し、内芯1を磁化する。
この励磁電流によって生じる磁束はと内芯1から0.3mmのギャップ7を通り、外芯2を通る磁路を形成する。大部分の磁路は図1に矢印A0 で示された経路を通り、磁束の漏れの大部分はギャップ7の位置に存在する。この位置に被検出物が存在すると、その被検出物に磁界が印加され、被検出物の磁気特性に応じた磁束の変化を生じ、検知コイル3にその変化分が電圧変化として検出される。この変化は励磁信号に比べ非常に微量であるが、補償コイル4には変化のない励磁信号が検出されるので、検知コイル3の出力と補償コイル4の出力を差動合成する差動増幅器を用いれば、大きな励磁信号は相殺され、微量な磁気変化による検知出力のみ取り出すことができる。
【0018】
表1,表2に従来の直線型ギャップを有する磁気センサと本発明による磁気センサとで異方性のある磁気材料(A)をそれぞれ測定した結果を示す。被測定物は厚さ0.2μmのコバルト(Co)を基とした強磁性体膜で異方性は1軸においてかなり強いものである。
【0019】
【表1】

Figure 0004128651
【0020】
【表2】
Figure 0004128651
【0021】
表1は直線型ギャップを有する磁気センサで被測定物を測定した結果である。表2は本発明による磁気センサで被測定物を測定した結果である。検知コイルに生じる検知信号eの電圧Vは式(3)から励磁磁界Hに対する磁束密度Bの微分形であり、また磁性体の磁気特性はB−H特性によって表されるので、検知電圧が磁性体の磁気特性に基づくものであり、検出電圧の形状および波高値を比較すれば磁気材料の真偽判定が可能である。
被測定物の容易軸における磁気特性は表1の角度θ=90度における波高値、及び高調波成分として表されるので、本発明の無指向性磁気センサで検出された表2の角度θが0度から180度までの値を比較した結果、波高値では5割程度低く、3次,5次,7次の高調波では0.06dB割程度異なった値となっている。
【0022】
表3,表4は別素材(B)による測定例であって、0.2μmのニッケル(Ni)を基とした強磁性体膜であり、表1と表3の90度における波高値と各高調波を比較すると、それぞれの数値が異なっており、これから素材Aと素材Bの各磁気特性は相異なっていると判断することができる。
また、本発明の磁気センサで素材A,素材Bを測定した表2と表4では波高値,各高調波とも相異なっており、この結果から、表2,表4の比較であっても磁気特性の差別をすることができ、材料の判別が可能であることがわかる。
【0023】
【表3】
Figure 0004128651
【0024】
【表4】
Figure 0004128651
【0025】
ここに示したものは2種類の材料(A)(B)であるが、その他磁化容易軸において磁気特性の異なった材料は、本発明の磁気センサによっても判別することができた。
【0026】
【発明の効果】
以上説明したように、本発明によれば、強磁性体の磁気特性によって材料の判別する際に用いられる磁気センサにおいて、近傍の導電体からの影響を受けずに異方性を持った磁性材料の磁気特性を検出方向に無関係に読み出し、判別が可能となる効果がある。
【図面の簡単な説明】
【図1】本発明による磁気ヘッドの外観図(a)と縦断面図(b)である。
【図2】本発明による磁気ヘッドを複数個並列に並べた例を示す外観図である。
【図3】本発明による磁気センサの実施例を示す縦断面図(a)と平面図(b)である。
【図4】従来の全方向性磁気センサを示す縦断面図である。
【図5】従来のギャップ型磁気センサを示す外観図である。
【図6】異方性磁性材料の磁気特性を示す磁化容易軸方向の磁化特性(a)と磁化困難軸方向の磁化特性(b)である。
【図7】強磁性体片に対する従来のギャップ型磁気ヘッドでの読み出し例を示す強磁性体片の配置外観及び磁化容易軸方向の読み出し波形(a)と磁化困難軸方向の読み出し波形(b)を示す図である。
【符号の説明】
1 内芯
2 外芯
3 検知コイル
4 補償コイル
5 励磁コイル
6 固定用スペーサ
7 ギャップ
10 磁気ヘッド
11 空芯ボビン
12 検知コイル
13 補償コイル
14 励磁コイル
15 ギャップ型磁気ヘッド
16 ギャップ
17 強磁性体片
20 被検出物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor for detecting magnetic characteristics of a magnetic material.
