JPH0212987B2 - - Google Patents

Info

Publication number
JPH0212987B2
JPH0212987B2 JP62071568A JP7156887A JPH0212987B2 JP H0212987 B2 JPH0212987 B2 JP H0212987B2 JP 62071568 A JP62071568 A JP 62071568A JP 7156887 A JP7156887 A JP 7156887A JP H0212987 B2 JPH0212987 B2 JP H0212987B2
Authority
JP
Japan
Prior art keywords
conductive
melting point
fiber
resin composition
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62071568A
Other languages
Japanese (ja)
Other versions
JPS63238162A (en
Inventor
Hidehiro Iwase
Keiichi Habata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP7156887A priority Critical patent/JPS63238162A/en
Priority to KR1019880002366A priority patent/KR880011821A/en
Priority to DE88103649T priority patent/DE3885487T2/en
Priority to EP88103649A priority patent/EP0283844B1/en
Priority to US07/165,905 priority patent/US4882227A/en
Publication of JPS63238162A publication Critical patent/JPS63238162A/en
Publication of JPH0212987B2 publication Critical patent/JPH0212987B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、導電性、特にその高温における経時
安定性に優れた、信頼性の高い導電性樹脂組成物
およびその成形品に関する。 (従来の技術) 従来より、熱可塑性樹脂に導電性繊維を配合し
て導電性樹脂組成物とし、該組成物は導電性樹脂
成形品に利用されてきた。これらには多くの場
合、炭素系の導電性繊維が配合されてきたが、そ
の用途は静電気防止が主で、近年問題となつてい
る電磁波シールドに対しては導電性が低くあまり
有効でない。そこで電磁波シールド用には金属系
の導電性繊維を使用して導電性を向上させること
が行われてきた。 しかし、金属系の導電性繊維(以下金属繊維と
いう)を配合すると比重が大きくなり、樹脂がも
つ本来の特性を大きく損なうという問題があり、
その配合量を最小限にすることが要求されてい
る。ところが金属繊維の配合量を減少させると、
導電性が低下し、更には使用環境に大きな制約を
受ける。すなわち、使用する樹脂と金属繊維とに
熱膨張の差があるため、高温になると導電性が劣
化するという問題が生ずる。そのため、現状では
金属繊維の配合量を多くして導電性の低下・劣化
を防止し、かつ使用環境を限定することによつて
実用化されている。そのように、従来の金属繊維
の導電性樹脂組成物およびその成形品は用途ない
し使用環境に制約があり、かつ特性も不安定で信
頼性も低いという問題点があつた。 また、低融点金属と樹脂とを混合して成形する
ことにより導電性の得られることが知られている
が、低融点金属は樹脂との密着性が悪くて分離す
るので、樹脂の物性を低下させ、また成形機の材
料色替えの際の空打で、金属のみが飛散するなど
成形加工上きわめて危険であるという問題があつ
た。更に金属繊維を低融点金属と併用して樹脂に
混合するときは、金属繊維が成形前に乾燥等によ
つてその表面に酸化膜が生じ、ハンダぬれ性が悪
くなり、低融点金属が分離したり、金属繊維が腐
食したりして、その結果、導電性の劣化が大きく
なるという問題があつた。 (発明が解決しようとする問題点) 本発明は、上記の問題点を解決するためになさ
れたもので、導電性繊維のぬれ性が良くて導電性
繊維と低融点金属とが強固に結合し、高温におい
ても成形品の導電性が劣化せずに経時安定性に優
れ、成形加工時においても樹脂と低融点金属との
分離、飛散などがなく成形加工性のよい、信頼性
の高い導電性樹脂組成物およびその成形品を提供
しようとするものである。 [発明の構成] (問題点を解決するための手段) 本発明者らは、上記の目的を達成しようと鋭意
研究を重ねた結果、導電性繊維と、低融点金属お
