JPH0212988B2 - - Google Patents

Info

Publication number
JPH0212988B2
JPH0212988B2 JP62071570A JP7157087A JPH0212988B2 JP H0212988 B2 JPH0212988 B2 JP H0212988B2 JP 62071570 A JP62071570 A JP 62071570A JP 7157087 A JP7157087 A JP 7157087A JP H0212988 B2 JPH0212988 B2 JP H0212988B2
Authority
JP
Japan
Prior art keywords
conductive
resin composition
melting point
fiber
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071570A
Other languages
Japanese (ja)
Other versions
JPS63238163A (en
Inventor
Hidehiro Iwase
Keiichi Habata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP7157087A priority Critical patent/JPS63238163A/en
Priority to KR1019880002366A priority patent/KR880011821A/en
Priority to EP88103649A priority patent/EP0283844B1/en
Priority to DE88103649T priority patent/DE3885487T2/en
Priority to US07/165,905 priority patent/US4882227A/en
Publication of JPS63238163A publication Critical patent/JPS63238163A/en
Publication of JPH0212988B2 publication Critical patent/JPH0212988B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、導電性、特に高温における導電性の
経時安定性に優れた、信頼性の高い導電性樹脂組
成物に関する。 (従来の技術) 近年、外部に発生する電磁波から電子機器を保
護しあるいはその電子機器から外部への電磁波漏
洩を防止するために、電子機器の筐体を電磁波シ
ールド材料によつて形成することが要請されてい
る。そして、このシールド用の成形材料では、従
来の炭素繊維を充填したもの以上に高い導電性が
要求されると同時に筺体としての優れた機械的強
度が要求されるために、金属系の導電性充填材を
長繊維のまま樹脂に充填することが行われてい
る。 しかし、上記金属の長繊維を用いる従来方法に
よつて、優れた導電性と機械的強度が得られるも
のの使用環境に制約を受ける欠点がある。すなわ
ち、活性の強い金属を導電性充填材に使用する
と、合成樹脂の劣化を早めるため、筐体は高温の
場所あるいは外光を直接受ける場所で使用できな
いという欠点があり、また導電性充填材と導電性
充填材との結合が単なる接触であることから環境
の温度変化によつてその接触が変化し、その結
果、筐体の導電性が次第に低下して行くという問
題があつた。こうしたことから、上記金属の長繊
維を用いる従来方法は、著しく信頼性を損なう欠
点があり、実用化の大きな障害となつていた。 次に、低融点金属と樹脂を混合して導電性樹脂
組成物とすることは従来から公知であるが、低融
点金属は樹脂との密着性が悪く、また成形機での
材料色替えの際の空打では、樹脂と低融点金属と
が分離して、低融点金属のみが飛散するなど成形
加工上極めて危険であつた。 また、金属繊維を使用する従来方法では、金属
繊維が成形前の乾燥等によつて、その表面に酸化
膜を発生し、そのため導電性が劣化するなどの問
題があつた。 (発明が解決しようとする問題点) 本発明は、上記の問題点を解決するためになさ
れたもので、導電性繊維の充填量の低減が可能で
あり、また様々な環境の温度変化においても導電
性の低下や経時変化が少なく、かつ樹脂本来の特
性を保有した、成形加工性のよい、信頼性の高い
導電性樹脂組成物およびその成形品を提供しよう
とするものである。 [発明の構成] (問題点を解決するための手段) 本発明者は、上記の目的を達成しようと鋭意研
究を重ねた結果、導電性充填材として導電性繊維
と低融点金属とを併用し、それにフラツクスおよ
びリン系酸化防止剤を添加配合ことによつて、高
温においても導電性が低下せずに導電性の経時安
定性に優れ成形加工時においても樹脂と低融点金
属との分離、飛散などがなく成形作業性が向上し
た信頼性の高い導電性樹脂組成物が得られること
を見いだし、本発明を完成したものである。すな
わち、本発明は、 (A)導電性繊維、(B)低融点金属および(C)フラツク
スからなる導電性充填材の表面に、(D)リン系酸化
防止剤を含む(E)熱可塑性樹脂層を被覆形成一体化
し、ペレツト状に切断してなることを特徴とする
導電性樹脂組成物である。そして導電性繊維が長
繊維状の金属繊維、表面に金属層を有する無機又
は有機繊維である。低融点金属は一般半田、低温
半田、高温半田などのもの、フラツクスは有機酸
系又はロジン系のもの、またリン系酸化防止剤は
後述する構造式を有するものを配合した導電性樹
脂組成物である。 本発明に用いる(A)導電性繊維としては、長繊維
状のものが好ましく、銅繊維、銅合金繊維、ステ
ンレス繊維、アルミニウム繊維、ニツケル繊維等
の金属繊維、表面に銅、アルミニウム、ニツケル
等の金属層を有する有機繊維若しくは無機繊維、
等が挙げられる。導電性繊維は、直径が8〜
100μm程度のものが良く、また100〜10000本収束
したものを用いる。導電性繊維の配合量は、全体
の導電性樹脂組成物に対して5〜80重量%の割合
とすることが望ましい。5重量%未満では導電性
が低く、また80重量%を超えると導電性樹脂組成
物の流動性、その他の特性が低下し好ましくない
からである。 本発明に用いる(B)低融点金属としては、Sn若
しくはSn−Pbを主成分とする一般半田合金、Sn
−Pb−Agを主成分とする高温半田合金、さらに
はSn−Pb−Biを主成分とする低温半田合金等が
挙げられる。これらの低融点金属は、繊維状、粒
状、棒状、線状のいずれでもよく、特に形状に限
定されるものではない。また低融点金属の使用形
態としては、導電性繊維とともに繊維状の低融点
金属を収束させる、表面を低融点金属で被覆した
導電性繊維を収束させる、収束させた導電性繊維
の束を低融点金属で被覆することなどが挙げられ
る。そのほか、導電性繊維の表面に粒状の低融点
金属をまぶして付着させる方法などもあり、導電
性繊維が低融点金属と一緒に収束されておればよ
い。低融点金属は、導電性充填材を被覆する熱可
塑性樹脂の成形加工温度によつて選定することが
望ましい。低融点金属の配合量は、導電性繊維を
結合、被覆するに充分な量、すなわち、導電性繊
維に対して5〜30重量%の割合で含有することが
望ましい。含有量が5重量%未満では、導電性繊
維を結合、被覆することが不十分となり、また、
30重量%を超えると低融点金属のみが遊離して樹