[0002]
[Prior art]
As an example of a conventional magnetic sensor, a general magnetic head using an air-core excitation coil presented in Japanese Patent Application No. 7-169334, “Magnetic Sensor” (see Japanese Patent Laid-Open No. 8-338864). Therefore, the direction of the excitation magnetic field (magnetic field vector) created by the circularly wound excitation coil is directed in all directions on the end face of the excitation coil.
Therefore, when an attempt is made to detect an anisotropic ferromagnetic piece using a detection coil disposed on the end face of the exciting coil, the anisotropic magnetization is performed regardless of the direction of the ferromagnetic body on the end face. The magnetic field vector coincides with the easy axis and the ferromagnet is magnetized, thereby facilitating detection of magnetic properties. FIG. 4 is a structural diagram of a conventional air-core type magnetic sensor. Here, 11 is an air core bobbin made of a non-magnetic material, 12 is a detection coil for taking out a detection output, 13 is a compensation coil, and 14 is an excitation coil for passing an excitation current. However, the magnetic flux generated by the magnetic sensor as indicated by the arrow A 1 forms a so-called open magnetic path that passes through the free space. Therefore, a ferromagnetic material such as iron in the vicinity, or a conductive metal such as copper. There are drawbacks that are easily affected. For this reason, it is extremely difficult to incorporate such an air core type magnetic sensor into a general device including a conductive metal such as a transport device, and the range of use is limited.
[0003]
Next, the degree of influence from surrounding metal bodies will be described.
In the conventional omnidirectional air-core type magnetic sensor as shown in FIG. 4, the magnetic field generated by the exciting coil 14 has a large spread several times as much as the magnetic sensor in free space. Therefore, if there is a magnetic material in the vicinity, a difference occurs between the magnetic fluxes intersecting the detection coil 12 and the compensation coil 13, and a large signal due to the excitation magnetic field can be canceled out by differential synthesis of the outputs of both the coils 12 and 13. This makes it difficult to efficiently detect a change in magnetic flux due to the object to be detected. Similar problems occur due to the magnetic field generated by overcurrent in conductive metals such as copper and aluminum in addition to magnetic materials in the vicinity.
[0004]
Further, in the conventional gap type magnetic sensor, the magnetic field passing through the free space is only a very narrow gap portion, so that it is hardly influenced by the nearby magnetic material. However, a disadvantage of such a magnetic sensor is that the detection portion is narrower than that of a conventional linear gap type magnetic sensor.
[0005]
Figure 5 is a perspective view of a conventional gap-type magnetic head 15, a magnetic field generated with the magnetic gap 16 is unidirectional as shown by arrow A 2. FIG. 6 shows examples of magnetization characteristics in the easy axis direction (a) and the hard axis direction (b) of a ferromagnetic material having a certain anisotropy.
[0006]
When the ferromagnetic piece 17 having the characteristics shown in FIGS. 6A and 6B is arranged and detected by the magnetic head of FIG. 5 as shown in FIG. 7, the magnetic field direction A 2 formed by the magnetic head 15 and the arrow A are detected. When the directions of the easy axis shown by 3 coincide with each other, the magnetization characteristic in the easy axis direction can be obtained as a pulse signal as shown in FIG.
On the other hand, when the magnetization direction A 2 and the direction A 3 of the easy axis do not coincide with each other, it is common to obtain a sinusoidal signal with less distortion proportional to the magnetization intensity as shown in FIG. It is. In order to determine the correspondence between the detected signal and the characteristics of the magnetic material and to determine the authenticity, in the case of a magnetic piece having anisotropy, the magnetization direction and the easy magnetization axis direction of the test piece are always Must be facing in the same direction.
[0007]
[Problems to be solved by the invention]
In consideration of the disadvantages of the prior art, the present invention is less affected by nearby ferromagnetic materials or conductive metal bodies, and has a magnetic characteristic regardless of the detection direction of the anisotropic magnetic material that is the object to be detected. The magnetic sensor which can detect is provided.
