JPH0212986B2 - - Google Patents

Info

Publication number
JPH0212986B2
JPH0212986B2 JP62068779A JP6877987A JPH0212986B2 JP H0212986 B2 JPH0212986 B2 JP H0212986B2 JP 62068779 A JP62068779 A JP 62068779A JP 6877987 A JP6877987 A JP 6877987A JP H0212986 B2 JPH0212986 B2 JP H0212986B2
Authority
JP
Japan
Prior art keywords
conductive
fibers
resin composition
melting point
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62068779A
Other languages
Japanese (ja)
Other versions
JPS63235368A (en
Inventor
Hidehiro Iwase
Keiichi Habata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP6877987A priority Critical patent/JPS63235368A/en
Priority to KR1019880002366A priority patent/KR880011821A/en
Priority to EP88103649A priority patent/EP0283844B1/en
Priority to DE88103649T priority patent/DE3885487T2/en
Priority to US07/165,905 priority patent/US4882227A/en
Publication of JPS63235368A publication Critical patent/JPS63235368A/en
Publication of JPH0212986B2 publication Critical patent/JPH0212986B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、優れた導電性を有し、様々な環境に
おかれても導電性の低下が少ない、信頼性の高い
導電性樹脂組成物およびその成形品に関する。 (従来の技術) 近年、電子回路に発生する電磁波から電子機器
を保護しあるいは外部への電磁波漏洩を防止する
ために、電子機器の筐体を電磁波シールド材料に
よつて形成することが要求されている。そして、
このシールド用の成形材料では、従来の炭素繊維
を充填したもの以上に高い導電性が要求されると
同時に筐体としての優れた機械的強度が要求され
るために、金属系の導電性充填材を長繊維のまま
樹脂に充填することが行われている。 しかし、上記金属の長繊維を用いる従来方法に
よつて、優れた導電性と機械的強度が得られるも
のの使用環境に制約を受ける欠点がある。すなわ
ち、活性の強い金属を導電性充填材に使用する
と、合成樹脂の劣化を早めるため、筐体は高温の
場所あるいは外光を直接受ける場所で使用できな
いという欠点があり、また導電性充填材と導電性
充填材との結合が単なる接触であることから環境
の温度変化によつてその接触が変化し、その結
果、筐体の導電性が次第に低下して行くという問
題があつた。こうしたことから、上記金属の長繊
維を用いる従来方法は、著しく信頼性を損なう欠
点があり、実用化の大きな障害となつていた。 次に、低融点金属と樹脂を混合して導電性樹脂
組成物とすることは従来から公知であるが、低融
点金属は樹脂との密着性が悪く、また成形材料の
色替えの際の成形機空打では樹脂と低融点金属と
が分離して、低融点金属のみが飛散するなど成形
加工上極めて危険であつた。 また、金属繊維を使用する従来方法では、金属
繊維が成形前の乾燥等によつて、その表面に酸化
膜を発生し、そのため導電性が劣化するなどの問
題があつた。 (発明が解決しようとする問題点) 本発明は、上記の問題点を解決するためになさ
れたもので、導電性繊維の充填量の低減が可能で
あり、また様々な環境の温度変化においても導電
性の低下や経時変化が少なく、かつ樹脂本来の特
性を保有した、成形加工性のよい、信頼性の高い
導電性樹脂組成物およびその成形品を提供しよう
とするものである。 [発明の構成] (問題点を解決するための手段) 本発明者は、上記の目的を達成しようと鋭意研
究を重ねた結果、導電性充填材として導電性繊維
と低融点金属フラツクスとを併用し、かつリン系
酸化防止剤を添加配合した熱可塑性樹脂を使用し
た導電性樹脂組成物によつて、上記の目的が達成
された成形品が得られることを見いだし、本発明
を完成したものである。すなわち、本発明は、(A)
導電性繊維、(B)低融点金属および(C)フラツクスか
らなる導電性充填材の表面に、(D)リン系酸化防止
剤を含む(E)熱可塑性樹脂層を被覆形成一体化した
ペレツト状のマスターペレツトと、(F)熱可塑性樹
脂ペレツトとを配合したことを特徴とする導電性
樹脂組成物である。また、この導電性樹脂組成物
を低融点金属の融点以上の温度で射出成形してな
ることを特徴とする導電性樹脂成形品である。 本発明に用いる(A)導電性繊維としては、長繊維
状のものが好ましく、銅繊維、銅合金繊維、ステ
ンレス繊維、アルミニウム繊維、ニツケル繊維等
の金属繊維、表面に銅、アルミニウム、ニツケル
等の金属層を有する有機繊維若しくは無機繊維、
等が挙げられる。導電性繊維は、直径が8〜
100μm程度のものが良く、また100〜10000本収束
したものを用いる。導電性繊維の配合量は、全体
の導電性樹脂組成物に対して、0.5〜30重量%の
割合とすることが望ましい。0.5重量%未満では
導電性が低く、また30重量%を超えると導電性樹
脂組成物の流動性、その他の特性が低下し好まし
くない。マスターペレツトでの導電性繊維の配合
量は5〜80重量%であることが望ましい。 本発明に用いる(B)低融点金属としては、Sn若
しくはSn−Pbを主成分とする一般ハンダ合金、
Sn−Pb−Agを主成分とする高温ハンダ合金、さ
らにはSn−Pb−Biを主成分とする低温ハンダ合
金等が挙げられる。これらの低融点金属は、繊維
状、粒状、棒状、線状のいずれでもよく、特に形
状に限定されるものではない。また低融点金属の
使用形態としては、導電性繊維内に繊維状の低融
点金属を収束させる、導電性繊維の表面を低融点
金属で被覆して収束させる、収束させた導電性繊
維全体を低融点金属で被覆することが挙げられ
る。そのほか、導電性繊維の表面に粒状の低融点
金属をまぶして付着させる方法などがあり、導電
性繊維と低融点金属が一緒に収束されておればよ
い。低融点金属は、導電性充填材を被覆する熱可
塑性樹脂、またナチユラルペレツトである熱可塑
性樹脂の成形加工温度によつて選定することが望
ましい。低融点金属の配合量は、導電性繊維を結
合、被覆するに充分な量、すなわち、導電性繊維
に対して5〜30重量%の割合で含有することが望
ましい。含有量が5重量%未満では、導電性繊維
を結合、被覆することが不充分となり、また、30
重量%を超えると低融点金属のみが遊離して樹脂
の物性を低下させ、好ましくないからである。 本発明に用いる(C)フラツクスとしては、有機酸
系、樹脂系のフラツクスが好ましく、具体的には