よびリン系酸化防止剤を配合した熱可塑性樹脂か
らなる組成物を用いることによつて、高温におい
ても成形品の導電性が劣化せずに経時安定性に優
れ、成形加工時において樹脂と低融点金属との分
離、飛散などがなく成形加工性の向上した、信頼
性の高い導電性樹脂組成物およびその成形品が得
られることを見いだし、本発明を完成したもので
ある。すなわち、本発明は、(A)導電性繊維の表面
に、(B)低融点金属および(C)リン系酸化防止剤を含
む(D)熱可塑性樹脂を、被覆形成一体化しペレツト
状に切断してなることを特徴とする導電性樹脂組
成物である。また、この導電性樹脂組成物を低融
点金属の融点以上の温度で射出成形してなること
を特徴とする導電性樹脂成形品である。 本発明に用いる(A)導電性繊維としては、長繊維
状の銅繊維、ステンレス繊維、黄銅繊維、アルミ
ニウム繊維、ニツケル繊維等の金属繊維や、表面
に銅、アルミニウム、ニツケル等の金属層を有す
る有機繊維、無機繊維等が挙げられ、これらは単
独又は2種以上混合して使用する。導電性繊維の
直径は5〜100μm程度のものが望ましい。この導
電性繊維は、その表面に低融点金属およびリン系
酸化防止剤を含む熱可塑性樹脂を被覆形成一体化
し、次いで長さ5〜8mmに切断して樹脂組成物と
する。導電性繊維の配合量は、全体の導電性樹脂
組成物に対して0.5〜30重量%の割合で含有する
ように配合することが望ましい。0.5重量%未満
では導電性が低く、また30重量%を超えると導電
性樹脂組成物の流動性、その他の特性が低下し好
ましくない。 本発明に用いる(B)低融点金属としては、Sn若
しくはSn−Pbを主成分とする一般ハンダ合金、
Sn−Pb−Agを主成分とする高温ハンダ合金、さ
らにはSn−Pb−Biを主成分とする低温ハンダ合
金等が挙げられる。これらの低融点金属は、繊維
状、粒状、線状、フレーク状のいずれでもよく、
特に成状に限定されるものではない。また、低融
点金属は、混合する熱可塑性樹脂の成形加工温度
によつて選定することが好ましい。低融点金属の
配合割合は、導電性繊維を結合・被覆するに十分
な量であることが望ましく、導電性繊維に対して
5〜30重量%の割合で配合することが好ましい。
配合量が5重量%未満では、導電性繊維を結合・
被覆することが不十分となり、また、30重量%を
超えると低融点金属のみが遊離して樹脂の物性を
低下させ好ましくない。低融点金属は熱可塑性樹
脂中に配合させておくことが好ましい。 本発明に用いる(C)リン系酸化防止剤として、次
の構造式のものが挙げられる。 リン系酸化防止剤の配合割合は、熱可塑性樹脂に
対して0.1〜5重量%の割合で配合することが望
ましい。配合量が0.1重量%未満では導電性繊維
の酸化膜除去に不十分で、ハンダぬれ性が悪く、
また5重量%を超えると樹脂の熱変形温度が下が
る等、物性が低下し好ましくない。リン系酸化防
止剤は熱可塑性樹脂中に配合しておくことが望ま
しい。 本発明に用いる(D)熱可塑性樹脂としては、ポリ
プロピレン樹脂、ポリエチレン樹脂、ポリスチレ
ン樹脂、アクリロニトリル・ブタジエン・スチレ
ン樹脂、変性ポリフエニレンオキサイド樹脂、ポ
リブチレンテレフタレート樹脂、ポリカーボネー
ト樹脂、ポリアミド樹脂、ポリエーテルイミド樹
脂等が挙げられ、これらは単独又は2種以上混合
して使用する。この熱可塑性樹脂中には前述した
低融点金属およびリン系酸化防止剤を配合してお
くことが望ましく、導電性繊維を被覆形成一体化
する。これらは熱可塑性樹脂と熱可塑性樹脂とを
混合することによつて界面に形成される第三の合
成樹脂が補強効果をもつもの、すなわち、ブレン
ドポリマーとなるようなものでもよい。例えば熱
可塑性樹脂として変性ポリフエニレンオキサイド
樹脂、ポリカーボネート樹脂等を使用するとき
は、他の熱可塑性樹脂としてスチレン系の熱可塑
性樹脂を使用すると好結果が得られる。こうする
ことにより界面に形成される第三の合成樹脂が補
強効果を持つものである。このような組合せを用
いると特性の優れた成形品を得ることができる。 本発明の導電性樹脂組成物およびその成形品は
通常次のようにして製造する。長繊維状の導電性
繊維を押出機のダイスを通し、導電性繊維の表面
に、低融点金属およびリン系酸化防止剤を配合し
た熱可塑性樹脂を被覆形成一体化し、次いで適当
な大きさに切断してペレツト状の導電性樹脂組成
物とする。この組成物は通常断面が円形である
が、円形でなくとも偏平、その他の形状でもよく
特に形状に制限されることはない。この組成物の
製造工程を連続的に行うことが経済的に有利であ
るが、必ずしも連続的である必要がなくバツチ方
式で製造してもよい。熱可塑性樹脂は、導電性樹
脂組成物やその成形品に要求される特性に応じて
熱可塑性樹脂の種類およびその量を適切に選択す
る。こうして製造した導電性樹脂組成物を低融点
金属の融点以上の温度で射出成形して導電性樹脂
成形品とする。成形品は、電磁波シールドを必要
とする電子機器、計測機器、通信機器等のハウジ