脂の物性を低下させ、好ましくないからである。 本発明に用いる(C)フラツクスとしては、有機酸
系、樹脂系のフラツクスが好ましく、具体的には
有機酸系のステアリン酸、乳酸、オレイン酸、グ
ルタミン酸等、樹脂系のロジン、活性ロジン等が
挙げられ、これらは1種で又は2種以上混合して
使用する。ハロゲン系やアミン系のフラツクス
は、導電性繊維、金型等を腐蝕させるのでその使
用は好ましくない。フラツクスの配合割合は、低
融点金属に対して0.1〜5重量%とすることが望
ましい。含有量が0.1重量%未満では導電性繊維
の半田ぬれ性に効果がなく、また5重量%を超え
ると樹脂の物性が低下するとともに金型の腐蝕、
汚れの原因となり好ましくない。フラツクスは、
通常低融点金属に充填しておくことが好ましい。 本発明に用いる(D)リン系酸化防止剤として、次
の構造式のものが挙げられる。 リン系酸化防止剤の配合量は、熱可塑性樹脂に
対して0.1〜5重量%の割合で含有することが望
ましい。配合量が0.1重量%未満では導電性繊維
の酸化膜除去に不充分で、半田ぬれ性が悪く、ま
た5重量%を超えると樹脂の熱変形温度が下がる
等、物性が低下し、好ましくない。リン系酸化防
止剤は後述する熱可塑性樹脂層の樹脂に配合して
おくことが望ましい。 本発明に用いる(E)熱可塑性樹脂層の樹脂として
は、ポリプロピレン樹脂、ポリエチレン樹脂、ポ
リスチレン樹脂、アクリロニトリル・ブタジエ
ン・スチレン樹脂、変性ポリフエニレンオキサイ
ド樹脂、ポリブチレンテレフタレート樹脂、ポリ
カーボネート樹脂、ポリアミド樹脂、ポリエーテ
ルイミド樹脂等が挙げられ、これらは1種又は2
種以上混合して使用する。 本発明の導電性樹脂組成物は、通常次のように
して製造する。以下図面を用いて説明する。 第1図a〜dは導電性繊維と低融点金属を集合
させた導電性充填材の見取図である。すなわち第
1図aに示すように導電性繊維2を収束させた中
にフラツクスを含有する繊維状の低融点金属3を
一定量の本数加えて集合させ、導電性充填材1と
する。そのほか、導電性繊維と低融点金属との集
合は、第1図bのように導電性繊維2の表面に低
融点金属3を被覆したものを集合させたり、第1
図cのように集合させた導電性繊維2全体を低融
点金属3で被覆したり、また第1図dのように導
電性繊維2の表面に粒状の低融点金属3を付着集
合させたりして、導電性充填材1とする。この導
電性充填材1の表面に、リン系酸化防止剤を含有
した熱可塑性樹脂層4を被覆形成一体化し、切断
して導電性樹脂組成物のペレツトとする。ペレツ
ト10の断面図を示す第1図e〜hは、導電性充
填材1を示す第1図a〜dにそれぞれ対応させて
ある。すなわち導電性繊維と低融点金属とを集合
させた導電性充填材1の表面にリン系酸化防止剤
を含む熱可塑性樹脂4を被覆形成一体化する。ペ
レツト10は通常その断面が円形であるが、偏
平、その他のものでも良く、特に形状に制限され
るものではない。ペレツトは、第2図に示したよ
うに、第1図a〜dに集合させた導電性充填材1
1を押出機12のダイス13を通して導電性充填
材11の表面に熱可塑性樹脂14を被覆形成一体
化し、次いでカツテイング15を行つて、ペレツ
ト16とする。ペレツトの製造工程は連続的に行
うことが経済的に有利であるが、必ずしも連続的
でなくバツチ方式で製造してもよい。こうして得
られた導電性樹脂組成物は低融点金属の融点以上
の温度で射出成形して、電磁波シールドを必要と
する電子機器、測定機器、通信機器等のハウジン
グや部品の成形品とすることができる。 (作用) 本発明によれば、導電性繊維、低融点金属、フ
ラツクス、リン系酸化防止剤および熱可塑性樹脂
は、次のように作用し、優れた導電性が得られ
る。 すなわち、導電性樹脂組成物は射出成形機の加
熱シリンダー内において、導電性繊維が熱可塑性
樹脂に分散し、金型内に注入冷却固化する過程に
おいて、低融点金属が熱可塑性樹脂と同様に融け
て、導電性繊維と融着結合し、導電性繊維と導電
性繊維とが低融点金属の被覆融着によつて網目状
態となり、そのまま冷却固化する。導電性繊維と
低融点金属とが融着する際、製造工程中や乾燥時
に形成された導電性繊維の酸化膜が、リン系酸化
防止剤の還元作用によつて除去され、フラツクス
に対するぬれ性が付与されるために、導電性繊維
と低融点金属が強固に網目状態を形成する。も
し、導電性繊維に酸化膜が残つていたり、導電性
繊維のぬれ性が悪いと、導電性繊維の腐蝕や低融
点金属の遊離が起こり、樹脂の物性を低下させ、
また導電性も悪くなる。導電性繊維と導電性繊維
が低融点金属と強固に結合して網目状態となるこ
とによつて、導電性が著しく向上し、かつ樹脂の
物性を損なうことがなくなる。このことは成形品
の樹脂分を溶剤で溶かしてみると導電性繊維の結
合した網目状態を確認することができる。このよ
うな導電性の向上によつて導電性繊維の配合量を
低減できるし、また低融点金属の分離や飛散がな
くなり、作業上安全となる。 (実施例) 次に本発明を実施例によつて説明する。 実施例 直径50μmの長尺の銅繊維を300本と、フラツク
ス2重量%を含有する直径約300μmの長尺の低融
点金属(Sn60%、Pb40%)1本とを集合、収束
させて導電性充填材した。導電性充填材の表面に
MARK PEP24(アデカアーガス化学社製、リン
系酸化防止剤商品名)2重量%を含有するタフレ
ツクス410(三菱モンサント化成社製ABS樹脂、
商品名)を押出機のダイスを通して被覆形成一体
化し、冷却後、切断して直径3mm、長さ6mm導電
性樹脂組成物を製造した。この組成物を用いて射
出成形をして成形品を得、この成形品の体積抵抗
率、電磁波シールド効果、および機械的強度を試
験をしたのでその結果を第1表に示した。また、
成形品を塩化メチレンで洗浄、樹脂分を溶解し、
残つた導電性繊維の網目状態を電子顕微鏡で写真
撮影したので、これを第3図に示した。同図にお
いて、導電性繊維20と導電性繊維21とが低融
点金属22によつてしつかりと融着結合している
ことがわかる。成形品は80℃で3000時間の環境試
験後においても、シールド効果は全く低下せず、
また機械的強度も初期値の80%以上保持してお
り、本発明の極めて顕著な効果が確認された。 比較例 実施例において、低融点金属、フラツクスおよ
びリン系酸化防止剤を除いた以外すべて実施例と
同一にして直径3mm、長さ6mmの導電性樹脂組成
物を製造した。この導電性樹脂組成物を用いて実
施例と同様にして成形品を得て、同様な特性試験
をしたので、その結果を第1表に示した。