有機酸系のステアリン酸、乳酸、オレイン酸、グ
ルタミン酸等、樹脂系のロジン、活性ロジン等が
挙げられ、これらは1種で又は2種以上混合して
使用する。ハロゲンやアミン等は導電性繊維、金
型等を腐蝕させるのでその使用は好ましくない。
フラツクスの配合割合は、低融点金属に対して
0.1〜5重量%とすることが望ましい。含有量が
0.1重量%未満では導電性繊維のハンダぬれ性に
効果がなく、また5重量%を超えると樹脂の物性
が低下するとともに金型の腐蝕、汚れの原因とな
り好ましくない。フラツクスは、通常低融点金属
に充填しておくことが好ましい。 本発明に用いる(D)リン系酸化防止剤として、次
の構造式のものが挙げられる。 リン系酸化防止剤の配合量は、熱可塑性樹脂に
対して0.1〜5重量%の割合で含有することが望
ましい。配合量が0.1重量%未満では導電性繊維
の酸化膜除去に不充分で、ハンダぬれ性が悪く、
また5重量%を超えると樹脂の熱変形温度が下が
る等、物性が低下し、好ましくない。リン系酸化
防止剤は後述する熱可塑性樹脂層の樹脂に配合し
ておくことが望ましい。 本発明に用いる(E)熱可塑性樹脂層の樹脂として
は、ポリプロピレン樹脂、ポリエチレン樹脂、ポ
リスチレン樹脂、アクリロニトリル・ブタジエ
ン・スチレン樹脂、変性ポリフエニレンオキサイ
ド樹脂、ポリブチレンテレフタレート樹脂、ポリ
カーボネート樹脂、ポリアミド樹脂、ポリエーテ
ルイミド樹脂等が挙げられる。 以上の各成分すなわち導電性繊維とフラツクス
を含む低融点金属とを集合させて導電性充填材と
し、この導電性充填材の表面にリン系酸化防止剤
を含む熱可塑性樹脂を被覆形成一体化し、切断し
てマスターペレツトとする。 本発明に用いる(F)熱可塑性樹脂ペレツト(以下
ナチユラルペレツトという)としては前述の(E)熱
可塑性樹脂層の樹脂と同種又は同一のものでもよ
く、異なつたものでもよい。また(E)の熱可塑性樹
脂と混合することによつて界面に形成される第三
の合成樹脂が補強効果をもつもの、すなわちブレ
ンドポリマーとなるようなものでもよい。例えば
(E)熱可塑性樹脂として変性PPO樹脂、ポリカー
ボネート樹脂等を使用するときは、ナチユラルペ
レツトとしてスチレン系の熱可塑性樹脂を使用す
ると好結果が得られる。こうすることにより界面
に形成される第三の合成樹脂が補強効果を持つも
のである。これらの組合せを用いると特性の優れ
た成形品を得ることができる。 本発明の導電性樹脂組成物は、通常次のように
して製造する。以下図面を用いて説明する。 第1図a〜dは長繊維状の導電性繊維と低融点
金属を集合させた導電性充填材の見取図である。
すなわち第1図aに示すように導電性繊維2を収
束させた中にフラツクスを含有する繊維状の低融
点金属3を一定量の本数加えて集合させ、導電性
充填材1とする。そのほか、導電性繊維と低融点
金属との集合は、第1図bのように導電性繊維2
の表面に低融点金属3を被覆したものを集合させ
たり、第1図cのように集合させた導電性繊維2
全体を低融点金属3で被覆したり、また第1図d
のように導電性繊維2の表面に粒状の低融点金属
3を付着集合させたりして、導電性充填材1とす
る。第1図e〜hのマスターペレツト10は、こ
の導電性充填材1の表面に、リン系酸化防止剤を
含有した熱可塑性樹脂層4を被覆形成し切断して
つくられる。マスターペレツト断面図である第1
図e〜hは、導電性繊維と低融点金属とを集合さ
せた第1図a〜dの導電性充填材1にそれぞれ対
応させて示したものである。マスターペレツト1
0は通常その断面が円形であるが、偏平、その他
のものでも良く、特に形状に制限されるものでは
ない。 マスターペレツトは、第2図に示したように、
第1図1〜dに集合させた導電性充填材11を押
出機12のダイス13を通して導電性充填材11
の表面に熱可塑性樹脂を被覆形成一体化し、次い
でカツテイング15を行つて、マスターペレツト
16とする。マスターペレツトの製造工程は連続
的に行うことが経済的に有利であるが、必ずしも
連続的でなくバツチ方式で製造してもよい。この
マスターペレツトにナチユラルペレツトを常法に
より配合して導電性樹脂組成物とする。配合する
ナチユラルペレツトは導電性樹脂組成物やその成
形品に要求される特性に応じて熱可塑性樹脂の種
類およびその量を適切に選択する。 こうして製造された導電性樹脂組成物は低融点
金属の融点以上の温度で射出成形して、電磁波シ
ールドを必要とする電子機器、測定機器、通信機
器等のハウジングや部品の成形品とすることがで
きる。 (作用) 本発明によれば、導電性繊維、低融点金属、フ
ラツクス、リン系酸化防止剤および熱可塑性樹脂
は、次のように作用し、優れた導電性が得られ
る。 すなわち、導電性樹脂組成物は射出成形機の加
熱シリンダー内において、導電性繊維が熱可塑性
樹脂に分散し、金型内に注入冷却固化する過程に
おいて、低融点金属が融けて導電性繊維と融着結
合し、導電性繊維と導電性繊維とが低融点金属に
よつて網目状態となり、そのまま冷却固化する。
導電性繊維と低融点金属とが融着する際、製造工
程中や乾燥時に形成された導電性繊維の酸化膜
が、リン系酸化防止剤の還元作用によつて除去さ
れ、フラツクスに対するぬれ性が付与されるため
に、導電性繊維と低融点金属が強固に網目状態を
形成する。もし、導電性繊維に酸化膜が残つてい
たり、導電性繊維のぬれ性が悪いと、導電性繊維
の腐蝕や低融点金属の遊離が起こり、樹脂の物性
を低下させ、また導電性も悪くなる。導電性繊維
と導電性繊維が低融点金属と強固に結合して網目
状態となることによつて、導電性が著しく向上
し、かつ樹脂の物性を損なうことがなくなる。こ
のことは成形品の樹脂分を溶剤で溶かしてみると
導電性繊維の結合した網目状態を確認することが
できる。このような導電性の向上によつて導電性
繊維の配合量を低減できるし、また低融点金属の
分離や飛散がなくなり、作業上安全となる。 (実施例) 次に本発明を実施例によつて説明する。 実施例 直径50μmの長尺の銅繊維を300本と、ロジン2
重量%を含有する直径300μmの長尺のSn−Pb半
田(Sn60%、Pb40%)1本とを集合、収束させ
て導電性充填材とした。導電性充填材の表面に
MARK PEP24(アデカアーガス化学社製、リン
系酸化防止商品名)2重量%を含有するタフレツ
クス410(三菱モンサント化成社製ABS樹脂、商
品名)を押出機のダイスで被覆形成一体化し、冷
却後、切断してマスターペレツトとした。このマ
スターペレツトは直径3mm、長さ6mmであつた。
このマスターペレツト100重量部にナチユラルペ
レツト(タフレツクス410前出)500重量部を機械
的に混合して導電性樹脂組成物を製造した。この
場合の銅繊維の充填率は10重量%であつた。この
導電性樹脂組成物を用いて低融点金属の融点以上
の温度で射出成形を行い成形品を得た。得られた
成形品について体積抵抗率、シールド効果、曲げ
強度、アイゾツト衝撃強度の試験を行つたのでそ
の結果を第1表に示した。また、成形品を塩化メ
チレンで洗浄、樹脂分を溶解し、残つた導電性繊
維の網目状態を電子顕微鏡で写真撮影をしたので
第3図に示した。同図において、導電性繊維20
と導電性繊維21とが低融点金属22によつてし
つかりと融着結合していることがわかる。80℃で
3000時間加熱した後においても、シールド効果は
全く低下せず、また、機械的強度も初期値の83%
以上保持しており、本発明の極めて顕著な効果が
確認された。 比較例 直径約50μmの長尺の銅繊維300本の表面にタフ
レツクス410(前出)を押出機のダイスで被覆形成
一体化し、冷却後、切断してマスターペレツトを