ングや部品として使用することができる。 (作用) 本発明によれば、導電性繊維、低融点金属、リ
ン系酸化防止剤および熱可塑性樹脂を用いること
によつて優れた効果が得られるものである。 すなわち、導電性樹脂組成物は射出成形機の加
熱シリンダー内において、熱可塑性樹脂と導電性
繊維が混練される際に、製造工程や乾燥時に形成
された導電性繊維の酸化膜をリン系酸化防止剤の
還元作用によつて除去する。次にシリンダー内で
溶融した低融点金属によつて導電性繊維の表面を
強固に被覆する。この場合、導電性繊維に酸化膜
が残つていたり、ハンダぬれ性が悪いと、導電性
繊維が腐食したり、低融点金属が遊離し樹脂の物
性を低下させることになる。そして、導電性樹脂
組成物を金型に注入し冷却・固化する際に、導電
性繊維同士の接合点は低融点金属によつて融着さ
れて網目状態となり、そのまま冷却・固化する。
そのため、成形品を高温環境下に置いても導電性
繊維と導電性繊維の接合点が離れることがなく、
導電性も劣化することがない。このことは、成形
品の樹脂分を溶剤で溶かしてみると導電性繊維の
接合した網目状態を確認することができる。従つ
て導電性繊維の配合量を減少させることが可能と
なる。また、低融点金属の分離や飛散等がなくな
る。 (実施例) 次に本発明を実施例によつて説明する。 実施例 直径50μmで、300本収束した銅繊維と、低融点
金属ビーズ(Sn40%、Pb60%)およびHCA(三
光化学社製リン系酸化防止剤、商品名)を含むタ
フレツクス410(三菱モンサント社製ABS樹脂、
商品名)を押出機のダイスを通して銅繊維の表面
にABS樹脂を溶融被覆形成した。これを冷却し
てペレタイザーで繊維方向に6mmの長さに切断し
て導電性樹脂組成物を製造した。この組成物の銅
繊維充填率は60重量%であつた。この導電性樹脂
組成物を用いて射出成形を行い成形品とした。得
られた成形品について、体積抵抗率、シールド効
果の試験を行つたのでその結果を第1表に示した
が、本発明の極めて顕著な効果が確認された。 比較例 実施例において、リン系酸化防止剤を除いた以
外はすべて実施例と同一にして、導電性樹脂組成
物および成形品をつくり、その成形品について実
施例と同様に試験を行つたのでその結果を第1表
に示した。また、成形品を塩化メチレンで洗浄、
樹脂分を溶解し、残つた導電性繊維の網目状態を
電子顕微鏡で写真撮影したので、これを第1図に
示した。導電性繊維1と導電性繊維2とが低融点
金属3によつて、しつかりと融着結合しているこ
とがわかる。
[Object of the Invention] (Industrial Application Field) The present invention relates to a highly reliable conductive resin composition that has excellent conductivity, particularly its stability over time at high temperatures, and molded articles thereof. (Prior Art) Conventionally, conductive resin compositions have been prepared by blending conductive fibers with thermoplastic resins, and these compositions have been used in conductive resin molded articles. Carbon-based conductive fibers have often been blended into these materials, but their main use is to prevent static electricity, and their conductivity is low and they are not very effective in electromagnetic shielding, which has become a problem in recent years. Therefore, attempts have been made to improve conductivity by using metal-based conductive fibers for electromagnetic shielding. However, when metal-based conductive fibers (hereinafter referred to as metal fibers) are added, the specific gravity increases, which significantly impairs the original properties of the resin.