[0008]
[Means for Solving the Problems]
In order to achieve this object, a magnetic sensor according to the present invention includes an inner core formed of a rod-shaped ferromagnetic material,
An exciting coil disposed in the center of the inner core;
A detection coil disposed at one end of the inner core;
A compensation coil disposed at the other end of the inner core;
A cylindrical ferromagnetic material which forms a uniform minute gap at one end and the other end of the inner core, and is arranged so as to surround the inner core, the excitation coil, the detection coil and the compensation coil. An outer core formed of,
It has the composition provided with.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The magnetic sensor according to the present invention has the following structure in which the magnetic characteristics of an anisotropic ferromagnetic piece are not affected by the reading direction, and the magnetic material around the detection sensor or the influence of the metal body is small. Is possible.
[0010]
FIG. 1 is an external view (a) and a longitudinal sectional view (b) showing a gap portion of a magnetic head 10 according to the present invention, where 1 is an inner core, 2 is an outer core, 3 is a detection coil, 4 is a compensation coil, 5 Is an exciting coil. A circular gap 7 is formed between the inner core 1 and the outer core 2 on the end face. The exciting magnetic field generated by the exciting coil 5 passes through the inner core 1 and the outer core 2 as indicated by an arrow A 0 , and the gap 7 Strong magnetic flux density at Because magnetic vectors are interlinked substantially perpendicular to the gap 7, so that the gap 7 is present in the horizontal direction all orientations as shown in FIGS. 1 (a) arrow A 00, if round.
[0011]
When a ferromagnetic piece having magnetic anisotropy is placed on the magnetic head 10 , the signal intensity obtained in the detection coil 3 is:
e: Detection signal, φ: Magnetic flux, Faraday's law
[Expression 1]
e = −dφ / dt (1)
[0012]
B: Magnetic flux density, s: Closed curved surface formed by the detection coil 3,
[Expression 2]
e =-(d / dt) (∫Bds) (2)
H: Magnetic field, μ: Permeability of the object to be detected
e = − (d / dt) (∫μHds) (3)
[0013]
Here, since the permeability μ of the object to be detected is anisotropic and has a directional characteristic with respect to the applied magnetic field, θ is an angle formed by the applied magnetic field and the object to be detected.
μ = μ (θ) ……… (4)
Substituting into equation (3),
[Equation 5]
e = − (d / dt) (∫∫μ (θ) Hdθds) (5)
[0014]
From this, when the magnetic material having anisotropy is detected by the magnetic head 10 according to the present invention, the directional characteristic of the anisotropy can be detected as an integral value in each direction and is integrated 360 degrees. The same detection signal can be obtained even if the angle between the easy magnetization axis of the object to be detected and the sensor is arbitrary. When a detection signal detected as an integral value is compared with a detection signal of only a magnetic easy axis by a conventional magnetic sensor, there is a slight difference, but a result that is sufficient for material discrimination is obtained.
[0015]
As shown in FIG. 2, since there is little influence on each other, a plurality of magnetic sensors 10 can be placed side by side, and this disadvantage can be solved.
Such a magnetic sensor 10 placed side by side can be used as a detection sensor when the detected object 20 is small and the passing position is not fixed.
[0016]
【Example】
FIG. 3 shows a longitudinal sectional view (a) and a plan view (b) of a specific embodiment of the magnetic sensor of the present invention.
Reference numeral 1 denotes an inner core of the magnetic sensor, which is made of a ferrite material having a relative magnetic permeability of about 2400, which forms a rod shape such as a cylinder. An outer core 2 has a cylindrical shape such as a cylinder and is made of the same material as the inner core 1. Further, the outer core 2 can be separated vertically in the center for easy assembly. The inner core 1 and the outer core 2 may be soft magnetic materials such as permalloy or sendust in addition to ferrite. Reference numeral 3 denotes a detection coil, and a 0.075φ lead wire is wound 100 turns on a bobbin placed near the upper end of the inner core 1. Reference numeral 4 denotes a compensation coil, which is wound 100 turns like the detection coil 3 and placed at the lower end of the inner core 1. Reference numeral 5 denotes an exciting coil, in which a 0.3φ lead wire is wound for 200 turns. Reference numeral 6 denotes a fixing spacer for fixing the inner core 1. A circular interval of 0.3 mm is maintained between the inner core 1 and the outer core 2.
