JPS63251082A - Production of nadh oxidase - Google Patents

Production of nadh oxidase

Info

Publication number
JPS63251082A
JPS63251082A JP8747487A JP8747487A JPS63251082A JP S63251082 A JPS63251082 A JP S63251082A JP 8747487 A JP8747487 A JP 8747487A JP 8747487 A JP8747487 A JP 8747487A JP S63251082 A JPS63251082 A JP S63251082A
Authority
JP
Japan
Prior art keywords
bacillus
nadh
culture
enzyme
oxidase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8747487A
Other languages
Japanese (ja)
Other versions
JPH07108219B2 (en
Inventor
Tsunetake Sugimori
杉森 恒武
Yoji Tsukada
塚田 陽二
Yasuhiko Tatsuki
田附 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKIN SHOYU KK
Sekisui Chemical Co Ltd
Original Assignee
MARUKIN SHOYU KK
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKIN SHOYU KK, Sekisui Chemical Co Ltd filed Critical MARUKIN SHOYU KK
Priority to JP8747487A priority Critical patent/JPH07108219B2/en
Publication of JPS63251082A publication Critical patent/JPS63251082A/en
Publication of JPH07108219B2 publication Critical patent/JPH07108219B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To collect NADH oxidase, by cultivating Bacillus sphaericus, Bacillus amyloliquefaciens, Bacillus cereus or Bacillus thuringiensis in a proper medium. CONSTITUTION:Bacillus licheniformis, Bacillus subtilis, Bacillus aneurinolyticus, Bacillus sphaericus, Bacillus amyloliquefaciens, Bacillus cereus or Bacillus thuringiensis is cultivated in a proper medium. The culture temperature is usually about 25-40 deg.C and the culture time is usually about 5-40hr. A cell is separated from the prepared culture mixture by a means such as filtration or centrifugation, the cell is ground by ultrasonic treatment or various mechanical means, solubilized into an aqueous solution, separated and collected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、NADHオキシダーゼ詳しくはH2O2発生
性NADHオキシダーゼの新規な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel method for producing NADH oxidase, particularly H2O2-generating NADH oxidase.

NADHオキシダーセ゛としては、これまでにH2O2
発生性のものとH20発生件のものとか知られている。
As a NADH oxidase, H2O2
There are known cases of outbreaks and cases of H20 outbreaks.

前者の酵素即ちH2O2発生性NADHオキシダーセは
、下記式の反応を触媒する酵素であって、NADHから
定量的にH2O。
The former enzyme, H2O2-generating NADH oxidase, is an enzyme that catalyzes the reaction of the following formula, and quantitatively generates H2O from NADH.

を生成する。generate.

NADH+H” +02→NAD+十H2O2従−)で
、H2O2発生性NADHオキンダーゼは、H2O2の
定量法と組合せてNADHが関与する各種脱水素酵素活
性及びNADを補酵素とする各種脱水素酵素の基質量の
測定に利用できる有用な酵素である。
NADH+H"+02→NAD+1H2O2+02), H2O2-generating NADH okindase can be used in conjunction with H2O2 quantitative methods to determine the activities of various dehydrogenases involving NADH and the amount of substrate for various dehydrogenases that use NAD as a coenzyme. It is a useful enzyme that can be used for measurements.

従来、H2O2発生性NADHオキシダーゼについては
、バチルス・メガテリウム(Baei l lusme
gaterium )から得られることが報告されてい
る〔ジャーナル オブ バイオケミストり一(J、Bi
oehem、)、  98. 1433〜1440(1
985))。しかしながら、バチルス・メガチリウムに
よる該酵素の生成量は、極めて微量であり(後記比較例
参照)、従って該酵素の入手は難しく酵素分析等への実
用が困難な状態であった。
Conventionally, H2O2-generating NADH oxidase has been developed using Bacillus megaterium.
gaterium) [Journal of Biochemistry (J, Bi
oehem, ), 98. 1433-1440 (1
985)). However, the amount of the enzyme produced by Bacillus megathyrium is extremely small (see Comparative Examples below), and therefore the enzyme is difficult to obtain and practical for enzyme analysis and the like.

そのため、該酵素の安価で安定な供給が要望されている
Therefore, there is a demand for inexpensive and stable supply of the enzyme.