It is required to minimize the amount incorporated. However, when the amount of metal fiber blended is reduced,
The conductivity decreases, and furthermore, the usage environment is severely restricted. That is, since there is a difference in thermal expansion between the resin and the metal fibers used, a problem arises in that conductivity deteriorates at high temperatures. Therefore, at present, it is put into practical use by increasing the blending amount of metal fibers to prevent the decrease and deterioration of conductivity, and by limiting the usage environment. As described above, conventional conductive resin compositions of metal fibers and molded products thereof have problems in that they have limitations in their applications and usage environments, and have unstable characteristics and low reliability. Also, it is known that conductivity can be obtained by mixing and molding a low melting point metal and a resin, but the low melting point metal has poor adhesion with the resin and separates, reducing the physical properties of the resin. Furthermore, when changing the color of the material in the molding machine, there was a problem that only the metal would fly away, which was extremely dangerous during the molding process. Furthermore, when metal fibers are used in combination with low-melting point metals and mixed into resin, an oxide film is formed on the surface of the metal fibers due to drying before molding, resulting in poor solderability and separation of the low-melting point metals. There was a problem in that the metal fibers were corroded, and as a result, the conductivity deteriorated significantly. (Problems to be Solved by the Invention) The present invention was made to solve the above problems, and the conductive fibers have good wettability and the low melting point metal is firmly bonded to the conductive fibers. , the conductivity of the molded product does not deteriorate even at high temperatures and has excellent stability over time, and there is no separation or scattering of the resin and low-melting point metal during molding, resulting in good moldability and highly reliable conductivity. The present invention aims to provide a resin composition and a molded article thereof. [Structure of the Invention] (Means for Solving the Problems) As a result of intensive research aimed at achieving the above object, the present inventors have developed a method using conductive fibers, low melting point metals, and phosphorous antioxidants. By using a composition made of blended thermoplastic resin, the conductivity of the molded product does not deteriorate even at high temperatures and has excellent stability over time, and the resin and low melting point metal can be separated and scattered during the molding process. The present invention was completed based on the discovery that it is possible to obtain a highly reliable conductive resin composition and a molded article thereof, which has no defects and improved moldability. That is, the present invention provides a method of coating (A) a conductive fiber with (B) a low melting point metal and (C) a phosphorus antioxidant containing (D) a thermoplastic resin that is integrally formed on the surface of the conductive fiber and cut into pellets. This is a conductive resin composition characterized by: Further, the present invention is a conductive resin molded article characterized by being formed by injection molding this conductive resin composition at a temperature equal to or higher than the melting point of a low-melting point metal. The conductive fibers (A) used in the present invention include metal fibers such as long fiber copper fibers, stainless steel fibers, brass fibers, aluminum fibers, and nickel fibers, and metal fibers having a metal layer of copper, aluminum, nickel, etc. on the surface. Examples include organic fibers and inorganic fibers, which may be used alone or in combination of two or more. The conductive fiber preferably has a diameter of about 5 to 100 μm. This conductive fiber is coated with a thermoplastic resin containing a low melting point metal and a phosphorous antioxidant on its surface, and then cut into a length of 5 to 8 mm to obtain a resin composition. The amount of conductive fibers to be blended is preferably 0.5 to 30% by weight based on the entire conductive resin composition. If it is less than 0.5% by weight, the conductivity will be low, and if it exceeds 30% by weight, the fluidity and other properties of the conductive resin composition will deteriorate, which is not preferable. The low melting point metal (B) used in the present invention includes a general solder alloy containing Sn or Sn-Pb as a main component;
Examples include high-temperature solder alloys mainly composed of Sn-Pb-Ag, and low-temperature solder alloys mainly composed of Sn-Pb-Bi. These low melting point metals may be in the form of fibers, granules, lines, or flakes;
It is not particularly limited to the composition. Further, the low melting point metal is preferably selected depending on the molding temperature of the thermoplastic resin to be mixed. The blending ratio of the low melting point metal is preferably an amount sufficient to bond and coat the conductive fibers, and is preferably blended at a ratio of 5 to 30% by weight based on the conductive fibers.