製造した。このマスターペレツトは、直径3mm、
長さ6mmであつた。このマスターペレツト100重
量部にナチユラルペレツト(タフレツクス410)
500重量部を機械的に混合して導電性樹脂組成物
を製造した。この導電性樹脂組成物を用いて実施
例と同様にして成形品を得て、同様な特性試験を
したので、その結果を第1表に示した。
[Objective of the invention] (Industrial application field) The present invention provides a highly reliable conductive resin composition that has excellent conductivity and exhibits little decrease in conductivity even in various environments, and its Regarding molded products. (Prior Art) In recent years, in order to protect electronic devices from electromagnetic waves generated in electronic circuits or to prevent leakage of electromagnetic waves to the outside, there has been a demand for the housings of electronic devices to be made of electromagnetic shielding materials. There is. and,
The molding material for this shield requires higher conductivity than conventional carbon fiber-filled materials, and at the same time requires excellent mechanical strength as a casing, so a metal-based conductive filler is used. It is being carried out to fill resin with long fibers. However, although the above-mentioned conventional method using long metal fibers provides excellent electrical conductivity and mechanical strength, it has the drawback of being restricted by the usage environment. In other words, if a highly active metal is used as a conductive filler, it will accelerate the deterioration of the synthetic resin, resulting in the disadvantage that the casing cannot be used in high-temperature locations or in locations exposed to direct external light. Since the bond with the conductive filler is a mere contact, the contact changes with changes in the environmental temperature, resulting in a problem in that the conductivity of the casing gradually decreases. For these reasons, the conventional method using long metal fibers has the disadvantage of significantly impairing reliability, which has been a major obstacle to practical application. Next, it has been known for a long time to mix a low melting point metal and a resin to make a conductive resin composition, but the low melting point metal has poor adhesion to the resin, and it is difficult to form a conductive resin composition when changing the color of the molding material. Air punching was extremely dangerous for the molding process, as the resin and low melting point metal separated and only the low melting point metal was scattered. Further, in the conventional method using metal fibers, an oxide film is formed on the surface of the metal fibers when the metal fibers are dried before being formed, resulting in a problem such as deterioration of conductivity. (Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and it is possible to reduce the amount of conductive fibers filled, and also to be able to withstand temperature changes in various environments. The object of the present invention is to provide a highly reliable conductive resin composition that exhibits little decrease in conductivity or change over time, retains the original characteristics of the resin, has good moldability, and molded products thereof. [Structure of the Invention] (Means for Solving the Problems) As a result of extensive research aimed at achieving the above object, the inventor of the present invention has developed a combination of conductive fibers and low-melting metal flux as a conductive filler. The present invention has been completed based on the discovery that a molded article that achieves the above object can be obtained by using a conductive resin composition using a thermoplastic resin containing a phosphorus antioxidant. be. That is, the present invention provides (A)