問題点を解決するための手段 本発明者は、上記要望に応えるべく、H2O2発生性N
ADHオキシダーゼを容易に且つ大口に製造できる方法
について鋭意研究した。その結果、バチルス属の特定の
種が著量の該酵素を産生ずることを見い出し、本発明を
完成するに至った。
Means for Solving the Problems In order to meet the above-mentioned demands, the inventors of the present invention have developed a H2O2-generating N
We have conducted extensive research into methods for easily producing ADH oxidase in large quantities. As a result, the inventors discovered that a specific species of the genus Bacillus produces a significant amount of the enzyme, leading to the completion of the present invention.

即ち本発明は、バチルス・リケニホルミス、バチルス・
ズブティリス、バチルス・プミルス、バチルス・アノイ
リノリティカス、バチルス・スフエリカス、バチルス・
アミロリクエファシェンス、バチルス番セレウス又はバ
チルス・テユーリンギエンシスを培地に培養し、培養物
からH2O2発生性NADHオキシダーゼを採取するこ
とを特徴とするH2O2発生性N’ADHオキシダーゼ
の製造法に係る。
That is, the present invention provides Bacillus licheniformis, Bacillus
subtilis, Bacillus pumilus, Bacillus aneurinolyticus, Bacillus spheericus, Bacillus
The present invention relates to a method for producing H2O2-generating N'ADH oxidase, which comprises culturing B. amyloliquefacens, Bacillus cereus, or Bacillus theuringiensis in a medium, and collecting H2O2-generating NADH oxidase from the culture.

本発明においては、H2O2発生性NADHオキシダー
ゼの生産菌として、バチルス・リケニホルミス(Bac
illus licheniformis)、バチルス
・ズブティリス(Bacillus 5ubtilis
) 、バチルス・プミルス(Bacillus pum
ilus)、バチルス・アノイリノリティカス(Bac
illus aneurinolyticus)、バチ
ルス・スフエリカス(Bacillus 5phaer
icus) 、バチルス舎アミロリクエファシェンス(
Baci ] l usamyloliquefaci
ens ) 、バチルス・セレウス(Bacillus
 cereus)及びバチルス・テユーリンギエンシス
(Bacfllus thuringiensis)の
何れかの種に属する菌株を用いることが必要である。
In the present invention, Bacillus licheniformis (Bacillus
illus licheniformis), Bacillus subtilis (Bacillus 5ubtilis)
), Bacillus pum
illus), Bacillus aneurinolyticus (Bac
illus aneurinolyticus), Bacillus sphaericus (Bacillus 5phaer)
icus), Bacillus amyloliquefaciens (
Baci ] l usamyloliliquefaci
ens), Bacillus cereus
It is necessary to use a strain belonging to any of the species Bacillus thuringiensis and Bacillus thuringiensis.

例えば好ましい菌株としては、バチルス・リケニホルミ
スIAM11054、バチルス◆ズブティリスIFO3
007、バチルスφプミルスIF012086、バチル
ス・アノイリノリティカスAHU1354、バチルス・
スフエリカスIF03341、バチルス・アミロリクエ
ファシェンスIFO14141、バチルス・セレウスI
 F03132及びバチルス・テユーリンギエンシスI
F03951を挙げることができる。これらの菌株は、
何れも公的保存機関の保存菌であり、分譲を受けること
により容易に入手可能である。保存機関は、IAMは東
京大学応用微生物研究所、IFOは財団法人発酵研究所
、AHUは北海道大学農学部である。また、これらの菌
株の各種の変異株も好適に使用できるのは、勿論である
For example, preferred strains include Bacillus licheniformis IAM11054, Bacillus subtilis IFO3
007, Bacillus φpumilus IF012086, Bacillus aneurinolyticus AHU1354, Bacillus
Sphericus IF03341, Bacillus amyloliquefaciens IFO14141, Bacillus cereus I
F03132 and Bacillus theuringiensis I
F03951 can be mentioned. These strains are
All of these bacteria are preserved in public preservation institutions and can be easily obtained through distribution. The preservation institutions are IAM, Institute of Applied Microbiology, University of Tokyo, IFO, Fermentation Research Institute, and AHU, Faculty of Agriculture, Hokkaido University. It goes without saying that various mutant strains of these strains can also be suitably used.