If the blending amount is less than 5% by weight, the conductive fibers will not be bonded or
Coating becomes insufficient, and if it exceeds 30% by weight, only the low melting point metal will be liberated and the physical properties of the resin will deteriorate, which is not preferable. It is preferable that the low melting point metal is blended into the thermoplastic resin. Examples of the phosphorus antioxidant (C) used in the present invention include those with the following structural formula. The blending ratio of the phosphorus antioxidant is preferably 0.1 to 5% by weight based on the thermoplastic resin. If the amount is less than 0.1% by weight, it will not be sufficient to remove the oxide film from the conductive fibers, and the solder wettability will be poor.
Moreover, if it exceeds 5% by weight, physical properties such as a decrease in the heat distortion temperature of the resin are undesirable. It is desirable that the phosphorus antioxidant be blended into the thermoplastic resin. The thermoplastic resin (D) used in the present invention includes polypropylene resin, polyethylene resin, polystyrene resin, acrylonitrile-butadiene-styrene resin, modified polyphenylene oxide resin, polybutylene terephthalate resin, polycarbonate resin, polyamide resin, polyetherimide. Examples include resins, and these may be used alone or in combination of two or more. It is desirable that the above-mentioned low melting point metal and phosphorus antioxidant be blended into this thermoplastic resin, and the conductive fibers are integrally coated with the resin. These may be those in which the third synthetic resin formed at the interface by mixing thermoplastic resins has a reinforcing effect, that is, a blended polymer. For example, when using a modified polyphenylene oxide resin, polycarbonate resin, etc. as the thermoplastic resin, good results can be obtained if a styrene-based thermoplastic resin is used as the other thermoplastic resin. By doing so, the third synthetic resin formed at the interface has a reinforcing effect. By using such a combination, a molded article with excellent properties can be obtained. The conductive resin composition of the present invention and molded articles thereof are usually produced as follows. The long conductive fibers are passed through the die of an extruder, and the surface of the conductive fibers is coated with a thermoplastic resin containing a low melting point metal and a phosphorous antioxidant, and then cut into appropriate sizes. A pellet-shaped conductive resin composition is prepared. This composition usually has a circular cross section, but the cross section is not limited to a particular shape and may be flat or other shapes. Although it is economically advantageous to carry out the manufacturing process of this composition continuously, it does not necessarily have to be continuous and may be manufactured in batches. The type and amount of the thermoplastic resin are appropriately selected depending on the properties required of the conductive resin composition and its molded product. The conductive resin composition thus produced is injection molded at a temperature equal to or higher than the melting point of the low melting point metal to obtain a conductive resin molded article. The molded product can be used as housings or parts for electronic equipment, measuring equipment, communication equipment, etc. that require electromagnetic shielding. (Function) According to the present invention, excellent effects can be obtained by using conductive fibers, low melting point metals, phosphorous antioxidants, and thermoplastic resins. In other words, when the thermoplastic resin and conductive fibers are kneaded in the heating cylinder of an injection molding machine, the conductive resin composition uses phosphorus-based oxidation inhibitors to remove the oxide film of the conductive fibers formed during the manufacturing process and drying. removed by the reducing action of the agent. Next, the surface of the conductive fiber is firmly coated with a low melting point metal melted within the cylinder. In this case, if an oxide film remains on the conductive fibers or the solder wettability is poor, the conductive fibers will corrode or the low melting point metal will be liberated, deteriorating the physical properties of the resin. Then, when the conductive resin composition is injected into the mold and cooled and solidified, the bonding points between the conductive fibers are fused by the low melting point metal to form a network, which is then cooled and solidified.
Therefore, even if the molded product is placed in a high-temperature environment, the bonding points between the conductive fibers will not separate.