A pellet-like product in which the surface of a conductive filler consisting of conductive fibers, (B) a low-melting point metal, and (C) flux is coated with (D) a thermoplastic resin layer containing (D) a phosphorous antioxidant. This is a conductive resin composition characterized by blending master pellets of (F) and (F) thermoplastic resin pellets. Further, the present invention is a conductive resin molded article characterized by being formed by injection molding this conductive resin composition at a temperature equal to or higher than the melting point of a low-melting point metal. The conductive fibers (A) used in the present invention are preferably long fibers, such as metal fibers such as copper fibers, copper alloy fibers, stainless steel fibers, aluminum fibers, and nickel fibers, and metal fibers with copper, aluminum, nickel, etc. on the surface. organic or inorganic fibers with a metal layer;
etc. The conductive fiber has a diameter of 8~
It is best to use one with a diameter of about 100 μm, and one with 100 to 10,000 converged lines. The amount of conductive fibers to be blended is preferably 0.5 to 30% by weight based on the entire conductive resin composition. If it is less than 0.5% by weight, the conductivity will be low, and if it exceeds 30% by weight, the fluidity and other properties of the conductive resin composition will deteriorate, which is not preferable. The amount of conductive fiber blended in the master pellet is preferably 5 to 80% by weight. The low melting point metal (B) used in the present invention includes a general solder alloy containing Sn or Sn-Pb as a main component;
Examples include high-temperature solder alloys containing Sn-Pb-Ag as a main component, and low-temperature solder alloys containing Sn-Pb-Bi as a main component. These low melting point metals may be fibrous, granular, rod-like, or linear, and are not particularly limited in shape. In addition, low melting point metals can be used by converging fibrous low melting point metals within conductive fibers, by coating the surface of conductive fibers with low melting point metals, or by reducing the entire converged conductive fibers. Examples include coating with a melting point metal. In addition, there is a method of sprinkling and adhering granular low-melting point metal onto the surface of the conductive fibers, as long as the conductive fibers and the low-melting point metal are bundled together. The low melting point metal is desirably selected depending on the thermoplastic resin covering the conductive filler and the molding temperature of the natural pellet thermoplastic resin. The low melting point metal is desirably contained in an amount sufficient to bond and coat the conductive fibers, that is, in a proportion of 5 to 30% by weight based on the conductive fibers. If the content is less than 5% by weight, binding and coating of the conductive fibers will be insufficient, and 30% by weight.