これらの菌株の培養法としては、従来のバチルス属菌株
の培養と同様に行なえば良く、適当な炭素源、窒素源、
無機物、及び必要に応じてその他の栄養物を含む栄養培
地に培養する。炭素源としては、資化可能な炭素源であ
ればよく、例えばグルコース、サッカロース、マンニト
ール等を挙げることができる。窒素源としては、利用可
能な窒素源であればよ(、例えば硫酸アンモニウム、リ
ン酸アンモニウム、硝酸アンモニウム等の無機窒素化合
物、及びペプトン、肉エキス、酵母エキス、カゼイン加
水分解物、コーン・ステイープ・リカー等の有機窒素源
を挙げることができる。更に、必要に応じて、他のリン
酸塩、マグネシウム、カルシウム、カリウム、鉄、マン
ガン、亜鉛等の金属の各種塩類、ビタミン等を加えるこ
とができる。
These strains can be cultured in the same manner as conventional Bacillus strains, using appropriate carbon sources, nitrogen sources,
Cultivate in a nutrient medium containing minerals and other nutrients as necessary. The carbon source may be any assimilable carbon source, such as glucose, sucrose, mannitol, and the like. The nitrogen source may be any available nitrogen source (for example, inorganic nitrogen compounds such as ammonium sulfate, ammonium phosphate, ammonium nitrate, peptone, meat extract, yeast extract, casein hydrolyzate, corn steep liquor, etc.). Further, other phosphates, various salts of metals such as magnesium, calcium, potassium, iron, manganese, zinc, vitamins, etc. can be added as necessary.

培養は、固体培養、液体培養の何れでも良いが、通常液
体培養によるのが便利である。
Culture may be either solid culture or liquid culture, but liquid culture is usually convenient.

培養温度は、バチルス属菌株の成育に適当な温度であれ
ば良く、通常25〜40℃程度である。
The culture temperature may be any temperature suitable for the growth of Bacillus strains, and is usually about 25 to 40°C.

培養時間は、特に限定されるものではなく、目的のH2
O2発生性NADHオキシダーゼが最高収量に達する適
当な時期に培養を終了すれば良く、通常は5〜40時間
程度である。
The culture time is not particularly limited, and the desired H2
The culture may be terminated at an appropriate time when O2-generating NADH oxidase reaches its maximum yield, which is usually about 5 to 40 hours.

培養物からH2O2発生性NADHオキシダーゼを採取
するには、本酵素が主に菌体内に存在することから、ま
ず得られた培j$物から濾過、遠心分離等の手段により
菌体を分離し、次いでこの菌体を適当な菌体破砕手段、
例えば超音波処理、各種機械的方法等により破砕し、可
溶化して水溶液として分離、採取する。
In order to collect H2O2-generating NADH oxidase from a culture, since this enzyme mainly exists within the bacterial cells, first, the bacterial cells are separated from the obtained culture by means such as filtration or centrifugation. Next, this bacterial cell is subjected to suitable bacterial cell crushing means,
For example, it is crushed and solubilized by ultrasonication, various mechanical methods, etc., and separated and collected as an aqueous solution.

この様にして得られた目的オキシダーゼをaむ粗酵素液
からの精製は、通常の酵素の精製に用いらイする方法を
適宜組合せることにより行なわれる。
Purification of the target oxidase thus obtained from the crude enzyme solution is carried out by appropriately combining methods used for the purification of ordinary enzymes.

例えば、塩析、有機溶媒沈澱、透析、イオン交換クロマ
トグラフィー・法、ゲル濾過法、アフイニテ・イクロマ
トグラフイー法等の方法を組合せて使用できる。
For example, methods such as salting out, organic solvent precipitation, dialysis, ion exchange chromatography, gel filtration, and affinite chromatography can be used in combination.

より具体的な例を挙げれば、例えば、菌体を破砕後、遠
心分離し、粗酵素液と17て上清を得る。
To give a more specific example, for example, after disrupting the bacterial cells, they are centrifuged and mixed with a crude enzyme solution to obtain a supernatant.

