JPS63251655A - Continuously variable transmission of multiple belt type - Google Patents

Continuously variable transmission of multiple belt type

Info

Publication number
JPS63251655A
JPS63251655A JP8297487A JP8297487A JPS63251655A JP S63251655 A JPS63251655 A JP S63251655A JP 8297487 A JP8297487 A JP 8297487A JP 8297487 A JP8297487 A JP 8297487A JP S63251655 A JPS63251655 A JP S63251655A
Authority
JP
Japan
Prior art keywords
groove
pulley
shaped block
belt
belts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8297487A
Other languages
Japanese (ja)
Inventor
Yoshihisa Anpo
安保 佳寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8297487A priority Critical patent/JPS63251655A/en
Publication of JPS63251655A publication Critical patent/JPS63251655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

PURPOSE:To prevent a V-shaped block from breaking due to a large herz stress acting on the V-shaped block by making the end surface of each of the V-shaped block facing the side surface of a V-groove of a pulley curved so that each of the V-shaped block comes into contact with both of the side surfaces of the V-groove at one point for each of the side surfaces. CONSTITUTION:Multiple V-belts 13, 14 stretched in plural number between common V-groove pulleys 11 and 12 transmit power between the common V- groove pulleys 11 and 12 by means of frictional engagement between the V-shaped blocks, 19, 20 and the side surface 15a-18a of the V-groove of a pulley. Continuously variable speed change is possible in this case by displacing a V-groove surface of one of the V-groove pulleys 11, 12 in the axial direction thereby changing the arc radiuses of the belts 13, 14 routed over the pulley. The end surfaces 19a, 20a of the V-shaped blockes 19, 20 facing the side surfaces 15a-18a of the V-groove of the pulley are curved with a curvature radius smaller than the minimum curvature radius of the corresponding side surface of the V-groove within a plane containing the rotary axis 0 of the pulley. As a result, the end surfaces 19a, 20a of the V-shaped block come into contact with the side surfaces 15a-18a respectively only at one point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は伝動容量をかせぐため複数の■ベルトを共通な
V溝プーリ間に多重に掛け渡した多重■ベルト式無段変
速機に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a multi-belt type continuously variable transmission in which a plurality of belts are multiplexed between common V-groove pulleys in order to increase transmission capacity. be.

(従来の技術) この種無段変速機としては、月刊誌「モーターファン」
昭和61年12月号の第178頁に記載されているカネ
サカ式ベルト伝動手段を応用した第7図の如きものが考
えられる。
(Prior technology) This type of continuously variable transmission is published in the monthly magazine "Motorfan".
A device as shown in FIG. 7 can be considered, which is an application of the Kanesaka type belt transmission means described on page 178 of the December issue of 1988.

図中1はトルクコンバータ、2はダブルピニオン型遊星
歯車組、3は前進クラッチ、4は後退ブレーキ、5は入
力軸、6はかねさか式ベルト伝動手段、7は出力軸、8
はカウンタギヤ組、9はファイナルドライブギヤ組、l
Oはディファレンシャルギヤを夫々示す。トルクコンバ
ータ1を経由したエンジン動力は、前進クラッチ3の締
結時遊星歯車組2を経てそのまま入力軸5に達し、後退
ブレーキ4の締結時遊星歯車組2により逆転されて入力
軸5に達する。入力軸5への動力はかねさか式ベルト伝
動手段6により出力軸7に伝達され、その後カウンタギ
ヤ組8及びファイナルドライブギヤ組9を経てディファ
レンシャルギヤ1oに至って車両を前進又は後進させる
ことができる。
In the figure, 1 is a torque converter, 2 is a double pinion type planetary gear set, 3 is a forward clutch, 4 is a reverse brake, 5 is an input shaft, 6 is a capebelt transmission means, 7 is an output shaft, 8
9 is the counter gear set, 9 is the final drive gear set, l
O indicates a differential gear, respectively. The engine power that has passed through the torque converter 1 reaches the input shaft 5 as it is via the planetary gear set 2 when the forward clutch 3 is engaged, and is reversed by the planetary gear set 2 when the reverse brake 4 is engaged and reaches the input shaft 5. Power to the input shaft 5 is transmitted to the output shaft 7 by the hook-and-loop belt transmission means 6, and then passes through the counter gear set 8 and the final drive gear set 9 to the differential gear 1o, allowing the vehicle to move forward or backward.