[Object of the Invention] (Industrial Application Field) The present invention relates to a highly reliable conductive resin composition that has excellent conductivity, particularly stability over time of conductivity at high temperatures. (Prior Art) In recent years, in order to protect electronic devices from electromagnetic waves generated externally or to prevent leakage of electromagnetic waves from the electronic devices to the outside, the housings of electronic devices have been made of electromagnetic shielding materials. It is requested. The molding material for this shield is required to have higher conductivity than conventional carbon fiber-filled materials, and at the same time requires excellent mechanical strength as a housing, so metal-based conductive filling is required. The material is filled with resin as long fibers. However, although the above-mentioned conventional method using long metal fibers provides excellent electrical conductivity and mechanical strength, it has the drawback of being restricted by the usage environment. In other words, if a highly active metal is used as a conductive filler, it will accelerate the deterioration of the synthetic resin, resulting in the disadvantage that the casing cannot be used in high-temperature locations or in locations exposed to direct external light. Since the bond with the conductive filler is a mere contact, the contact changes with changes in the environmental temperature, resulting in a problem in that the conductivity of the casing gradually decreases. For these reasons, the conventional method using long metal fibers has the disadvantage of significantly impairing reliability, which has been a major obstacle to practical application. Next, it has been known for a long time to mix a low melting point metal and a resin to make a conductive resin composition, but the low melting point metal has poor adhesion to the resin, and when changing the material color in a molding machine, Dry punching was extremely dangerous for the molding process, as the resin and low melting point metal would separate and only the low melting point metal would fly away. Further, in the conventional method using metal fibers, an oxide film is formed on the surface of the metal fibers when the metal fibers are dried before being formed, resulting in a problem such as deterioration of conductivity. (Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and it is possible to reduce the amount of conductive fibers filled, and also to be able to withstand temperature changes in various environments. The object of the present invention is to provide a highly reliable conductive resin composition that exhibits little decrease in conductivity or change over time, retains the original characteristics of the resin, has good moldability, and molded products thereof. [Structure of the Invention] (Means for Solving the Problems) As a result of extensive research in an attempt to achieve the above object, the inventor of the present invention has discovered the use of a combination of conductive fibers and a low melting point metal as a conductive filler. By adding flux and phosphorous antioxidant to it, the conductivity does not decrease even at high temperatures and has excellent electrical conductivity stability over time. Even during molding, the resin and low melting point metal can be separated and scattered. The present invention has been completed based on the discovery that a highly reliable conductive resin composition with improved molding workability and free from such problems can be obtained. That is, the present invention provides a conductive filler made of (A) conductive fibers, (B) a low melting point metal, and (C) a