Conductivity also does not deteriorate. This can be confirmed by dissolving the resin component of the molded article with a solvent and confirming the state of the network in which the conductive fibers are bonded. Therefore, it becomes possible to reduce the amount of conductive fiber blended. Furthermore, separation and scattering of low melting point metals are eliminated. (Example) Next, the present invention will be explained by referring to an example. Example Toughflex 410 (manufactured by Mitsubishi Monsanto) containing 300 converged copper fibers with a diameter of 50 μm, low melting point metal beads (Sn40%, Pb60%) and HCA (phosphorus antioxidant manufactured by Sanko Kagaku Co., Ltd., trade name) ABS resin,
(trade name) was passed through the die of an extruder to form a molten coating of ABS resin on the surface of copper fibers. This was cooled and cut into lengths of 6 mm in the fiber direction using a pelletizer to produce a conductive resin composition. The copper fiber filling rate of this composition was 60% by weight. Injection molding was performed using this conductive resin composition to obtain a molded article. The obtained molded product was tested for volume resistivity and shielding effect, and the results are shown in Table 1, and the extremely remarkable effects of the present invention were confirmed. Comparative Example In the example, a conductive resin composition and a molded article were made in the same manner as in the example except for the phosphorus antioxidant, and the molded article was tested in the same manner as in the example. The results are shown in Table 1. In addition, the molded product is washed with methylene chloride,
After dissolving the resin, the network state of the remaining conductive fibers was photographed using an electron microscope, and this is shown in FIG. It can be seen that the conductive fiber 1 and the conductive fiber 2 are tightly fused and bonded by the low melting point metal 3.

【表】【table】

【表】 [発明の効果] 以上の説明および第1表からも明らかなよう
に、本発明の導電性樹脂組成物は、導電性繊維、
低融点金属、リン系酸化防止剤を用いたことによ
つて、導電性繊維のぬれ性が良好で導電性繊維同
士の結合が強固となり、その結果、優れた導電性
を有し、導電性繊維の配合量を減少させることが
可能となり、また、成形加工時に熱可塑性樹脂と
低融点金属との分離や飛散がなく成形加工性が向
上した。この導電性樹脂組成物を用いた成形品
は、高温に於ける環境変化にも導電性が低下する
ことなく電磁波シールド効果の経時安定性に優れ
たものである。この成形品を電子機器、通信機器
等に使用すれば極めて高い信頼性を付与すること
ができる。
[Table] [Effects of the Invention] As is clear from the above explanation and Table 1, the conductive resin composition of the present invention comprises conductive fibers,
By using a low melting point metal and a phosphorus-based antioxidant, the conductive fibers have good wettability and the bond between the conductive fibers becomes strong.As a result, the conductive fibers have excellent conductivity and It has become possible to reduce the amount of compounding, and molding processability has been improved because there is no separation or scattering of the thermoplastic resin and low melting point metal during molding. A molded article using this conductive resin composition has excellent electromagnetic shielding effect over time without a decrease in conductivity even under environmental changes at high temperatures. If this molded product is used in electronic equipment, communication equipment, etc., extremely high reliability can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明成形品において低融点金属によ
り網目状に融着結合した導電性繊維の形状を示す
電子顕微鏡写真である。 1,2…導電性繊維、3…低融点金属。
FIG. 1 is an electron micrograph showing the shape of conductive fibers fused and bonded in a network shape by a low-melting point metal in a molded article of the present invention. 1, 2... Conductive fiber, 3... Low melting point metal.

Claims (1)

【特許請求の範囲】 1 (A)導電性繊維の表面に、(B)低融点金属および
(C)リン系酸化防止剤を含む(D)熱可塑性樹脂を、被
覆形成一体化しペレツト状に切断してなることを
特徴とする導電性樹脂組成物。 2 導電性繊維が、銅繊維、黄銅繊維、ステンレ
ス繊維、アルミニウム繊維、ニツケル繊維又は表
面に銅、アルミニウムもしくはニツケルの層を有
する有機若しくは無機の繊維である特許請求の範
囲第1項記載の導電性樹脂組成物。 3 低融点金属が、SnもしくはSn−Pbを主成分
とするハンダ合金である特許請求の範囲第1項又
は第2項記載の導電性樹脂組成物。 4 導電性繊維が、全体の組成物に対して0.5〜
30重量%の割合で含有する特許請求の範囲第1項
ないし第3項いずれか記載の導電性樹脂組成物。 5 低融点金属を、導電性繊維に対して5〜30重
量%の割合で配合する特許請求の範囲第1項ない
し第4項いずれか記載の導電性樹脂組成物。 6 リン系酸化防止剤を、熱可塑性樹脂に対して
0.1〜5重量%の割合で配合する特許請求の範囲
第1項ないし第5項いずれか記載の導電性樹脂組
成物。 7 (A)導電性繊維の表面に、(B)低融点金属および
(C)リン系酸化防止剤を含む(D)熱可塑性樹脂を、被
覆形成一体化しペレツト状に切断した導電性樹脂
組成物を、低融点金属の融点以上の温度で射出成
形してなることを特徴とする導電性樹脂成形品。
[Claims] 1. (A) On the surface of the conductive fiber, (B) A low melting point metal and
1. A conductive resin composition comprising (D) a thermoplastic resin containing (C) a phosphorous antioxidant, which is integrally formed into a coating and cut into pellets. 2. The conductive fiber according to claim 1, wherein the conductive fiber is copper fiber, brass fiber, stainless steel fiber, aluminum fiber, nickel fiber, or organic or inorganic fiber having a layer of copper, aluminum or nickel on the surface. Resin composition. 3. The conductive resin composition according to claim 1 or 2, wherein the low melting point metal is a solder alloy containing Sn or Sn-Pb as a main component. 4 The conductive fiber is 0.5 to 0.5% of the total composition.