[0017]
A sinusoidal current is passed through the exciting coil 5 to magnetize the inner core 1.
The magnetic flux generated by this exciting current passes through a gap 7 of 0.3 mm from the inner core 1 and forms a magnetic path passing through the outer core 2. Most of the magnetic path follows the path indicated by the arrow A 0 in FIG. 1, and most of the magnetic flux leakage exists at the position of the gap 7. When a detection object exists at this position, a magnetic field is applied to the detection object, causing a change in magnetic flux according to the magnetic characteristics of the detection object, and the change in the detection coil 3 is detected as a voltage change. Although this change is very small compared to the excitation signal, since an excitation signal that does not change is detected in the compensation coil 4, a differential amplifier that differentially combines the output of the detection coil 3 and the output of the compensation coil 4 is provided. If used, a large excitation signal is canceled out, and only a detection output due to a slight magnetic change can be taken out.
[0018]
Tables 1 and 2 show the results of measuring the anisotropic magnetic material (A) with the conventional magnetic sensor having a linear gap and the magnetic sensor according to the present invention. The object to be measured is a ferromagnetic film based on cobalt (Co) having a thickness of 0.2 μm, and the anisotropy is considerably strong in one axis.
[0019]
[Table 1]
Figure 0004128651
[0020]
[Table 2]
Figure 0004128651
[0021]
Table 1 shows the results of measuring the object to be measured with a magnetic sensor having a linear gap. Table 2 shows the results of measuring an object to be measured with the magnetic sensor according to the present invention. The voltage V of the detection signal e generated in the detection coil is a differential form of the magnetic flux density B with respect to the excitation magnetic field H from the equation (3), and the magnetic characteristic of the magnetic material is expressed by the BH characteristic. This is based on the magnetic characteristics of the body, and the authenticity of the magnetic material can be determined by comparing the shape of the detected voltage and the peak value.
Since the magnetic characteristic on the easy axis of the object to be measured is expressed as a peak value and a harmonic component at the angle θ = 90 degrees in Table 1, the angle θ in Table 2 detected by the omnidirectional magnetic sensor of the present invention is As a result of comparing the values from 0 degrees to 180 degrees, the peak value is about 50% lower, and the third, fifth and seventh harmonics are about 0.06 dB different.
[0022]
Tables 3 and 4 are measurement examples using different materials (B), which are ferromagnetic films based on nickel (Ni) of 0.2 μm. When the harmonics are compared, the respective numerical values are different, and it can be determined that the magnetic properties of the material A and the material B are different from each other.
Further, in Table 2 and Table 4 in which the materials A and B were measured by the magnetic sensor of the present invention, the crest value and each harmonic were different from each other. It can be seen that the characteristics can be differentiated and the material can be distinguished.
[0023]
[Table 3]
Figure 0004128651
[0024]
[Table 4]
Figure 0004128651
[0025]
The materials shown here are two types of materials (A) and (B). However, other materials having different magnetic characteristics on the easy axis of magnetization could also be discriminated by the magnetic sensor of the present invention.
[0026]
【The invention's effect】
As described above, according to the present invention, in the magnetic sensor used for determining the material based on the magnetic properties of the ferromagnetic material, the magnetic material having anisotropy without being affected by the nearby conductors. The magnetic characteristics can be read out and discriminated irrespective of the detection direction.
[Brief description of the drawings]
FIG. 1 is an external view (a) and a longitudinal sectional view (b) of a magnetic head according to the present invention.
FIG. 2 is an external view showing an example in which a plurality of magnetic heads according to the present invention are arranged in parallel.
FIG. 3 is a longitudinal sectional view (a) and a plan view (b) showing an embodiment of a magnetic sensor according to the present invention.
FIG. 4 is a longitudinal sectional view showing a conventional omnidirectional magnetic sensor.
FIG. 5 is an external view showing a conventional gap type magnetic sensor.
FIG. 6 shows a magnetization characteristic (a) in the easy axis direction and a magnetization characteristic (b) in the hard axis direction showing the magnetic characteristics of the anisotropic magnetic material.