伝動手段6は軸5.7上に■溝ブー1月1及び■溝プー
リ12を具え、これらプーリ間に2本のVベルト13.
14を多重に掛け渡して構成するが、更に無段変速が可
能となるよう各プーリ11.12は一方のフランジ15
.16を固定とし、他方のフランジ17゜18を2点鎖
線で示すよう軸線方向へ位置調整可能とする。変速に当
っては、可動フランジ17を例えば実線位置から2点鎖
線位置へ変位させ、可動フランジ18を対応するよう実
線位置から2点鎖線位置へ変位させる。これにより両■
ベル)13.14はプーリ11.12に対する巻き掛け
状態を第8図中1点鎖線状態から2点鎖線状態へと変更
され、無段変速を行うことができる。
The transmission means 6 includes a groove boot 1 and a groove pulley 12 on a shaft 5.7, and two V-belts 13. between these pulleys.
The pulleys 11 and 14 are arranged in multiple layers, and each pulley 11 and 12 is connected to one flange 15 to enable continuously variable speed.
.. 16 is fixed, and the other flanges 17 and 18 are adjustable in position in the axial direction as shown by two-dot chain lines. For shifting, the movable flange 17 is displaced, for example, from the solid line position to the two-dot chain line position, and the movable flange 18 is correspondingly displaced from the solid line position to the two-dot chain line position. This allows both ■
The state in which the bells) 13 and 14 are wrapped around the pulleys 11 and 12 is changed from the one-dot chain line state to the two-dot chain line state in FIG. 8, and a continuously variable speed can be performed.

(発明が解決しようとする問題点) ところで、Vベルト13.14の強度を確保するため、
無終端可撓体にその長手方向へ順次多数の■形ブロック
を取付けてなるVベルトを用いる場合、フランジ15.
17及び16.18により形成するプーリV溝の側面1
5a、 17a及び16a、 18aが以下に説明する
如くプーリ回転軸線を含む面内において湾曲されていな
ければならないため後述の問題を生ずる。
(Problems to be solved by the invention) By the way, in order to ensure the strength of the V-belts 13 and 14,
When using a V-belt formed by attaching a large number of ■-shaped blocks sequentially in the longitudinal direction to an endless flexible body, the flange 15.
Side surface 1 of pulley V groove formed by 17 and 16.18
5a, 17a, 16a, and 18a must be curved in a plane that includes the pulley rotation axis, as will be explained below, resulting in a problem that will be described later.

先ず、プーリ■溝側面15a〜18aの湾曲理由を説明
するに、第8図に示すVベルト13.14のプーリ巻き
掛け円弧径RI m + RZ a + RI b +
 R2bは、入出力軸5,7の軸間距離をC(例えば2
45.OOmm) 、Vベルト13.14の周長を夫々
Lb、(例えば856.56mm)、L、2(例えば1
032.43馴)、変速比をip (例えば2.5〜0
.4)とすると、次式で表わされる。
First, to explain the reason why the pulley ■groove side surfaces 15a to 18a are curved, the pulley-wrapping arc diameter RI m + RZ a + RI b + of the V-belt 13.14 shown in FIG.
R2b is the distance between the input and output shafts 5 and 7, which is C (for example, 2
45. OOmm), the circumferential length of the V-belt 13.14 is Lb, (e.g. 856.56mm), L, 2 (e.g. 1
032.43), change the gear ratio to ip (e.g. 2.5 to 0
.. 4), it is expressed by the following equation.

R1fi= 2(i、+1)” Rzi=R1mX ip              
・・・(2)R1b= 2(ip+1)” Rzb=R+i+X ip             
 ・・・(4)これらの式により求まるVベルトの巻き
掛け円弧径の内外周Vベルト間における差は第9図にΔ
R1,ΔR6て示す如く、内外周Vベルト13.14を
なす■形ブロック19.20の幅も、(例えば30.O
Omm)、−5□(例えば40.88mm)が一定であ
ることから、巻き掛け円弧径の増大につれ大きくなる(
ΔRh〉ΔR,)。従って、プーリ回転軸線を含む共通
な面内における■形ブロック19.20の端面を通る面
の傾斜角は第9図にα7.α、で示す如く巻き掛け円弧
径の増大につれ低下する。この傾斜角に合せてプーリ■
溝側面15a〜18aは傾斜させる必要があるため、プ
ーリ回転軸線を含む面内において湾曲させなければなら
ない。
R1fi=2(i,+1)” Rzi=R1mX ip
...(2) R1b= 2(ip+1)" Rzb=R+i+X ip
...(4) The difference in the winding arc diameter of the V-belt between the inner and outer circumferential V-belts determined by these formulas is shown in Figure 9 as Δ
As shown by R1 and ΔR6, the width of the ■-shaped block 19.20 forming the inner and outer peripheral V-belt 13.14 is also (for example, 30.0
Omm), -5□ (for example, 40.88mm) is constant, so it increases as the wrapping arc diameter increases (
ΔRh〉ΔR,). Therefore, the inclination angle of the plane passing through the end face of the ■-shaped block 19, 20 in the common plane containing the pulley rotation axis is α7. As shown by α, it decreases as the wrapped arc diameter increases. Pulley according to this angle of inclination■
Since the groove side surfaces 15a to 18a need to be inclined, they must be curved in a plane that includes the pulley rotation axis.