This is because if it exceeds the weight percentage, only the low melting point metal will be liberated and the physical properties of the resin will deteriorate, which is not preferable. The flux (C) used in the present invention is preferably an organic acid-based or resin-based flux, and specifically includes organic acid-based stearic acid, lactic acid, oleic acid, glutamic acid, etc., resin-based rosin, activated rosin, etc. These can be used alone or in combination of two or more. Halogens, amines, etc. corrode conductive fibers, molds, etc., so their use is not preferred.
The blending ratio of flux is based on the low melting point metal.
The content is preferably 0.1 to 5% by weight. The content is
If it is less than 0.1% by weight, it has no effect on the solder wettability of the conductive fibers, and if it exceeds 5% by weight, the physical properties of the resin deteriorate and the mold becomes corroded and stained, which is not preferable. It is preferable that the flux is normally filled in a low melting point metal. Examples of the phosphorus antioxidant (D) used in the present invention include those with the following structural formula. The content of the phosphorus antioxidant is preferably 0.1 to 5% by weight based on the thermoplastic resin. If the amount is less than 0.1% by weight, it will be insufficient to remove the oxide film from the conductive fibers, and the solder wettability will be poor.
Moreover, if it exceeds 5% by weight, physical properties such as a decrease in the heat distortion temperature of the resin are undesirable. It is desirable that the phosphorus antioxidant be blended into the resin of the thermoplastic resin layer, which will be described later. The resin of the thermoplastic resin layer (E) used in the present invention includes polypropylene resin, polyethylene resin, polystyrene resin, acrylonitrile butadiene styrene resin, modified polyphenylene oxide resin, polybutylene terephthalate resin, polycarbonate resin, polyamide resin, Examples include polyetherimide resin. The above components, that is, conductive fibers and low melting point metals containing flux, are assembled to form a conductive filler, and a thermoplastic resin containing a phosphorous antioxidant is coated and integrated on the surface of the conductive filler, Cut into master pellets. The thermoplastic resin pellets (F) used in the present invention (hereinafter referred to as natural pellets) may be the same or the same as the resin of the thermoplastic resin layer (E), or may be different. Further, the third synthetic resin formed at the interface by mixing with the thermoplastic resin (E) may have a reinforcing effect, that is, it may be a blended polymer. for example
(E) When using modified PPO resin, polycarbonate resin, etc. as the thermoplastic resin, good results can be obtained by using a styrene-based thermoplastic resin as the natural pellet. By doing so, the third synthetic resin formed at the interface has a reinforcing effect. By using these combinations, molded products with excellent properties can be obtained. The conductive resin composition of the present invention is usually produced as follows. This will be explained below using the drawings. FIGS. 1A to 1D are sketches of a conductive filler in which long-fiber conductive fibers and low-melting point metals are aggregated.
That is, as shown in FIG. 1a, a certain number of fibrous low melting point metals 3 containing flux are added to and aggregated into a bundle of conductive fibers 2 to form a conductive filler 1. In addition, the collection of conductive fibers and low melting point metal can be carried out by conductive fibers 2 as shown in Figure 1b.
conductive fibers 2 coated with a low melting point metal 3 on the surface thereof, or conductive fibers 2 assembled as shown in Figure 1 c.
The entire body may be coated with a low melting point metal 3, or the
A conductive filler 1 is obtained by adhering and aggregating granular low-melting point metals 3 on the surface of conductive fibers 2 as shown in FIG. The master pellets 10 shown in FIGS. 1e to 1h are produced by coating the surface of the conductive filler 1 with a thermoplastic resin layer 4 containing a phosphorous antioxidant and cutting the same. The first cross-sectional view of the master pellet
Figures e to h correspond to the conductive filler 1 shown in Figures 1a to d, in which conductive fibers and low melting point metals are aggregated, respectively. master pellet 1
0 usually has a circular cross section, but it may be flat or other shapes, and is not particularly limited in shape. As shown in Figure 2, the master pellet is
The conductive filler 11 assembled as shown in FIGS. 1 to d is passed through the die 13 of the extruder 12.
A thermoplastic resin is coated and integrated on the surface of the pellet, and then cutting 15 is performed to obtain a master pellet 16. Although it is economically advantageous to carry out the master pellet production process continuously, it is not necessarily necessary to carry out the process continuously, but it may also be carried out in batches. A conductive resin composition is prepared by blending natural pellets with the master pellets in a conventional manner. The type and amount of thermoplastic resin in the natural pellets to be blended are appropriately selected depending on the properties required of the conductive resin composition and its molded product. The conductive resin composition thus produced can be injection molded at a temperature higher than the melting point of the low melting point metal to form molded products such as housings and parts for electronic equipment, measuring equipment, communication equipment, etc. that require electromagnetic shielding. can. (Function) According to the present invention, the conductive fiber, the low melting point metal, the flux, the phosphorous antioxidant, and the thermoplastic resin function as follows, and excellent conductivity can be obtained. In other words, the conductive resin composition is produced in the heating cylinder of an injection molding machine, in which the conductive fibers are dispersed in the thermoplastic resin, and in the process of being injected into the mold and cooling and solidifying, the low melting point metal melts and fused with the conductive fibers. The conductive fibers are bonded together, and the conductive fibers form a network with the low melting point metal, and are cooled and solidified as they are.