flux, on the surface of which is a conductive filler containing (D) a phosphorous antioxidant and (E) a thermoplastic resin. This is a conductive resin composition characterized in that it is formed by integrally forming layers and cutting them into pellets. The conductive fibers are long metal fibers, or inorganic or organic fibers having a metal layer on the surface. The low melting point metal is a general solder, low temperature solder, high temperature solder, etc., the flux is an organic acid type or rosin type, and the phosphorus antioxidant is a conductive resin composition containing an agent having the structural formula described below. be. The conductive fibers (A) used in the present invention are preferably long fibers, such as metal fibers such as copper fibers, copper alloy fibers, stainless steel fibers, aluminum fibers, and nickel fibers, and metal fibers with copper, aluminum, nickel, etc. on the surface. organic or inorganic fibers with a metal layer;
etc. The conductive fiber has a diameter of 8~
It is best to use one with a diameter of about 100 μm, and one with 100 to 10,000 converged lines. The amount of conductive fibers to be blended is preferably 5 to 80% by weight based on the entire conductive resin composition. This is because if it is less than 5% by weight, the conductivity will be low, and if it exceeds 80% by weight, the fluidity and other properties of the conductive resin composition will deteriorate, which is not preferable. The low melting point metal (B) used in the present invention is a general solder alloy containing Sn or Sn-Pb as a main component, Sn
Examples include high-temperature solder alloys whose main components are -Pb-Ag and low-temperature solder alloys whose main components are Sn-Pb-Bi. These low melting point metals may be fibrous, granular, rod-like, or linear, and are not particularly limited in shape. In addition, low melting point metals can be used by converging fibrous low melting point metals together with conductive fibers, converging conductive fibers whose surfaces are coated with low melting point metals, and converging bundles of converged conductive fibers with low melting point metals. Examples include coating with metal. In addition, there is a method in which the surface of the conductive fibers is sprinkled with granular low-melting point metal, and it is sufficient if the conductive fibers are bundled together with the low-melting point metal. The low melting point metal is desirably selected depending on the molding temperature of the thermoplastic resin covering the conductive filler. The low melting point metal is desirably contained in an amount sufficient to bond and coat the conductive fibers, that is, in a proportion of 5 to 30% by weight based on the conductive fibers. If the content is less than 5% by weight, binding and coating of the conductive fibers will be insufficient, and