しかしてかかるプーリ■溝側面の湾曲故に、■形ブロッ
ク19.20は夫々第10図に明示する如く各端面を2
点でプーリV溝側面15a〜18aと接して伝動中に大
きなヘルツ(Herz)応力を受け、耐久性を著しく損
われたり、破損する問題を生ずる。
However, due to the curvature of the sides of the pulley ■ groove, the ■ shaped blocks 19 and 20 each have two end faces as shown in FIG.
The pulley V-groove side surfaces 15a to 18a are exposed to a large Hertzian stress during power transmission, resulting in a significant loss of durability or damage.

(問題点を解決するための手段) 本発明は上述の問題に鑑み、プーリ■溝側面に対向する
■形ブロックの端面を、プーリ回転軸線を含む面内にお
いて対応するプーリ■溝側面の最小曲率半径以下の曲率
半径で湾曲させたものであゝ。
(Means for Solving the Problems) In view of the above-mentioned problems, the present invention has been developed by changing the end face of the ■-shaped block opposite to the side surface of the pulley groove to the minimum curvature of the corresponding pulley groove side surface in a plane including the pulley rotation axis. It is curved with a radius of curvature less than the radius.

る。Ru.

(作 用) 共通な■溝プーリ間に多重に掛け渡した複数のVベルト
は夫々、■形ブロックとプーリ■溝側面との摩擦係合に
より共通な■溝プーリ間での動力伝達を行う。この間、
各V溝プーリの一方のV溝側面を軸線方向へ変位させて
各■ベルトのプーリ巻き掛け円弧径を変化させることに
より無段変速が可能である。
(Function) A plurality of V-belts stretched between the common ■groove pulleys transmit power between the common ■groove pulleys through frictional engagement between the ■shaped block and the side surface of the pulley ■groove. During this time,
Continuously variable speed is possible by displacing one V-groove side surface of each V-groove pulley in the axial direction and changing the arc diameter around which each belt is wound around the pulley.

ところで、プーリ■溝側面に対向する各■形ブロックの
端面を、プーリ回転軸線を含む面内において、対応する
プーリ■溝側面の最小曲率半径以下の曲率半径で湾曲さ
せたため、各■形ブロックの端面が1点のみでプーリ■
溝側面に接することとなり、■形ブロックに大きなヘル
ツ応力が作用するのを防止してその耐久性を向上させ得
ると共に、破損を防止することができる。
By the way, since the end face of each ■-shaped block facing the side surface of the pulley ■ groove was curved with a radius of curvature that was less than the minimum radius of curvature of the corresponding pulley groove side surface in the plane that included the pulley rotation axis, each ■-shaped block Pulley with only one end face ■
Since it comes into contact with the side surface of the groove, it is possible to prevent large Hertzian stress from acting on the ■-shaped block, improve its durability, and prevent damage.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図及び第2図は第7図乃至第10図につき前述した
と同様の多重■ベルト式無段変速機に対する本発明の対
策例であるが、本例ではVベルト13゜14を夫々第2
図の如きものとする。即ち、多数の平行ビン21を隣り
合うもの同士リンクプレート22により連結してチェー
ン型式の無終端可撓体23を形成し、これに■形ブロッ
ク19(20)を長手方向へ順次嵌合して■ベル)13
(14)を構成する。しかして、内周側■ベルト13は
■形ブロック19の幅も。
1 and 2 are examples of measures taken by the present invention for a multi-belt type continuously variable transmission similar to those described above with reference to FIGS. 7 to 10, but in this example, the V-belts 13 and 14 are 2
As shown in the figure. That is, a large number of parallel bins 21 are connected to each other by link plates 22 to form a chain-type endless flexible body 23, and ■-shaped blocks 19 (20) are sequentially fitted into this in the longitudinal direction. ■Bell) 13
(14) is constructed. Therefore, the width of the ■-shaped block 19 on the inner peripheral side ■belt 13 is also the same.

を第2図(b)の如く外周側■ベルト14の第2図(c
)に示す■形ブロック20の幅も2より小さくし、又内
周側Vベルト13の周長を外周側Vベルト14のそれよ
り短かくして、第1図の如く両■ベル)13.14を第
1図の如(V溝プーリ11.12に多重に巻き掛けし得
るようにする。
As shown in FIG. 2(b), the outer peripheral side of the belt 14 is shown in FIG.
) The width of the ■-shaped block 20 shown in ) is also made smaller than 2, and the circumferential length of the inner V-belt 13 is made shorter than that of the outer V-belt 14, so that both ■-shaped blocks 13 and 14 are made as shown in FIG. As shown in Fig. 1 (it can be wrapped around the V-groove pulleys 11 and 12 multiple times).

本発明においては第1図に示すように、半径ρ、。In the present invention, as shown in FIG. 1, the radius ρ.

ρ2で湾曲させたプーリ■溝側面15a〜18aと対向
する各■形ブロック19.20の端面19a、 20a
を、プーリ回転軸線0を含む面内において、対応する■
溝側面の最小曲率半径以下の曲率半径RVII Rv2
で湾曲させる。
End faces 19a, 20a of each ■-shaped block 19.20 facing the pulley groove sides 15a to 18a curved at ρ2
In the plane including the pulley rotation axis 0, the corresponding ■
Radius of curvature less than the minimum radius of curvature of the groove side surface RVII Rv2
Curve it with.

これにより、各V形ブロック19.20の端面19a。Thereby, the end face 19a of each V-shaped block 19.20.

20aは、Vベルト13.14がいかなる巻き掛け円弧
径である時も、対応する■溝側面と1点のみで接するこ
ととなる。よって、■形ブロック19.20に大きなヘ
ルツ応力が作用するのを防止してその耐久性を向上させ
得ると共に、破損を防止することができる。
20a comes into contact with the corresponding ■groove side surface at only one point, no matter what the wrapping arc diameter of the V-belt 13, 14 is. Therefore, it is possible to prevent large Hertzian stress from acting on the ■-shaped blocks 19 and 20, thereby improving their durability and preventing them from being damaged.

ところで、V形ブロックの端面曲率半径RVI+1?v
zをあまり小さくすると、V形ブロック端面19a。
By the way, the end face curvature radius RVI+1 of the V-shaped block? v
If z is made too small, the V-shaped block end face 19a.

20aと対応するプーリ■溝側面との間の接触面積が小
さくなり、面圧上昇により耐久性の点で不利を招く。こ
の事実に鑑み本発明においては、■形ブロック端面19
a、 20aが■形ブロックエ9,2oの高さの約三分
の1の範囲に亘りプーリ■溝側面と接するよう■形ブロ
ックの端面曲率半径RVl+ RV□を決定するのが良
いことを確かめた。
The contact area between the pulley 20a and the corresponding pulley groove side surface becomes small, resulting in an increase in surface pressure, resulting in a disadvantage in terms of durability. In view of this fact, in the present invention, the ■-shaped block end face 19
Confirm that it is best to determine the radius of curvature of the end face of the ■-shaped block RVl + RV□ so that 20a contacts the side surface of the pulley groove over a range of about one-third of the height of the ■-shaped block E9, 2o. Ta.

なお、外周側のVベルト14は前述したように内周側の
Vベルト13より幅及び周長共に大きく、伝動中速心力
の影響を大きく受ける。従って、■ベトル14は伝動中
■ベルト13より大き(伸長されることとなり、その差
によってVベルト13のみが動力伝達を行うような事態
を発生し、Vベルト13の耐久性が低下する傾向にある
。そこで本例においては、第2図(b) 、 (c)の
比較から明らかなように外周側■ベルト14に係わる無
終端可撓体の断面積’4z X H2を内周側■ベルト
13に係わる無終端可撓体の断面積wlX)IIより大
きくし、これにより第3図中a、bの比較から明らかな
ように外周側■ベルト14の伸長弾性係数を内周側■ベ
ルト13のそれより小さくする。かかる対策によれば、
外周側のVベルト14が内周側のVベルト13より大き
な遠心力を受けても、伸長弾性係数の差により外周側■
ベルト14が内周側Vベルト13より著しく大きく伸長
されるものを防止することができる。従って、内周側■
、ベルト13のみが動力伝達を行うような事態を回避で
き、内周側■ベルト13の寿命低下を防止し得る。
As described above, the outer V-belt 14 is larger in width and circumference than the inner V-belt 13, and is greatly influenced by the center force during transmission. Therefore, the belt 14 becomes larger (elongated) than the belt 13 during power transmission, and this difference causes a situation where only the V-belt 13 transmits power, which tends to reduce the durability of the V-belt 13. Therefore, in this example, as is clear from the comparison between FIGS. 2(b) and 2(c), the cross-sectional area '4z x H2 of the endless flexible body related to the outer peripheral side ■belt 14 is calculated from the inner peripheral side ■belt. The cross-sectional area of the endless flexible body related to 13 is made larger than the cross-sectional area wl be smaller than that of According to such measures,
Even if the V-belt 14 on the outer circumference side receives a larger centrifugal force than the V-belt 13 on the inner circumference side, the outer circumference side ■
It is possible to prevent the belt 14 from being stretched significantly more than the inner V-belt 13. Therefore, the inner circumferential side ■
, it is possible to avoid a situation where only the belt 13 transmits power, and it is possible to prevent a decrease in the life of the inner peripheral side belt 13.

なお、両■ベル1−13.14の伸長弾性係数を異なら
せるに当っては、その比を■ベルトの単位長さ当り重量
比と、全変速比範囲における入力プーリ又は出力ブーり
走行半径比の平均値の2乗との積にほぼ同じ値としたり
、或いは■ベルトの単位長さ当り重量比と、最高速変速
比選択時における両Vベルトの大力プーリ又は出力プー
リ走行半径比の2乗との積にほぼ同じ値とするのが良い
ことを確かめた。
In addition, in making the elongation elastic modulus of both belts 1-13 and 14 different, the ratio is determined by the weight ratio per unit length of the belt and the running radius ratio of the input pulley or output pulley in the entire gear ratio range. The value is approximately the same as the product of the average value of We have confirmed that it is best to set the product to approximately the same value.

上記の如く内周側Vベルトと外周側Vベルトとで伸長弾
性係数を異ならせる着想は、第4図(a)。
The idea of making the elongation elastic modulus different between the inner V-belt and the outer V-belt as described above is shown in FIG. 4(a).

(b)の如(無終端可撓体23を多数のスチールベルト
24の積層により構成する場合も、LX H+< h、
X112によってそのまま適用し得ることは言うまでも
ない。ただしこの場合、各Vベルト毎にも第5図中矢印
で示す如く外側のスチールベルト程伸長弾性係数が小さ
くなるようにするのが良い。
As shown in (b) (also when the endless flexible body 23 is constructed by laminating a large number of steel belts 24, LX H+< h,
Needless to say, it can be applied directly to X112. However, in this case, it is preferable that the elastic modulus of elasticity of each V-belt is made smaller as the steel belts are located on the outer side, as shown by the arrows in FIG.

次にVベルト13.14の潤滑システムを説明するに、
外周側Vベルト14の方が内周側Vベルト13より高速
走行するため、多量の潤滑油を必要とする。
Next, to explain the lubrication system of V-belts 13 and 14,
Since the outer V-belt 14 runs faster than the inner V-belt 13, it requires a larger amount of lubricating oil.

この事実に鑑み、例えば第8図中X、Yで示す位置に配
して第1図に示す如く、内周側Vベルト13用の潤滑パ
イプ25と外周側Vベルト14用の潤滑パイプ26とを
個別に設ける。これらパイプ25.26は共通な油圧源
27に接続してノズル25a、 26aから対応するV
ベルト13.14の内周に潤滑油を噴出させるが、両パ
イプ25.26中にオリフィス28.29を設置して内
周側Vベルト13より外周側Vベルト14に多量の潤滑
油が供給されるようにする。
In view of this fact, a lubricating pipe 25 for the inner V-belt 13 and a lubricating pipe 26 for the outer V-belt 14 are arranged, for example, at the positions indicated by X and Y in FIG. 8, as shown in FIG. are provided separately. These pipes 25, 26 are connected to a common hydraulic power source 27 to supply the corresponding V from the nozzles 25a, 26a.
Lubricating oil is spouted onto the inner circumference of the belts 13 and 14, and orifices 28 and 29 are installed in both pipes 25 and 26, so that a large amount of lubricating oil is supplied from the inner V-belt 13 to the outer V-belt 14. so that

次に、第2図(a)にPで示すV形ブロックの配列ピッ
チを考察するに、内周側Vベルト13に係わるV形ブロ
ック19の配列ピッチより、外周側Vベルト14に係わ
るV形ブロック20の配列ピッチが大きい場合、両ブロ
ックのブーり噛合い1吹成分が接近又は同期してその周
波数に対する音圧レベルが第6図中【で示す如くに増幅
され、騒音のビークf、が高くなる。そこで本例におい
ては、外周側Vベルト14に係わるV形ブロック20の
配列ピッチを内周側Vベルト13に係わる■形ブロック
19の配列ピッチのベルl−13,14の走行半径の比
(Rb/Ra)倍の値より小さく、又は単純に内周側V
ベルト13に係わる■形ブロック19の配列ピッチ以下
とする。
Next, considering the arrangement pitch of the V-shaped blocks shown by P in FIG. When the arrangement pitch of the blocks 20 is large, the two blocks' interlocking one-stroke components approach or synchronize, and the sound pressure level for that frequency is amplified as shown by [ in Fig. 6, and the noise peak f is It gets expensive. Therefore, in this example, the arrangement pitch of the V-shaped blocks 20 related to the outer circumferential side V-belt 14 is set to the ratio of the arrangement pitch of the ■-shaped blocks 19 related to the inner circumferential side V-belt 13 to the running radius of the bells 13 and 14 (Rb /Ra) is smaller than the double value, or simply the inner circumferential side V
The arrangement pitch of the ■-shaped blocks 19 related to the belt 13 should be less than or equal to the arrangement pitch.

この場合、■形ブロック19.20のプーリ噛合い1吹
成分が分離することとなり、その周波数に対する音圧レ
ベルを第6図中gで示す如くに低下させることができ、
騒音のビークg++ gzを低く抑えることができる。
In this case, one blowing component of the pulley mesh of the ■-shaped block 19, 20 will be separated, and the sound pressure level for that frequency can be lowered as shown by g in FIG.
Noise peak g++ gz can be kept low.

(発明の効果) かくして本発明の多重Vベルト式無段変速機は上述の如
く、プーリV溝側面に対向する各■形ブロックの端面を
、プーリ回転軸線を含む面内において、対応するプーリ
■溝側面の最小曲率半径以下の曲率半径で湾曲させたか
ら、各■形プロ・ンクが各■溝プーリの両側面に1点づ
つで接することとなり、■形ブロックに大きなヘルツ応
力が作用するのを防止してその耐久性を向上させ得ると
共に、破損を防止することができる。
(Effects of the Invention) As described above, the multiple V-belt type continuously variable transmission of the present invention has the end face of each ■-shaped block facing the pulley V-groove side surface within the plane containing the pulley rotation axis, and the corresponding pulley ■ Since it is curved with a radius of curvature that is less than the minimum radius of curvature of the groove side, each ■-shaped block comes into contact with both sides of each ■-groove pulley at one point, which prevents large Hertzian stress from acting on the ■-shaped block. This can improve durability and prevent damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明多重Vベルト式無段変速機のプーリ部に
おける概略側面図、 第2図(a)は同側で使用するVベルトの要部破断側面
図、 同図Φ)、 (C)は夫々同図(a)の■−■線上にお
ける内周側Vベルト及び外周側Vベルトの断面図、第3
図は内外周側Vベルトの伸長弾性係数を示す線図、 第4図(a)、 (b)は内外周側Vベルトの他の例を
示す第2図(ロ)、(C)と同様の断面図、第5図は同
■ベルトにおけるスチールベルトの伸長弾性係数を示す
線図、 第6図は内外周側Vベルトの■形ブロック配列ピッチが
同じ場合と、違う場合の音圧レベル線図、第7図は多重
Vベルト式無段変速機の一般構造を示す路線図、 第8図は同じくそのVベルトのブーり巻掛け状態説明図
、 第9図はプーリ■溝側面の湾曲状態説明図、第10図は
この湾曲したプーリ■溝側面に原因する問題点を示す説
明図である。 11.12・・・■溝プーリ  13・・・内周側Vベ
ルト14・・・外周側Vベルト、   15.16・・
・固定フランジ17、18・・・可動フランジ 15a
〜18a・・・V溝側面19.20・・・■形ブロック 19a、 20a・・・■形ブロック端面23・・・無
終端可撓体   25.26・・・潤滑パイプ27・・
・油圧源      28.29・・・オリフイス′ぐ
ミニE■婉ずt− ′ぐ→上甑■婉犀1− 第4図 (a) 23(P、11fi町撓a) (b) ’23 (意111is 2Tm#) 第6図
Figure 1 is a schematic side view of the pulley section of the multiple V-belt type continuously variable transmission of the present invention, Figure 2 (a) is a cutaway side view of the main part of the V-belt used on the same side, Figure Φ), (C ) are cross-sectional views of the inner circumferential side V-belt and the outer circumferential side V-belt on the line ■-■ of FIG. 3(a), respectively.
The figure is a diagram showing the elongation elastic modulus of the inner and outer V-belts. Figures 4 (a) and (b) are similar to Figures 2 (b) and (C) showing other examples of the inner and outer V-belts. Figure 5 is a diagram showing the elongation elastic modulus of the steel belt in the same ■ belt. Figure 6 is the sound pressure level line when the ■-shaped block arrangement pitch of the inner and outer V-belts is the same and when it is different. Fig. 7 is a route diagram showing the general structure of a multiple V-belt type continuously variable transmission, Fig. 8 is an explanatory diagram of the state in which the V-belt is wrapped around the boob, and Fig. 9 is a state in which the side surface of the pulley groove is curved. An explanatory diagram, FIG. 10, is an explanatory diagram showing a problem caused by this curved pulley groove side surface. 11.12...■Groove pulley 13...Inner circumference side V-belt 14...Outer circumference side V-belt, 15.16...
・Fixed flanges 17, 18...Movable flange 15a
~18a...V-groove side surface 19.20...■-shaped block 19a, 20a...■-shaped block end face 23...Endless flexible body 25.26...Lubrication pipe 27...
・Hydraulic power source 28. 29... Orifice 'Gumini E■婉zut-'gu → Upper koshiki■婉犀1- Fig. 4 (a) 23 (P, 11fi town bending a) (b) '23 (indication 111is 2Tm#) Figure 6

Claims (1)

【特許請求の範囲】 1、無終端可撓体にその長手方向へ順次多数のV形ブロ
ックを取付けてなるVベルトを複数本、共通なV溝プー
リ間に多重に掛け渡し、該プーリのV溝側面と前記V形
ブロックとの摩擦係合によV動力伝達を行うと共に、各
V溝プーリの一方のV溝側面を軸線方向へ変位させて各
Vベルトのプーリ巻き掛け円弧径を変化させることによ
V変速を行うようにした多重Vベルト式無段変速機にお
いて、 各V形ブロックが各V溝プーリの両V溝側面に1点づつ
で接するよう、これらV溝側面に対向する各V形ブロッ
クの端面を、V溝プーリ回転軸線を含む面内において、
対応するV溝側面の最小曲率半径以下の曲率半径で湾曲
させたことを特徴とする多重Vベルト式無段変速機、 2、前記各V形ブロックの端面曲率半径は、該端面がV
形ブロックの高さの約三分の1の範囲に亘りV溝側面と
接するよう決定したものである特許請求の範囲第1項記
載の多重Vベルト式無段変速機。 3、前記複数のVベルトは外側のVベルト程、伸長弾性
係数の小さなものである特許請求の範囲第1項又は第2
項記載の多重Vベルト式無段変速機。
[Claims] 1. A plurality of V-belts each having a large number of V-shaped blocks sequentially attached to an endless flexible body in its longitudinal direction are strung between common V-groove pulleys, and the V-belts of the pulleys are V power is transmitted through frictional engagement between the groove side surface and the V-shaped block, and one V-groove side surface of each V-groove pulley is displaced in the axial direction to change the pulley-wrapping arc diameter of each V-belt. In a multiple V-belt type continuously variable transmission in which V-shifting is performed, each V-shaped block is in contact with both V-groove sides of each V-groove pulley at one point, so that The end face of the V-shaped block is in a plane that includes the V-groove pulley rotation axis,
A multiple V-belt type continuously variable transmission characterized in that the end face of each V-shaped block is curved with a radius of curvature that is less than the minimum radius of curvature of the side surface of the V-groove.
2. The multiple V-belt type continuously variable transmission according to claim 1, wherein the V-groove side surface is in contact with the V-groove side surface over a range of approximately one-third of the height of the shaped block. 3. The outer V-belts of the plurality of V-belts have a smaller elongation elastic modulus.
The multiple V-belt type continuously variable transmission described in .
JP8297487A 1987-04-06 1987-04-06 Continuously variable transmission of multiple belt type Pending JPS63251655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8297487A JPS63251655A (en) 1987-04-06 1987-04-06 Continuously variable transmission of multiple belt type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8297487A JPS63251655A (en) 1987-04-06 1987-04-06 Continuously variable transmission of multiple belt type

Publications (1)

Publication Number Publication Date
JPS63251655A true JPS63251655A (en) 1988-10-19

Family

ID=13789186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8297487A Pending JPS63251655A (en) 1987-04-06 1987-04-06 Continuously variable transmission of multiple belt type

Country Status (1)

Country Link
JP (1) JPS63251655A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033105A1 (en) * 1996-03-08 1997-09-12 Koyo Seiko Co., Ltd. Variable diameter pulley
WO2008053773A1 (en) * 2006-10-31 2008-05-08 Jtekt Corporation Method and device for producing member to be wound, device for measuring circumferential length of member to be wound, and device for applying pretension
JP2008110378A (en) * 2006-10-31 2008-05-15 Jtekt Corp Method for manufacturing power transmitting chain, and apparatus for manufacturing the same
JP2011069411A (en) * 2009-09-24 2011-04-07 Jtekt Corp Power transmission device
JP2021089065A (en) * 2019-11-27 2021-06-10 三ツ星ベルト株式会社 Set of transmission v-belts, and manufacturing method and use method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033105A1 (en) * 1996-03-08 1997-09-12 Koyo Seiko Co., Ltd. Variable diameter pulley
US6129643A (en) * 1996-03-08 2000-10-10 Koyo Seiko Co., Ltd. Variable diameter pulley
WO2008053773A1 (en) * 2006-10-31 2008-05-08 Jtekt Corporation Method and device for producing member to be wound, device for measuring circumferential length of member to be wound, and device for applying pretension
JP2008110378A (en) * 2006-10-31 2008-05-15 Jtekt Corp Method for manufacturing power transmitting chain, and apparatus for manufacturing the same
US8863368B2 (en) 2006-10-31 2014-10-21 Jtekt Corporation Winding member manufacturing method, winding member manufacturing apparatus, winding member peripheral length measuring apparatus and pre-tension applying apparatus
JP2011069411A (en) * 2009-09-24 2011-04-07 Jtekt Corp Power transmission device
JP2021089065A (en) * 2019-11-27 2021-06-10 三ツ星ベルト株式会社 Set of transmission v-belts, and manufacturing method and use method therefor

Similar Documents

Publication Publication Date Title
US7059985B2 (en) Alternating guide power transmission chain
EP1645778A2 (en) Transmission chain
US6440023B2 (en) Metal V-belt
JP3552411B2 (en) V-belt type continuously variable transmission
US6458054B1 (en) Transmission
JP3406283B2 (en) Belt for continuously variable transmission
US8057342B2 (en) Plate-link chain for a motor vehicle drive system
JPS63251655A (en) Continuously variable transmission of multiple belt type
JP5877900B2 (en) Metal belt element
CN103968062A (en) Control apparatus of continuously Variable Transmission
US6763602B2 (en) Method for measuring free-state diameter of metal ring
JP3640631B2 (en) How to set free diameter of metal ring
EP0911541B1 (en) Driving belt for fixed ratio transmission
JP2004076906A (en) Control device of belt type continuously variable transmission
US6432012B1 (en) Belt for continuously variable transmission
JP3907261B2 (en) V belt type continuously variable transmission
JP5126016B2 (en) Belt type continuously variable transmission
JP3743902B2 (en) Belt drive system
JP2006077847A (en) Power transmission chain and power transmission device equipped with it
US11391343B2 (en) Continuously variable transmission
JP2002070992A (en) Belt transmission gear
JPS6237535A (en) Belt for power transmission
JP2009204013A (en) Pulley for continuously variable transmission
JPH0512573B2 (en)
JPS61294252A (en) Variable pulley torque driving system