When the conductive fibers and the low-melting point metal are fused together, the oxide film formed on the conductive fibers during the manufacturing process or during drying is removed by the reducing action of the phosphorus antioxidant, resulting in improved flux wettability. Because of this, the conductive fibers and the low melting point metal form a strong network. If an oxide film remains on the conductive fibers or the wettability of the conductive fibers is poor, corrosion of the conductive fibers and release of low melting point metals will occur, reducing the physical properties of the resin and causing poor conductivity. Become. Since the conductive fibers and the conductive fibers are firmly bonded to the low melting point metal to form a network, the conductivity is significantly improved and the physical properties of the resin are not impaired. This can be confirmed by dissolving the resin component of the molded product with a solvent and confirming the network state in which the conductive fibers are combined. This improvement in conductivity allows the amount of conductive fibers to be reduced, and also eliminates separation and scattering of low-melting point metals, resulting in operational safety. (Example) Next, the present invention will be explained by referring to an example. Example: 300 long copper fibers with a diameter of 50 μm and 2 rosin
% by weight and one long Sn-Pb solder (60% Sn, 40% Pb) with a diameter of 300 μm was collected and converged to form a conductive filler. on the surface of conductive filler
Toughflex 410 (ABS resin, trade name, manufactured by Mitsubishi Monsanto Chemical Co., Ltd.) containing 2% by weight of MARK PEP24 (manufactured by Adeka Argus Chemical Co., Ltd., trade name of phosphorus antioxidant) is coated and integrated with a die of an extruder, and after cooling, It was cut into master pellets. This master pellet had a diameter of 3 mm and a length of 6 mm.
A conductive resin composition was prepared by mechanically mixing 100 parts by weight of the master pellets with 500 parts by weight of natural pellets (Toughflex 410, supra). The filling rate of copper fibers in this case was 10% by weight. Using this conductive resin composition, injection molding was performed at a temperature equal to or higher than the melting point of the low melting point metal to obtain a molded article. The obtained molded product was tested for volume resistivity, shielding effect, bending strength, and isot impact strength, and the results are shown in Table 1. In addition, the molded product was washed with methylene chloride to dissolve the resin, and the network state of the remaining conductive fibers was photographed using an electron microscope, as shown in FIG. In the figure, conductive fiber 20
It can be seen that the conductive fibers 21 and 21 are firmly fused together by the low melting point metal 22. at 80℃
Even after heating for 3000 hours, the shielding effect did not decrease at all, and the mechanical strength was 83% of the initial value.
Thus, the extremely remarkable effects of the present invention were confirmed. Comparative Example Toughflex 410 (described above) was integrally coated on the surface of 300 long copper fibers with a diameter of approximately 50 μm using a die of an extruder, and after cooling, the fibers were cut to produce master pellets. This master pellet has a diameter of 3 mm.
It was 6mm long. Natural pellets (Toughflex 410) are added to 100 parts by weight of this master pellet.
A conductive resin composition was prepared by mechanically mixing 500 parts by weight. Molded articles were obtained using this conductive resin composition in the same manner as in the examples, and the same characteristic tests were conducted. The results are shown in Table 1.

【表】【table】

【表】 [発明の効果] 以上の説明および第1表からも明らかなよう
に、本発明の導電性樹脂組成物は、導電性充填材
として導電性繊維と低融点金属を併用し、かつフ
ラツクスとリン系酸化防止剤を配合したことによ
つて、導電性繊維のぬれ性が良好となり導電性繊
維同士が低融点金属によつて強固に結合されて、
高温における環境変化にも導電性が低下すること
なく、シールド効果の経時安定性に優れている。
また導電性が優れていることから、導電性充填材
の充填量を低減することが可能であり、更に樹脂
の固有の物性を保持することができる。低融点金
属が導電性繊維と強固に結合したことによつて、
低融点金属の分離や飛散がなく、安全となり、成
形加工性が向上した。この導電性樹脂組成物を用
いた本発明の成形品を電子機器、計測機器、通信
機器等に使用すれば極めて高い信頼性を付与する
ことができる。
[Table] [Effects of the Invention] As is clear from the above explanation and Table 1, the conductive resin composition of the present invention uses a conductive fiber and a low melting point metal together as a conductive filler, and a flux By blending with phosphorus-based antioxidant, the conductive fibers have good wettability, and the conductive fibers are firmly bonded to each other by the low-melting point metal.
The conductivity does not decrease even under environmental changes at high temperatures, and the shielding effect has excellent stability over time.