The conductive resin composition according to any one of claims 1 to 3, containing 30% by weight. 5. The conductive resin composition according to any one of claims 1 to 4, wherein the low melting point metal is blended in a proportion of 5 to 30% by weight based on the conductive fibers. 6 Adding phosphorus-based antioxidants to thermoplastic resins
The conductive resin composition according to any one of claims 1 to 5, which is blended in a proportion of 0.1 to 5% by weight. 7 (A) On the surface of the conductive fiber, (B) Low melting point metal and
(C) A conductive resin composition containing (D) a phosphorus-based antioxidant is integrally formed into a coating and cut into pellets, and then injection molded at a temperature higher than the melting point of the low melting point metal. Characteristic conductive resin molded product.
JP7156887A 1987-03-09 1987-03-27 Electrically conductive resin composition and molded article thereof Granted JPS63238162A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7156887A JPS63238162A (en) 1987-03-27 1987-03-27 Electrically conductive resin composition and molded article thereof
KR1019880002366A KR880011821A (en) 1987-03-09 1988-03-07 Conductive resin composition and molded article thereof
DE88103649T DE3885487T2 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product.
EP88103649A EP0283844B1 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product using the same
US07/165,905 US4882227A (en) 1987-03-09 1988-03-09 Conductive resin composition and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7156887A JPS63238162A (en) 1987-03-27 1987-03-27 Electrically conductive resin composition and molded article thereof

Publications (2)

Publication Number Publication Date
JPS63238162A JPS63238162A (en) 1988-10-04
JPH0212987B2 true JPH0212987B2 (en) 1990-04-03

Family

ID=13464442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7156887A Granted JPS63238162A (en) 1987-03-09 1987-03-27 Electrically conductive resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JPS63238162A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749491B2 (en) * 1987-04-07 1995-05-31 東芝ケミカル株式会社 Conductive resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition

Also Published As

Publication number Publication date
JPS63238162A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
EP0283844B1 (en) Conductive resin composition and molded product using the same
JPS6320270B2 (en)
JPH0212987B2 (en)
JPH0647254B2 (en) Conductive resin composition
JP2523098B2 (en) Conductive resin composition and molded article thereof
JPS63218310A (en) Electrically conductive resin composition and molded item made thereof
JPH0212986B2 (en)
JPH0237120B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JPH0212988B2 (en)
JP2658000B2 (en) Conductive resin composition and molded article thereof
JPH0813904B2 (en) Conductive resin composition
JPH06315932A (en) Conductive resin molded piece
JP2523097B2 (en) Conductive resin composition and molded article thereof
JPH06128493A (en) Production of electrically conductive resin composition
JPH02229498A (en) Conductive resin composition and molding thereof
JPH0248588B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JP2005307186A (en) Thermoplastic resin coating electrically conductive composition
JPH0763970B2 (en) Conductive resin molding
JPH03257999A (en) Conductive resin composition and its mold
JPH0749491B2 (en) Conductive resin composition
JPH07122023B2 (en) Conductive resin composition
JPH02199175A (en) Conductive molding resin material
JPH06128494A (en) Production of electrically conductive resin composition
JPH039956A (en) Highly conductive resin composition
JP2002117721A (en) Conductive plastic