This is because if it exceeds 30% by weight, only the low melting point metal will be liberated and the physical properties of the resin will deteriorate, which is not preferable. The flux (C) used in the present invention is preferably an organic acid-based or resin-based flux, and specifically includes organic acid-based stearic acid, lactic acid, oleic acid, glutamic acid, etc., resin-based rosin, activated rosin, etc. These can be used alone or in combination of two or more. It is not preferable to use halogen-based or amine-based fluxes because they corrode conductive fibers, molds, etc. The blending ratio of flux is preferably 0.1 to 5% by weight based on the low melting point metal. If the content is less than 0.1% by weight, it will have no effect on the solderability of the conductive fibers, and if it exceeds 5% by weight, the physical properties of the resin will deteriorate and the mold will corrode.
This is undesirable as it causes dirt. The flux is
It is usually preferable to fill it with a low melting point metal. Examples of the phosphorus antioxidant (D) used in the present invention include those with the following structural formula. The content of the phosphorus antioxidant is preferably 0.1 to 5% by weight based on the thermoplastic resin. If the amount is less than 0.1% by weight, it will be insufficient to remove the oxide film from the conductive fibers and the solder wettability will be poor, and if it exceeds 5% by weight, the physical properties will deteriorate, such as the heat deformation temperature of the resin will drop, which is not preferable. It is desirable that the phosphorus antioxidant be blended into the resin of the thermoplastic resin layer, which will be described later. The resin of the thermoplastic resin layer (E) used in the present invention includes polypropylene resin, polyethylene resin, polystyrene resin, acrylonitrile butadiene styrene resin, modified polyphenylene oxide resin, polybutylene terephthalate resin, polycarbonate resin, polyamide resin, Examples include polyetherimide resins, which can be used in combination of one or two types.
Use by mixing more than one species. The conductive resin composition of the present invention is usually produced as follows. This will be explained below using the drawings. Figures 1a to 1d are sketches of a conductive filler in which conductive fibers and low-melting metals are aggregated. That is, as shown in FIG. 1a, a certain number of fibrous low melting point metals 3 containing flux are added to and aggregated into a bundle of conductive fibers 2 to form a conductive filler 1. In addition, conductive fibers and low melting point metals can be assembled by assembling conductive fibers 2 coated with low melting point metal 3 on the surface as shown in FIG.
The entire assembled conductive fibers 2 may be coated with a low melting point metal 3 as shown in Fig. Then, a conductive filler 1 is prepared. A thermoplastic resin layer 4 containing a phosphorous antioxidant is integrally coated on the surface of the conductive filler 1 and cut into pellets of the conductive resin composition. 1e-h showing cross-sectional views of the pellet 10 correspond to FIGS. 1a-d showing the conductive filler 1, respectively. That is, a thermoplastic resin 4 containing a phosphorous antioxidant is integrally coated on the surface of a conductive filler 1 made of conductive fibers and a low-melting metal. The pellets 10 usually have a circular cross section, but may be flat or other shapes, and are not particularly limited in shape. As shown in FIG. 2, the pellets are composed of conductive fillers 1 assembled in FIGS. 1a to d.
1 is passed through a die 13 of an extruder 12 to integrally coat the surface of the conductive filler 11 with a thermoplastic resin 14, and then cut 15 to form pellets 16. Although it is economically advantageous to carry out the pellet production process continuously, it is not necessarily necessary to carry out the pellet production process continuously, but it is also possible to produce the pellets in batches. The conductive resin composition thus obtained can be injection molded at a temperature higher than the melting point of the low-melting point metal to form molded products for housings and parts of electronic devices, measuring instruments, communication devices, etc. that require electromagnetic shielding. can. (Function) According to the present invention, the conductive fiber, the low melting point metal, the flux, the phosphorous antioxidant, and the thermoplastic resin function as follows, and excellent conductivity can be obtained. In other words, the conductive resin composition is produced in the heating cylinder of an injection molding machine, in which the conductive fibers are dispersed in the thermoplastic resin, and in the process of being injected into the mold and cooling and solidifying, the low melting point metal melts in the same way as the thermoplastic resin. Then, the conductive fibers are fused and bonded to the conductive fibers, and the conductive fibers are coated and fused with the low melting point metal to form a network, which is then cooled and solidified. When the conductive fibers and the low-melting point metal are fused together, the oxide film formed on the conductive fibers during the manufacturing process or during drying is removed by the reducing action of the phosphorus antioxidant, resulting in improved flux wettability. Because of this, the conductive fibers and the low melting point metal form a strong network. If an oxide film remains on the conductive fibers or the wettability of the conductive fibers is poor, corrosion of the conductive fibers and release of low melting point metals will occur, reducing the physical properties of the resin.
Furthermore, the conductivity also deteriorates. Since the conductive fibers and the conductive fibers are firmly bonded to the low melting point metal to form a network, the conductivity is significantly improved and the physical properties of the resin are not impaired. This can be confirmed by dissolving the resin component of the molded product with a solvent and confirming the network state in which the conductive fibers are combined. This improvement in conductivity allows the amount of conductive fibers to be reduced, and also eliminates separation and scattering of low-melting point metals, resulting in operational safety. (Example) Next, the present invention will be explained by referring to an example. Example 300 long copper fibers with a diameter of 50 μm and one long low-melting point metal (Sn60%, Pb40%) with a diameter of about 300 μm containing 2% by weight of flux were assembled and converged to make them conductive. It was a filling material. on the surface of conductive filler
Toughflex 410 (ABS resin manufactured by Mitsubishi Monsanto Chemical Co., Ltd.) containing 2% by weight of MARK PEP24 (manufactured by Adeka Argus Chemical Co., Ltd., a phosphorus antioxidant trade name)
(trade name) was passed through a die of an extruder to form a coating, and after cooling, it was cut to produce a conductive resin composition having a diameter of 3 mm and a length of 6 mm. A molded article was obtained by injection molding using this composition, and the volume resistivity, electromagnetic shielding effect, and mechanical strength of this molded article were tested. The results are shown in Table 1. Also,
Wash the molded product with methylene chloride to dissolve the resin,
The network state of the remaining conductive fibers was photographed using an electron microscope, and is shown in FIG. In the figure, it can be seen that the conductive fibers 20 and 21 are tightly fused and bonded by the low melting point metal 22. Even after 3,000 hours of environmental testing at 80°C, the molded product's shielding effectiveness did not deteriorate at all.
Furthermore, the mechanical strength was maintained at 80% or more of the initial value, confirming the extremely significant effect of the present invention. Comparative Example A conductive resin composition having a diameter of 3 mm and a length of 6 mm was produced in the same manner as in the example except that the low melting point metal, flux and phosphorous antioxidant were removed. Molded articles were obtained using this conductive resin composition in the same manner as in the examples, and the same characteristic tests were conducted. The results are shown in Table 1.

【表】【table】

【表】 [発明の効果] 以上の説明および第1表からも明らかなよう
に、本発明の導電性樹脂組成物は、導電性充填材
として導電性繊維と低融点金属を併用し、かつフ
ラツクスとリン系酸化防止剤を配合したことによ
つて、導電性繊維のぬれ性が良好となり導電性繊
維同士が低融点金属によつて強固に結合されて、
高温における環境変化にも導電性が低下すること
なく、シールド効果の経時安定性に優れている。
また導電性が優れていることから、導電性充填材
の充填量を低減することが可能であり、更に樹脂
の固有の物性を保持することができる。低融点金
属が導電性繊維と強固に結合したことによつて、
低融点金属の分離や飛散がなくて安全となり、成
形加工性が向上した。この導電性樹脂組成物を用
いた本発明の成形品を電子機器、計測機器、通信
機器等に使用すれば極めて高い信頼性を付与する
ことができる。
[Table] [Effects of the Invention] As is clear from the above explanation and Table 1, the conductive resin composition of the present invention uses a conductive fiber and a low melting point metal together as a conductive filler, and a flux By blending with phosphorus-based antioxidant, the conductive fibers have good wettability, and the conductive fibers are firmly bonded to each other by the low-melting point metal.
The conductivity does not decrease even under environmental changes at high temperatures, and the shielding effect has excellent stability over time.
Furthermore, since the resin has excellent electrical conductivity, it is possible to reduce the amount of the electrically conductive filler to be filled, and furthermore, the inherent physical properties of the resin can be maintained. By firmly bonding the low melting point metal with the conductive fiber,
There is no separation or scattering of low melting point metals, making it safer and improving moldability. If the molded article of the present invention using this conductive resin composition is used in electronic equipment, measuring equipment, communication equipment, etc., extremely high reliability can be imparted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aないしdは本発明における導電性充填
材を示す斜視図、第1図eないしhは本発明にお
けるペレツトの断面図、第2図は本発明における
ペレツトの製造工程を説明するための概念図、第
3図は本発明の導電性樹脂組成物による成形品に
おいて低融点金属により網目状に融着結合した導
電性繊維の形状を示す電子顕微鏡写真である。 1,11…導電性充填材、2,20,21…導
電性繊維、3,22…低融点金属、4,14…熱
可塑性樹脂層、10,16…ペレツト。
Figures 1a to d are perspective views showing the conductive filler in the present invention, Figures 1e to h are sectional views of the pellets in the present invention, and Figure 2 is a diagram for explaining the pellet manufacturing process in the present invention. The conceptual diagram and FIG. 3 are electron micrographs showing the shape of conductive fibers fused and bonded in a network with a low melting point metal in a molded article made of the conductive resin composition of the present invention. 1, 11... Conductive filler, 2, 20, 21... Conductive fiber, 3, 22... Low melting point metal, 4, 14... Thermoplastic resin layer, 10, 16... Pellet.

Claims (1)

【特許請求の範囲】 1 (A)導電性繊維(B)低融点金属及び(C)フラツクス
からなる導電性充填材の表面に、(D)リン系酸化防
止剤を含む(E)熱可塑性樹脂層を被覆形成一体化
し、これをペレツト状に切断してなることを特徴
とする導電性樹脂組成物。 2 導電性繊維が、長繊維状の銅繊維、黄銅繊
維、ステンレス繊維、アルミニウム繊維、ニツケ
ル繊維、又は表面に金属層を有する有機若しくは
無機の繊維である特許請求の範囲第1項記載の導
電性樹脂組成物。 3 低融点金属が、Sn若しくはSn−Pbを主成分
とする半田合金である特許請求の範囲第1項又は
第2項いずれか記載の導電性樹脂組成物。 4 フラツクスが、ステアリン酸、乳酸、オレイ
ン酸、グルタミン酸、ロジン又は活性ロジンであ
る特許請求の範囲第1項ないし第3項いずれか記
載の導電性樹脂組成物。 5 導電性繊維が、導電性樹脂組成物に対して5
〜80重量%の割合で含有する特許請求の範囲第1
項ないし第4項いずれか記載の導電性樹脂組成
物。 6 低融点金属が、導電性繊維に対して5〜30重
量%の割合で含有する特許請求の範囲第1項ない
し第5項いずれか記載の導電性樹脂組成物。 7 フラツクスが、低融点金属に対して0.1〜5
重量%の割合で含有する特許請求の範囲第1項な
いし第6項いずれか記載の導電性樹脂組成物。 8 リン系酸化防止剤が、熱可塑性樹脂に対して
0.1〜5重量%の割合で含有する特許請求の範囲
第1項ないし第7項いずれか記載の導電性樹脂組
成物。
[Scope of Claims] 1 (A) conductive fibers (B) a low melting point metal and (C) a conductive filler made of flux, on the surface of which (D) a phosphorous antioxidant is contained (E) a thermoplastic resin 1. A conductive resin composition characterized in that it is formed by integrally forming a coating layer and cutting this into pellets. 2. The conductive fiber according to claim 1, wherein the conductive fiber is a long fiber copper fiber, brass fiber, stainless steel fiber, aluminum fiber, nickel fiber, or an organic or inorganic fiber having a metal layer on the surface. Resin composition. 3. The conductive resin composition according to claim 1 or 2, wherein the low melting point metal is a solder alloy containing Sn or Sn-Pb as a main component. 4. The conductive resin composition according to any one of claims 1 to 3, wherein the flux is stearic acid, lactic acid, oleic acid, glutamic acid, rosin or activated rosin. 5 The conductive fiber is 5% of the conductive resin composition.
Claim 1 containing in a proportion of ~80% by weight
5. The conductive resin composition according to any one of items 1 to 4. 6. The conductive resin composition according to any one of claims 1 to 5, wherein the low melting point metal is contained in a proportion of 5 to 30% by weight based on the conductive fibers. 7 The flux is 0.1 to 5 for low melting point metals.
7. The conductive resin composition according to any one of claims 1 to 6, which contains the conductive resin composition in a proportion of % by weight. 8 Phosphorous antioxidants are effective against thermoplastic resins.
The conductive resin composition according to any one of claims 1 to 7, containing in a proportion of 0.1 to 5% by weight.
JP7157087A 1987-03-09 1987-03-27 Electrically conductive resin composition Granted JPS63238163A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7157087A JPS63238163A (en) 1987-03-27 1987-03-27 Electrically conductive resin composition
KR1019880002366A KR880011821A (en) 1987-03-09 1988-03-07 Conductive resin composition and molded article thereof
EP88103649A EP0283844B1 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product using the same
DE88103649T DE3885487T2 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product.
US07/165,905 US4882227A (en) 1987-03-09 1988-03-09 Conductive resin composition and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157087A JPS63238163A (en) 1987-03-27 1987-03-27 Electrically conductive resin composition

Publications (2)

Publication Number Publication Date
JPS63238163A JPS63238163A (en) 1988-10-04
JPH0212988B2 true JPH0212988B2 (en) 1990-04-03

Family

ID=13464494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157087A Granted JPS63238163A (en) 1987-03-09 1987-03-27 Electrically conductive resin composition

Country Status (1)

Country Link
JP (1) JPS63238163A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749491B2 (en) * 1987-04-07 1995-05-31 東芝ケミカル株式会社 Conductive resin composition
JPH0317905A (en) * 1989-06-13 1991-01-25 Toshiba Chem Corp Conductive resinous composition and molded material thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition
JPS60133057A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition
JPS60133057A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition

Also Published As

Publication number Publication date
JPS63238163A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
US4882227A (en) Conductive resin composition and molded product using the same
EP1695358A1 (en) Metal/plastic hybrid and shaped body produced therefrom
JPS6320270B2 (en)
JPH0212988B2 (en)
JPH0212986B2 (en)
JP2523097B2 (en) Conductive resin composition and molded article thereof
JPS63218310A (en) Electrically conductive resin composition and molded item made thereof
JP2523098B2 (en) Conductive resin composition and molded article thereof
JPS63218309A (en) Electrically conductive resin composition and molded item made thereof
JPH07122023B2 (en) Conductive resin composition
JP2658000B2 (en) Conductive resin composition and molded article thereof
JPH0237120B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JPH0813904B2 (en) Conductive resin composition
JPH0212987B2 (en)
JPH06315932A (en) Conductive resin molded piece
JPH0248588B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JP2005307186A (en) Thermoplastic resin coating electrically conductive composition
JPH0749491B2 (en) Conductive resin composition
JPH06339921A (en) Conductive resin molded product
JPH02229498A (en) Conductive resin composition and molding thereof
JP2005264096A (en) Method for producing resin coating composition
JPH06128494A (en) Production of electrically conductive resin composition
JPH03257999A (en) Conductive resin composition and its mold
JPH02148799A (en) Conductive resin composition and molded form thereof
JPH02199175A (en) Conductive molding resin material