Furthermore, since the resin has excellent electrical conductivity, it is possible to reduce the amount of the electrically conductive filler to be filled, and furthermore, the inherent physical properties of the resin can be maintained. By firmly bonding the low melting point metal with the conductive fiber,
There is no separation or scattering of low melting point metals, making it safer and improving moldability. If the molded article of the present invention using this conductive resin composition is used in electronic equipment, measuring equipment, communication equipment, etc., extremely high reliability can be imparted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aないしdは本発明における導電性充填
材を示す斜視図、第1図eないしhは本発明にお
けるマスターペレツトの断面図、第2図は本発明
におけるマスターペレツトの製造工程を説明する
ための概念図、第3図は本発明の成形品において
低融点金属により網目状に融着結合した導電性繊
維の形状を示す電子顕微鏡写真である。 1,11…導電性充填材、2,20,21…導
電性繊維、3,22…低融点金属、4,14…熱
可塑性樹脂層、10,16…マスターペレツト。
Figures 1a to d are perspective views showing the conductive filler in the present invention, Figures 1e to h are sectional views of the master pellet in the present invention, and Figure 2 shows the manufacturing process of the master pellet in the present invention. FIG. 3, which is a conceptual diagram for explanation, is an electron micrograph showing the shape of conductive fibers fused and bonded in a network shape with a low-melting point metal in the molded article of the present invention. 1, 11... Conductive filler, 2, 20, 21... Conductive fiber, 3, 22... Low melting point metal, 4, 14... Thermoplastic resin layer, 10, 16... Master pellet.

Claims (1)

【特許請求の範囲】 1 (A)導電性繊維(B)低融点金属及び(C)フラツクス
からなる導電性充填材の表面に、(D)リン系酸化防
止剤を含む(E)熱可塑性樹脂層を被覆形成一体化し
たペレツト状のマスターペレツトと、(F)熱可塑性
樹脂ペレツトとを配合したことを特徴とする導電
性樹脂組成物。 2 導電性繊維が、長繊維状の銅繊維、黄銅繊
維、ステンレス繊維、アルミニウム繊維、ニツケ
ル繊維、又は表面に銅、アルミニウム若しくはニ
ツケルの層を有する有機若しくは無機の繊維であ
る特許請求の範囲第1項記載の導電性樹脂組成
物。 3 低融点金属が、Sn若しくはSn−Pbを主成分
とするハンダ合金である特許請求の範囲第1項又
は第2項記載の導電性樹脂組成物。 4 フラツクスが、ステアリン酸、乳酸、オレイ
ン酸、グルタミン酸、又はロジン若しくは活性ロ
ジンである特許請求の範囲第1項ないし第3項い
ずれか記載の導電性樹脂組成物。 5 導電性繊維が、導電性樹脂組成物に対して
0.5〜30重量%の割合で含有する特許請求の範囲
第1項ないし第4項いずれか記載の導電性樹脂組
成物。 6 低融点金属が、導電性繊維に対して5〜30重
量%の割合で含有する特許請求の範囲第1項ない
し第5項いずれか記載の導電性樹脂組成物。 7 フラツクスが、低融点金属に対して0.1〜5
重量%の割合で含有する特許請求の範囲第1項な
いし第6項いずれか記載の導電性樹脂組成物。 8 リン系酸化防止剤が、マスターペレツトの熱
可塑性樹脂に対して、0.1〜5重量%の割合で含
有する特許請求の範囲第1項ないし第7項いずれ
か記載の導電性樹脂組成物。 9 マスターペレツトの熱可塑性樹脂と熱可塑性
樹脂ペレツトの樹脂が同一である特許請求の範囲
第1項ないし第8項いずれか記載の導電性樹脂組
成物。 10 マスターペレツトの熱可塑性樹脂と熱可塑
性樹脂ペレツトの樹脂がブレンドポリマーを形成
するものである特許請求の範囲第1項ないし第9
項いずれか記載の導電性樹脂組成物。 11 (A)導電性繊維、(B)低融点金属および(C)フラ
ツクスからなる導電性充填材の表面に、(D)リン系
酸化防止剤を含む(E)熱可塑性樹脂層を被覆形成一
体化したペレツト状のマスターペレツトと、(F)熱
可塑性樹脂ペレツトとを配合した導電性樹脂組成
物を、低融点金属の融点以上の温度で射出成形し
てなることを特徴とする導電性樹脂成形品。
[Scope of Claims] 1 (A) conductive fibers (B) a low melting point metal and (C) a conductive filler made of flux, on the surface of which (D) a phosphorous antioxidant is contained (E) a thermoplastic resin 1. A conductive resin composition comprising a pellet-like master pellet formed by integrally forming a coating layer, and (F) a thermoplastic resin pellet. 2. Claim 1 in which the conductive fibers are long fibers such as copper fibers, brass fibers, stainless steel fibers, aluminum fibers, nickel fibers, or organic or inorganic fibers having a layer of copper, aluminum or nickel on the surface. The conductive resin composition described in . 3. The conductive resin composition according to claim 1 or 2, wherein the low melting point metal is a solder alloy containing Sn or Sn-Pb as a main component. 4. The conductive resin composition according to any one of claims 1 to 3, wherein the flux is stearic acid, lactic acid, oleic acid, glutamic acid, or rosin or active rosin. 5 The conductive fibers are attached to the conductive resin composition.
The conductive resin composition according to any one of claims 1 to 4, containing 0.5 to 30% by weight. 6. The conductive resin composition according to any one of claims 1 to 5, wherein the low melting point metal is contained in a proportion of 5 to 30% by weight based on the conductive fibers. 7 The flux is 0.1 to 5 for low melting point metals.
7. The conductive resin composition according to any one of claims 1 to 6, which contains the conductive resin composition in a proportion of % by weight. 8. The conductive resin composition according to any one of claims 1 to 7, wherein the phosphorus antioxidant is contained in a proportion of 0.1 to 5% by weight based on the thermoplastic resin of the master pellet. 9. The conductive resin composition according to any one of claims 1 to 8, wherein the thermoplastic resin of the master pellet and the resin of the thermoplastic resin pellet are the same. 10 Claims 1 to 9, wherein the thermoplastic resin of the master pellet and the resin of the thermoplastic resin pellet form a blend polymer.
2. The conductive resin composition according to any one of Items 1-1. 11 The surface of a conductive filler consisting of (A) conductive fibers, (B) a low melting point metal, and (C) flux is coated with (D) a thermoplastic resin layer containing a phosphorous antioxidant (E). A conductive resin characterized by being made by injection molding a conductive resin composition that is a blend of pellet-like master pellets and (F) thermoplastic resin pellets at a temperature higher than the melting point of a low-melting point metal. Molding.
JP6877987A 1987-03-09 1987-03-25 Electrically conductive resin composition and molded product thereof Granted JPS63235368A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6877987A JPS63235368A (en) 1987-03-25 1987-03-25 Electrically conductive resin composition and molded product thereof
KR1019880002366A KR880011821A (en) 1987-03-09 1988-03-07 Conductive resin composition and molded article thereof
EP88103649A EP0283844B1 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product using the same
DE88103649T DE3885487T2 (en) 1987-03-09 1988-03-08 Conductive resin composition and molded product.
US07/165,905 US4882227A (en) 1987-03-09 1988-03-09 Conductive resin composition and molded product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6877987A JPS63235368A (en) 1987-03-25 1987-03-25 Electrically conductive resin composition and molded product thereof

Publications (2)

Publication Number Publication Date
JPS63235368A JPS63235368A (en) 1988-09-30
JPH0212986B2 true JPH0212986B2 (en) 1990-04-03

Family

ID=13383559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6877987A Granted JPS63235368A (en) 1987-03-09 1987-03-25 Electrically conductive resin composition and molded product thereof

Country Status (1)

Country Link
JP (1) JPS63235368A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749491B2 (en) * 1987-04-07 1995-05-31 東芝ケミカル株式会社 Conductive resin composition
JP4993162B2 (en) * 2005-08-22 2012-08-08 東京特殊電線株式会社 Conductive resin manufacturing wire
JP6307762B2 (en) 2014-09-26 2018-04-11 デクセリアルズ株式会社 Electrical wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition
JPS60133057A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition
JPS61296066A (en) * 1985-06-24 1986-12-26 Toshiba Chem Corp Electrically-conductive molding material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140907A (en) * 1982-02-15 1983-08-20 東芝ケミカル株式会社 Method of producing conductive molding material
JPS60127366A (en) * 1983-12-15 1985-07-08 Tounen Sekiyu Kagaku Kk Thermoplastic resin composition
JPS60133057A (en) * 1983-12-22 1985-07-16 Karupu Kogyo Kk Composite resin composition
JPS61296066A (en) * 1985-06-24 1986-12-26 Toshiba Chem Corp Electrically-conductive molding material

Also Published As

Publication number Publication date
JPS63235368A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
US4882227A (en) Conductive resin composition and molded product using the same
JP4567691B2 (en) Metal-plastic-hybrid and molded body produced from the hybrid
JPS6320270B2 (en)
JPH0212986B2 (en)
JPH0212988B2 (en)
JP2523097B2 (en) Conductive resin composition and molded article thereof
JPS63218310A (en) Electrically conductive resin composition and molded item made thereof
JP2523098B2 (en) Conductive resin composition and molded article thereof
JPS63218309A (en) Electrically conductive resin composition and molded item made thereof
JPH0237120B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JPH0212987B2 (en)
JP4760076B2 (en) Thermoplastic resin-coated conductive composition
JPH06315932A (en) Conductive resin molded piece
JPH0813904B2 (en) Conductive resin composition
JPH06128493A (en) Production of electrically conductive resin composition
JPH07122023B2 (en) Conductive resin composition
JPH0763970B2 (en) Conductive resin molding
JPH0749491B2 (en) Conductive resin composition
JP2658000B2 (en) Conductive resin composition and molded article thereof
JPH02229498A (en) Conductive resin composition and molding thereof
JPH0248588B2 (en) DODENSEIJUSHISOSEIBUTSUOYOBISONOSEIKEIHIN
JP2005264096A (en) Method for producing resin coating composition
JPH02199175A (en) Conductive molding resin material
JPH03257999A (en) Conductive resin composition and its mold
JPH073072A (en) Conductive resin composition and its molding