FIG. 7 is a view showing an example of reading with a conventional gap-type magnetic head with respect to a ferromagnetic piece, an appearance of the ferromagnetic piece, a read waveform in the easy axis direction (a), and a read waveform in the hard axis direction (b). FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner core 2 Outer core 3 Detection coil 4 Compensation coil 5 Excitation coil 6 Fixing spacer 7 Gap 10 Magnetic head 11 Air core bobbin 12 Detection coil 13 Compensation coil 14 Excitation coil 15 Gap type magnetic head 16 Gap 17 Ferromagnetic material piece 20 Detected object

Claims (2)

棒状の強磁性体材料で形成された内芯と、
該内芯の中央部に配置された励磁コイルと、
該内芯の一端部に配置された検知コイルと、
該内芯の他端部に配置された補償コイルと、
該内芯の一端と他端で一様な微小ギャップを形成し、かつ、該内芯,該励磁コイル,該検知コイルおよび該補償コイルを包囲するように配置された筒形の強磁性体材料で形成された外芯と、
を備えた磁気センサ。
An inner core formed of a rod-shaped ferromagnetic material;
An exciting coil disposed in the center of the inner core;
A detection coil disposed at one end of the inner core;
A compensation coil disposed at the other end of the inner core;
A cylindrical ferromagnetic material which forms a uniform minute gap at one end and the other end of the inner core, and is arranged so as to surround the inner core, the excitation coil, the detection coil and the compensation coil. An outer core formed of,
Magnetic sensor equipped with.
請求項1に記載の前記磁気センサが複数個列状に配置されたことを特徴とする磁気センサ。A magnetic sensor according to claim 1, wherein a plurality of the magnetic sensors according to claim 1 are arranged in a line.
JP12165398A 1998-04-16 1998-04-16 Magnetic sensor Expired - Fee Related JP4128651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12165398A JP4128651B2 (en) 1998-04-16 1998-04-16 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12165398A JP4128651B2 (en) 1998-04-16 1998-04-16 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPH11304893A JPH11304893A (en) 1999-11-05
JP4128651B2 true JP4128651B2 (en) 2008-07-30

Family

ID=14816582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12165398A Expired - Fee Related JP4128651B2 (en) 1998-04-16 1998-04-16 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP4128651B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014134448A (en) * 2013-01-10 2014-07-24 Kyushu Univ Magnetic property measuring device, magnetic property measuring probe, and magnetic property measuring method
EP4353282A2 (en) * 2017-12-21 2024-04-17 Sanofi Drug delivery device with non-contact sensor

Also Published As

Publication number Publication date
JPH11304893A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3811039B2 (en) Magnetic leak detection sensor for magnetic flaw detector
JP4105147B2 (en) Current sensor
JP4105145B2 (en) Current sensor
TW214591B (en)
EP2353162B1 (en) Gmr biosensor with aligned magnetic field
JP3651619B2 (en) Magnetoresistive transducer and magnetic recording apparatus
Stupakov Local non-contact evaluation of the ac magnetic hysteresis parameters of electrical steels by the Barkhausen noise technique
US5552589A (en) Permanent magnet assembly with MR element for detection/authentication of magnetic documents
JP4565072B2 (en) Magnetic field sensor
JP4128651B2 (en) Magnetic sensor
JP5121679B2 (en) Fluxgate magnetic sensor
JP4418986B2 (en) Magnetic field detection element and magnetic field detection method using the same
JP4192708B2 (en) Magnetic sensor
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JP3618425B2 (en) Magnetic sensor
WO2014005431A1 (en) Chip-type magnetic sensor
JPH09210610A (en) High-frequency excitation differential transformer for preventing influence of external magnetism and metal, etc.
JP2552683B2 (en) Current sensor
JP5006511B2 (en) Current sensor and current detection unit using the same
JPH01155282A (en) Magnetic sensor
JP3607447B2 (en) Magnetic field sensor
JPH011970A (en) current detection device
JP2001281312A (en) Hall sensor probe
JP4600989B2 (en) Defect detection method for metal body and scanning magnetic detector
JP2000149223A (en) Magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees