JPS63251468A - Electrically conductive resin composition - Google Patents

Electrically conductive resin composition

Info

Publication number
JPS63251468A
JPS63251468A JP8391887A JP8391887A JPS63251468A JP S63251468 A JPS63251468 A JP S63251468A JP 8391887 A JP8391887 A JP 8391887A JP 8391887 A JP8391887 A JP 8391887A JP S63251468 A JPS63251468 A JP S63251468A
Authority
JP
Japan
Prior art keywords
fibers
resin composition
conductive
conductive resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8391887A
Other languages
Japanese (ja)
Other versions
JPH07122023B2 (en
Inventor
Hidehiro Iwase
岩瀬 英裕
Keiichi Habata
幅田 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP8391887A priority Critical patent/JPH07122023B2/en
Publication of JPS63251468A publication Critical patent/JPS63251468A/en
Publication of JPH07122023B2 publication Critical patent/JPH07122023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an electrically conductive compsn. which does not cause the deterioration of electrical conductivity by changesin environmental temp. or with time, by blending a specific master pellet obtd. by cutting a fiber into a pellet with a natural pellet composed of a thermoplastic resin. CONSTITUTION:A resin compsn. is obtd. by blending a master pellet (A), obtd. by coating an electrically conductive fiber in the form of a short fiber with a low-melting metal contg. a flux, bandling the fiber and cutting it into a pellet, with a natural pellet (B) composed of a thermoplastic resin. Examples of the electrically conductive fiber are metallic fibers such as copper fiber, stainless steel fiber, etc. and org. or inorg. fibers having a metallic (e.g., copper, aluminum) layer on the surface thereof. Examples of the flux are stearic acid, lactic acid, rosin, active rosin, etc. Examples of the low-melting metal are soldering alloys mainly composed of Sn or Sn/Pb and high-temperature soldering alloys mainly composed of Sn/Pb/Cd/Ag/Zn.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた導電性を有し、環境温度の変化や経時
変化においても導電性が劣化することがない、信頼性の
高い導電性樹脂組成物に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides highly reliable conductivity that has excellent conductivity and does not deteriorate even with changes in environmental temperature or changes over time. The present invention relates to a resin composition.

〈従来の技術) 近年、外部の電子回路に発生する電磁波から電子機器を
保護し、あるいはその電子機器から外部に電磁波漏洩す
ることを防止するため、電子機器の筐体を電磁波シール
ド材料で形成することが要請されている。 この電磁波
シールド用の材料には、従来の炭素繊維を充填した材料
以上の高い導電性と同時に、筐体として優れた機械的強
度とが要求され、そのため合成樹脂に金属系の導電性充
填材を長繊維状のまま充填することが不可欠となってい
る。
<Prior art> In recent years, in order to protect electronic devices from electromagnetic waves generated in external electronic circuits or to prevent electromagnetic waves from leaking from the electronic devices to the outside, the housings of electronic devices have been made of electromagnetic shielding materials. This is requested. This material for electromagnetic shielding is required to have higher electrical conductivity than conventional carbon fiber-filled materials, as well as excellent mechanical strength for the casing, so a metal-based conductive filler is used in the synthetic resin. It is essential to fill the fibers in the form of long fibers.

しかし、金属系の導電性充填材を長繊維状のまま充填し
た材料は、優れた機械的強度と導電性が得られるが、使
用環境に制約を受ける欠点がある。
However, materials filled with metal-based conductive fillers in the form of long fibers can provide excellent mechanical strength and conductivity, but have the drawback of being restricted by the environment in which they are used.

すなわち、導電性充填材として活性の強い金属を使用す
ると、合成樹脂の劣化が速くなるため、高温度或いは外
光を直接受ける場所には使用できないという問題であり
、また導電性充填材と導電性充填材との結合が単なる接
触であることから環境の温度変化によってその接触が変
化し、導電性が低下して行く問題がある。 これらのこ
とから長繊維の金属充填材を充填した従来材料は著しく
信頼性を損なう欠点かあり、実用化の大きな障害となっ
ていた。
In other words, if a highly active metal is used as a conductive filler, the synthetic resin will deteriorate quickly, so it cannot be used in a place that is exposed to high temperatures or direct sunlight. Since the bond with the filler is simply a contact, there is a problem in that the contact changes with changes in the environmental temperature, resulting in a decrease in conductivity. For these reasons, conventional materials filled with long fiber metal fillers have the drawback of significantly reducing reliability, which has been a major obstacle to practical application.

(発明が解決しようとする問題点) 本発明は、上記の欠点を解決するためになされたもので
、優れた導電性を有し、環境温度の変化や経時の変化等
においても導電性が劣化することなく、また樹脂の機械
的特性の劣化を押さえた、信頼性の高い導電性樹脂組成
物を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned drawbacks, and has excellent conductivity, and the conductivity does not deteriorate even with changes in environmental temperature or changes over time. The purpose of the present invention is to provide a highly reliable conductive resin composition that suppresses deterioration of the mechanical properties of the resin.

[発明の構成] (問題点を解決するための手段) 本発明は、上記の目的を達成しようと鋭意研究を重ねた
結果、導電性繊維をフラックスを含む低融点金属で被覆
収束したペレッ1〜を用いることによって、優れた導電
性を有し、環境の温度変化や経時変化等においても導電
性が劣化することなく、樹脂の物性のよい導電性樹脂組
成物が得られることを見いだし、本発明を完成させたも
のである。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present invention has been developed to provide pellets 1 to 1 in which conductive fibers are coated with a low melting point metal containing flux. The present inventors have discovered that by using a conductive resin composition, it is possible to obtain a conductive resin composition that has excellent conductivity, does not deteriorate in conductivity even with environmental temperature changes, changes over time, etc., and has good resin physical properties. It has been completed.

すなわち、本発明は、 長繊維状の導電性繊維をフラックスを含む低融点金属で
被覆収束し、ペレット状に切断してなるマスターペレッ
トと、熱可塑性樹脂からなるナヂュラルペレッ)・とを
配合することを特徴とする導電性樹脂組成物である。
That is, the present invention involves blending a master pellet made by coating long conductive fibers with a low melting point metal containing flux, cutting them into pellets, and natural pellets made of a thermoplastic resin. This is a characteristic conductive resin composition.

本発明に用いる長繊維城の導電性繊維としては、lit
繊維、銅合金繊維、ステンレス繊維、アルミニウム繊維
、ニッケル繊維等の金属繊維、銅、アルミニウム、ニッ
ケル等の金属層を有する有機m維又は無機繊維等が挙げ
られる。 導電性繊維の直径は8〜100μm程度が好
ましく、100〜10,000本収東上たものを使用す
る。 導電性繊維の配合割合は、全体の組成物に対して
1〜80重量%であることが望ましい。  1重量%未
満では導電性が低く、また80重量%を超えると組成物
の流動性、樹脂の物性が低下し好ましくないからである
As the conductive fiber of the long fiber castle used in the present invention, lit
Examples include metal fibers such as fibers, copper alloy fibers, stainless steel fibers, aluminum fibers, and nickel fibers, and organic fibers or inorganic fibers having metal layers such as copper, aluminum, and nickel. The diameter of the conductive fibers is preferably about 8 to 100 μm, and 100 to 10,000 fibers are used. The blending ratio of the conductive fibers is preferably 1 to 80% by weight based on the entire composition. If it is less than 1% by weight, the conductivity will be low, and if it exceeds 80% by weight, the fluidity of the composition and the physical properties of the resin will deteriorate, which is not preferable.

 5一 本発明に用いるフラックスとしては、有機酸系、樹脂系
のフラックスが好ましく、具体的には有機酸系のステア
リン酸、乳酸、オレイン酸、グルタミン酸等、樹脂系の
ロジン、活性ロジン等が挙げられ、これらは低融点金属
に応じて 1種で又は2種以上混合して用いる。 フラ
ックスのうちでもハロゲンやアミン系のものは、導電性
繊維や成形用金型を腐食させるのでその使用は好ましく
ない。
51 The flux used in the present invention is preferably an organic acid-based or resin-based flux, and specific examples include organic acid-based stearic acid, lactic acid, oleic acid, glutamic acid, etc., resin-based rosin, activated rosin, etc. Depending on the low melting point metal, these may be used alone or in combination of two or more. Among fluxes, halogen- and amine-based ones are not preferred because they corrode conductive fibers and molding molds.

フラックスの配合割合は、低融点金属に対し0.1〜5
重量%であることが望ましい。 配合量が0.1重量%
未満では導電性繊維の半田ぬれ性が悪く、また5重量%
を超えると樹脂の物性が低下し、さらに金型の腐食・汚
れの原因となり好ましくない。 フラックスの配合方法
は低融点金属に充填させておく。
The blending ratio of flux is 0.1 to 5 to the low melting point metal.
Preferably, it is % by weight. Compounding amount is 0.1% by weight
If it is less than 5% by weight, the solderability of the conductive fiber is poor, and
Exceeding this is undesirable because it deteriorates the physical properties of the resin and causes corrosion and staining of the mold. The flux is mixed in a low melting point metal.

本発明に用いる低融点金属としては、使用する熱可塑性
樹脂の成形加工温度と同程度の融点を持つ金属であれば
よく、Sr!若しくはSn−Pbを主成分とする一般半
田合金、Sn −Pb −Cd −Ag−Znを主成分
とする高温半田合金、更には−6= Sn −pb −Cd−Biを主成分とする低温半田合
金等が挙げられる。 低融点金属の配合割合は、導電性
繊維に対して5〜30重量%であることが望ましい。 
配合量が5重量%未満では導電性繊維を被覆させるに不
充分となって導電性が低下し、また30重量%を超える
と低融点金属が遊離して樹脂の物性か低下し好ましくな
い。 低融点金属は全体の組成物に対して0,1〜20
重量%の割合で含有することが望ましい。 低融点金属
は、長尺の導電性繊維を低融点金属層を通し、かつダイ
スを通して導電性繊維の外側を被覆させて使用する。
The low melting point metal used in the present invention may be any metal that has a melting point comparable to the molding temperature of the thermoplastic resin used, and Sr! Or a general solder alloy whose main component is Sn-Pb, a high-temperature solder alloy whose main component is Sn-Pb-Cd-Ag-Zn, or even a low-temperature solder whose main component is -6=Sn-pb-Cd-Bi. Examples include alloys. The blending ratio of the low melting point metal is preferably 5 to 30% by weight based on the conductive fiber.
If the amount is less than 5% by weight, it will not be sufficient to coat the conductive fibers and the conductivity will decrease, and if it exceeds 30% by weight, the low melting point metal will be liberated and the physical properties of the resin will deteriorate, which is not preferable. The low melting point metal is 0.1 to 20% of the total composition.
It is desirable to contain it in a proportion of % by weight. The low melting point metal is used by passing a long conductive fiber through the low melting point metal layer and passing it through a die to cover the outside of the conductive fiber.

本発明に用いる熱可塑性樹脂としては、ポリエチレン樹
脂、ポリプロピレン樹脂、ポリスチレン樹脂、アクリロ
ニトリル・ブタジェン・スチレン樹脂、変性ポリフェニ
レンオキサイド樹脂、ポリブチレンテレフタレート樹脂
、ポリカーボネート樹脂、ポリアミド樹脂、ポリエーテ
ルイミド樹脂等が挙げられ、これらは1種又は2種以上
混合して使用する。
Examples of the thermoplastic resin used in the present invention include polyethylene resin, polypropylene resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, modified polyphenylene oxide resin, polybutylene terephthalate resin, polycarbonate resin, polyamide resin, polyetherimide resin, etc. , these may be used alone or in combination of two or more.

本発明の導電性樹脂組成物は通常次のようにして製造す
ることができる。 以下図面を用いて説明する。
The conductive resin composition of the present invention can usually be manufactured as follows. This will be explained below using the drawings.

第1図は、本発明に用いるマスターペレット1の断面図
である。 導電性繊維2を束ねた表面にフラックスを充
填した低融点金属3が被覆形成一体化され、切断してマ
スターペレット1とする。
FIG. 1 is a sectional view of a master pellet 1 used in the present invention. A low melting point metal 3 filled with flux is integrally coated on the surface of the bundle of conductive fibers 2, and then cut to form a master pellet 1.

マスターペレット1の断面は通常円形であるが、必ずし
も円形である必要がなく、状況に応じて偏平、楕円形そ
の他の形状でもよく、特に制限はない。 この低融点金
属3は第2図に示したように低融点金属槽を通して被覆
形成される。 すなわち束ねた長繊維状の導電性繊維4
はロール5を経由して低融点金属槽6中の溶融した低融
点金属7を通し、次いでロール8を経由して導電性繊維
表面に低融点金属を被覆りし、引き続きカッティング1
0してマスターペレット上ユを製造する。
The cross section of the master pellet 1 is usually circular, but it does not necessarily have to be circular, and may be flat, oval, or other shapes depending on the situation, and is not particularly limited. This low melting point metal 3 is coated through a low melting point metal bath as shown in FIG. That is, the bundled long fiber-like conductive fibers 4
The molten low melting point metal 7 is passed through the low melting point metal bath 6 via the roll 5, and then the low melting point metal is coated on the surface of the conductive fiber via the roll 8, followed by cutting 1.
0 to produce a master pellet upper layer.

マスターペレットを製造する工程は連続的に行うことが
経済的に有利であるが連続的でなくバッチ方式で行うこ
ともできる。 こうして得られたマスターペレットに、
熱可塑性樹脂のみからなるナヂュラルペレットを配合し
て導電性樹脂組成物を製造することができる。
Although it is economically advantageous to carry out the process of producing master pellets continuously, it can also be carried out in a batch mode instead of continuously. The master pellets obtained in this way are
A conductive resin composition can be manufactured by blending natural pellets made only of thermoplastic resin.

こうして製造される本発明の導電性樹脂組成物は熱可塑
性樹脂の融点以上の温度で射出成形して成形品となし、
電磁波シールドを必要とする電子又は電気機器、計測機
器、通信機器等のハウジングや部品として使用すること
ができる。
The conductive resin composition of the present invention thus produced is injection molded at a temperature higher than the melting point of the thermoplastic resin to form a molded article,
It can be used as housings or parts for electronic or electrical equipment, measuring equipment, communication equipment, etc. that require electromagnetic shielding.

(作用) 本発明によれば導電性繊維、フラックス、低融点金属お
よび熱可塑性樹脂は次のように作用し、優れた導電性が
得られる。
(Function) According to the present invention, the conductive fiber, flux, low melting point metal, and thermoplastic resin function as follows, and excellent conductivity can be obtained.

導電性樹脂組成物は、射出成形機の加熱シリンダー内に
おいて導電性繊維が熱可塑性樹脂に分散するとともに低
融点金属が熱可塑性樹脂と同様に溶けて、導電性繊維と
導電性繊維とが低融点金属の被覆融着によって網目状態
となり、そのまま金型内に注入されて冷却固化する。 
導電性繊維と低融点金属とが融着する際、フラックスに
よって導電性繊維にぬれ性を付与させるために、導電性
繊維と低融点金属が強固な網目状態を形成する。
In the conductive resin composition, the conductive fibers are dispersed in the thermoplastic resin in the heating cylinder of the injection molding machine, and the low melting point metal is melted in the same way as the thermoplastic resin, so that the conductive fibers and the conductive fibers have a low melting point. The metal is coated and fused to form a network, which is poured into a mold as it is and cooled and solidified.
When the conductive fibers and the low melting point metal are fused together, the conductive fibers and the low melting point metal form a strong network in order to impart wettability to the conductive fibers with the flux.

もし、導電性繊維のぬれ性が悪いと、低融点金属が遊離
して樹脂の劣化、樹脂物性の低下、成形品の表面荒れと
なり、また導電性も低下する。 従って本発明のように
、導電性繊維と導電性繊維が低融点金属と強固に結合し
て網目状態となることによって、導電性が著しく向上し
、かつ樹脂の物性を損なうことがなくなる。 このこと
は本発明の導電性樹脂組成物を用いた成形品の樹脂分を
溶剤で溶かしてみると導電性繊維の結合した網目状態を
はっきりと確認することができる。 導電性の向上によ
って導電性繊維の配合量を低減できるし、また、低融点
金属の分離や飛散がなくなり作業上安全となる。
If the wettability of the conductive fiber is poor, low melting point metals will be liberated, resulting in deterioration of the resin, deterioration of the resin's physical properties, roughening of the surface of the molded product, and a decrease in conductivity. Therefore, as in the present invention, the conductive fibers are firmly bonded to the low melting point metal to form a network, thereby significantly improving the conductivity and not impairing the physical properties of the resin. This can be confirmed by dissolving the resin component of a molded article using the conductive resin composition of the present invention in a solvent, and the network state in which the conductive fibers are bonded can be clearly confirmed. The improved conductivity allows the amount of conductive fibers to be reduced, and there is no separation or scattering of low-melting point metals, making it safer to work with.

(実施例) 次に本発明を実施例によって説明するが、本発明は下記
実施例によって限定されるものではない。
(Examples) Next, the present invention will be explained by examples, but the present invention is not limited by the following examples.

実施例 直径50μmの長尺の銅繊維300本を、フラックス2
重量%含有した低融点金属(S n60%、pb40%
)槽およびダイスを通して銅繊維の表面に低融点金属を
被覆形成し、直径3nmに一体化して冷却後、長さ6m
mに切断してマスターペレットとした。 このマスター
ペレット50重量部と、ナチュラルペレットとじてタフ
レックス410(三菱モンサンド社製ABS樹脂、商品
名)500重量部とを機械的に混合して導電性樹脂組成
物を製造しな。
Example 300 long copper fibers with a diameter of 50 μm were mixed with flux 2
Low melting point metals (Sn60%, PB40%) containing wt%
) The surface of the copper fiber is coated with a low melting point metal through a bath and a die, and after being integrated to a diameter of 3 nm and cooled, a length of 6 m is formed.
The pellets were cut into pieces of 1.5 m to obtain master pellets. A conductive resin composition was prepared by mechanically mixing 50 parts by weight of the master pellets and 500 parts by weight of TAFFLEX 410 (ABS resin manufactured by Mitsubishi Monsando, trade name) as natural pellets.

この組成物を用いて射出成形して成形品を得、この成形
品について体積抵抗率、電磁波シールド効果および機械
的強度を試験したので、その結果を第1表に示した。 
80℃3000時間の環境試験後においても、体積抵抗
率は変化せず、電磁波シールド効果も劣化せず、また機
械的強度も初期値の80%以上保持しており、本発明の
顕著な効果が確認された。
A molded article was obtained by injection molding using this composition, and this molded article was tested for volume resistivity, electromagnetic shielding effect, and mechanical strength.The results are shown in Table 1.
Even after an environmental test at 80°C for 3,000 hours, the volume resistivity did not change, the electromagnetic shielding effect did not deteriorate, and the mechanical strength maintained more than 80% of its initial value, demonstrating the remarkable effects of the present invention. confirmed.

比較例 直径約50μmの銅繊維を300本束ね、その表面に、
タフレックス410(三菱モンサンド社製ABS!脂、
商品名)を被覆形成し、直径3mlに一体化して冷却後
、長さ6 mnに切断してマスターペレットをつくった
。 このマスターペレット5〇重量部とナチュラルペレ
ットとしてタフレックス410(前出)500重量部と
を機械的に混合して導電性樹脂組成物を製造しな。 こ
の組成物を用いて射出成形して成形品を得、実施例と同
様にして緒特性の試験を行ったので、その結果を第1表
に示しな。
Comparative Example 300 copper fibers with a diameter of about 50 μm were bundled, and on the surface,
Toughflex 410 (Mitsubishi Monsando ABS! Fat,
(trade name) was coated and integrated to a diameter of 3 ml, cooled, and cut into lengths of 6 mm to prepare master pellets. A conductive resin composition is prepared by mechanically mixing 50 parts by weight of the master pellets and 500 parts by weight of TUFLEX 410 (mentioned above) as natural pellets. A molded article was obtained by injection molding using this composition, and the properties of the molded article were tested in the same manner as in the examples.The results are shown in Table 1.

= 12− 第1表 組成におけるO印はその成分が含まれていることを示す
*1 :三菱モンサント社製、ABS樹脂商品名第 1
 表(つづき) V発明の効果コ 以上の説明および第1表から明らかなように、本発明の
導電性樹脂組成物は、導電性繊維と低融点金属とを併用
し、かつフラックスを配合したことによって低融点金属
を介して導電性繊維と導電性繊維が強固に結合して優れ
た導電性を有し、環境の温度変化や経時変化等において
も導電性が低下ぜす、また導電性繊維が強固に結合した
ことによって樹脂の劣化の少ない機械的特性の優れたも
のである。 電子又は電気機器にこの組成物を用いるこ
とによって高い信頼性を付与することができる。
= 12- The O mark in the composition of Table 1 indicates that the component is included *1: Mitsubishi Monsanto Company, ABS resin product name No. 1
Table (Continued) V Effects of the Invention As is clear from the above explanation and Table 1, the conductive resin composition of the present invention uses conductive fibers and a low melting point metal in combination, and also contains flux. The conductive fibers are strongly bonded through the low melting point metal and have excellent conductivity, and the conductivity decreases even with environmental temperature changes and changes over time. Due to the strong bonding, the resin has excellent mechanical properties with little deterioration. High reliability can be imparted to electronic or electrical equipment by using this composition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いるペレットの断面図、第2図は本
発明におけるペレッ1への製造工程を説明するための概
念図である。 1、上ユ・・・マスターペレッ1へ、 2・・・導電性
繊維、 3・・・低融点金属、 4・・・長繊維状の導
電性繊維、 5・・・ロール、 6・・・低融点金属槽
、 7・・・溶融した低融点金属、 8・・・ロール、
 9・・・被覆。
FIG. 1 is a cross-sectional view of a pellet used in the present invention, and FIG. 2 is a conceptual diagram for explaining the manufacturing process for the pellet 1 in the present invention. 1. Upper unit... To master pellet 1, 2... Conductive fiber, 3... Low melting point metal, 4... Long fibrous conductive fiber, 5... Roll, 6... low melting point metal tank, 7... molten low melting point metal, 8... roll,
9...Coating.

Claims (1)

【特許請求の範囲】 1 長繊維状の導電性繊維をフラックスを含む低融点金
属で被覆収束し、ペレット状に切断してなるマスターペ
レットと、熱可塑性樹脂からなるナチュラルペレットと
を配合することを特徴とする導電性樹脂組成物。 2 長繊維状の導電性繊維が、銅繊維、銅合金繊維、ス
テンレス繊維、アルミニウム繊維、ニッケル繊維等の金
属繊維、又は表面に銅、アルミニウム、ニッケル層を有
する有機若しくは無機の繊維である特許請求の範囲第1
項記載の導電性樹脂組成物。 3 フラックスが、ステアリン酸、乳酸、オレイン酸、
グルタミン酸、ロジン又は活性ロジンである特許請求の
範囲第1項又は第2項記載の導電性樹脂組成物。 4 低融点金属が、Sn若しくはSn−Pbを主成分と
する半田合金、Sn−Pb−Cd−Ag−Znを主成分
とする高温半田合金、又はSn−Pb−Cd−Biを主
成分とする低温半田合金である特許請求の範囲第1項な
いし第3項いずれか記載の導電性樹脂組成物。 5 長繊維状の導電性繊維が、全体の組成物に対して1
〜8重量%の割合で含有する特許請求の範囲第1項ない
し第4項いずれか記載の導電性樹脂組成物。 6 フラックスが、低融点金属に対して0.1〜5重量
%の割合で含有する特許請求の範囲第1項ないし第5項
いずれか記載の導電性樹脂組成物。 7 低融点金属が、全体の組成物に対して0.1〜20
重量%の割合で、かつ長繊維状の導電性繊維に対して5
〜30重量%の割合で含有する特許請求の範囲第1項な
いし第6項いずれか記載の導電性樹脂組成物。
[Claims] 1. A master pellet obtained by coating long conductive fibers with a low-melting metal containing flux and cutting them into pellets, and a natural pellet made of a thermoplastic resin are blended. Characteristic conductive resin composition. 2. A patent claim in which the long-fiber conductive fibers are metal fibers such as copper fibers, copper alloy fibers, stainless steel fibers, aluminum fibers, nickel fibers, or organic or inorganic fibers having a copper, aluminum, or nickel layer on the surface. range 1
The conductive resin composition described in . 3 Flux contains stearic acid, lactic acid, oleic acid,
The conductive resin composition according to claim 1 or 2, which is glutamic acid, rosin, or active rosin. 4 The low melting point metal is a solder alloy whose main component is Sn or Sn-Pb, a high-temperature solder alloy whose main component is Sn-Pb-Cd-Ag-Zn, or a high-temperature solder alloy whose main component is Sn-Pb-Cd-Bi. The conductive resin composition according to any one of claims 1 to 3, which is a low-temperature solder alloy. 5 The long fibrous conductive fibers are 1% of the total composition.
The conductive resin composition according to any one of claims 1 to 4, containing the conductive resin composition in a proportion of 8% by weight. 6. The conductive resin composition according to any one of claims 1 to 5, wherein the flux is contained in a proportion of 0.1 to 5% by weight based on the low melting point metal. 7 The low melting point metal is 0.1 to 20% of the total composition.
5% by weight and based on long fibrous conductive fibers.
The conductive resin composition according to any one of claims 1 to 6, containing the conductive resin composition in a proportion of ~30% by weight.
JP8391887A 1987-04-07 1987-04-07 Conductive resin composition Expired - Lifetime JPH07122023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8391887A JPH07122023B2 (en) 1987-04-07 1987-04-07 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8391887A JPH07122023B2 (en) 1987-04-07 1987-04-07 Conductive resin composition

Publications (2)

Publication Number Publication Date
JPS63251468A true JPS63251468A (en) 1988-10-18
JPH07122023B2 JPH07122023B2 (en) 1995-12-25

Family

ID=13815980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8391887A Expired - Lifetime JPH07122023B2 (en) 1987-04-07 1987-04-07 Conductive resin composition

Country Status (1)

Country Link
JP (1) JPH07122023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359039A (en) * 1991-06-04 1992-12-11 Nissei Plastics Ind Co Electroconductive resin production thereof and electroconductive molding
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359039A (en) * 1991-06-04 1992-12-11 Nissei Plastics Ind Co Electroconductive resin production thereof and electroconductive molding
JP2004273401A (en) * 2003-03-12 2004-09-30 Matsushita Electric Ind Co Ltd Electrode connecting member, circuit module using it and manufacturing method therefor

Also Published As

Publication number Publication date
JPH07122023B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US4882227A (en) Conductive resin composition and molded product using the same
JPS6320270B2 (en)
JPS63251468A (en) Electrically conductive resin composition
JP4760076B2 (en) Thermoplastic resin-coated conductive composition
JPS63218309A (en) Electrically conductive resin composition and molded item made thereof
JPS63235368A (en) Electrically conductive resin composition and molded product thereof
JPS63218310A (en) Electrically conductive resin composition and molded item made thereof
JPS63235369A (en) Electrically conductive resin composition and molded product thereof
JPH0212988B2 (en)
JP2523098B2 (en) Conductive resin composition and molded article thereof
JPH02213002A (en) Manufacture of conductive resin component
JPS63277279A (en) Electrically conductive resin composition
JP2005264096A (en) Method for producing resin coating composition
JP2658000B2 (en) Conductive resin composition and molded article thereof
JPH06128493A (en) Production of electrically conductive resin composition
JPH01198665A (en) Electrically conductive resin composition
JPH01204966A (en) Conductive resin composition and its molding
JPH02250203A (en) Copper alloy fiber and copper alloy fiber bundle to be added to conductive plastic
JPH073072A (en) Conductive resin composition and its molding
JP2004256568A (en) Polyproylene resin composition and molded product
JPH04359039A (en) Electroconductive resin production thereof and electroconductive molding
JPH0212987B2 (en)
JPH06128494A (en) Production of electrically conductive resin composition
JPH0237120B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JPH03257999A (en) Conductive resin composition and its mold