その粗酵素液を硫安塩析してN A D Hオキシダー
ゼ活性画分を得る。透析或いはゲル濾過により沈澱物中
に含まれる硫安を除去後、DEAEセファロースCL−
6Bイオン交換体(ファルマシア社製)に吸着、溶出さ
せる。活性画分を濃縮後ウルトロゲルACA34 (L
KB社製)のゲル濾過を行ない、活性画分を更に5′〜
AMP−セファロース(ファルマシア社製)のアフイニ
テイクロマトグラフイーを行なうことにより単離、精製
をすることができる。
The crude enzyme solution is salted out with ammonium sulfate to obtain an N A D H oxidase active fraction. After removing ammonium sulfate contained in the precipitate by dialysis or gel filtration, DEAE Sepharose CL-
Adsorb and elute on 6B ion exchanger (manufactured by Pharmacia). After concentrating the active fraction, Ultrogel ACA34 (L
KB) gel filtration was performed, and the active fraction was further filtered from 5' to
Isolation and purification can be carried out by performing affinity chromatography using AMP-Sepharose (manufactured by Pharmacia).

本発明の製造法により得られたH2O2発生性NADH
オキシダーゼの酵素化学的及び理化学的性質を、以下に
示す。
H2O2-generating NADH obtained by the production method of the present invention
The enzymatic chemical and physicochemical properties of oxidase are shown below.

(1)作用=1モルのNADHを1モルの02で酸化し
て1モルのNAD+と1モルのH20□を生成する。
(1) Effect: Oxidize 1 mol of NADH with 1 mol of 02 to produce 1 mol of NAD+ and 1 mol of H20□.

(2)補酵素: FADを補酵素とし、酵素蛋白中に含
むが、反応液中にFADを別途添加することにより数十
倍に活性は−に昇する。
(2) Coenzyme: FAD is used as a coenzyme and is contained in the enzyme protein, but the activity is increased several tens of times by adding FAD separately to the reaction solution.

(3)基質特異性: NADH及びNADPHの何れに
も作用するが、下記第18表に示す様に、反応液中にF
ADを添加することによってNADHに対する活性は約
35倍に上昇するのに比しN A D P Hに対する
活性は約5倍の−」二昇に過ぎず、FAD存在下での反
応ではNADPHに比べNADHに対して約7倍の活性
を示す。
(3) Substrate specificity: It acts on both NADH and NADPH, but as shown in Table 18 below, F
By adding AD, the activity against NADH increases about 35 times, but the activity against NADPH increases only about 5 times -2, and in the reaction in the presence of FAD, the activity against NADH increases by about 5 times. Shows approximately 7 times more activity than NADH.

第  1  表 (4)Km値二NADIl:に対するKm値は約3.2
X10’Mであり、FADに対するK m値は約6.7
X10−6Mである。
Table 1 (4) Km value for two NADIl: is approximately 3.2
X10'M, and the K m value for FAD is approximately 6.7
It is X10-6M.

(5)分子量= 「セファデックスG−150J(ファ
ルマシア社製)を用いるゲル濾過法で約116000で
あり、5DS−ポリアクリルアミドゲル電気泳動法で約
56000である。従って、分子量約56000のサブ
ユニットよりなる2聞体である。
(5) Molecular weight = approximately 116,000 by gel filtration using Sephadex G-150J (manufactured by Pharmacia) and approximately 56,000 by 5DS-polyacrylamide gel electrophoresis. It is a two-tone form.

(6)至適pH:第1図の曲線で表わされる如く、約p
H6,5〜8.0に高い活性を有している。
(6) Optimum pH: As shown by the curve in Figure 1, approximately p
It has high activity in H6.5-8.0.

(7)至適温度:第2図の曲線で表わされる如く、pH
7,0で約45℃付近にある。
(7) Optimal temperature: As shown by the curve in Figure 2, pH
7.0, which is around 45 degrees Celsius.

(8)pH安定性:30°Cで24時間、それぞれのp
Hで放置したときのpH安定性を第3図に示す。第3図
から明らかなようにpH7,0〜・9、0の間で安定で
ある。
(8) pH stability: 24 hours at 30°C, each pH
Figure 3 shows the pH stability when left in H. As is clear from FIG. 3, it is stable between pH 7.0 and .9.0.

(9)熱安定性:pH7,2でそれぞれの温度で】0分
間処理したときの熱安定性を第4図に示す。第4図から
明らかなように30°Cまで安定である。また、牛血清
アルブミン0.1%存在下では40℃まで安定である。
(9) Thermal stability: Figure 4 shows the thermal stability when treated at pH 7 and 2 for 0 minutes at each temperature. As is clear from Figure 4, it is stable up to 30°C. Furthermore, it is stable up to 40°C in the presence of 0.1% bovine serum albumin.

(10)阻害剤:Ag”、Hg”、Cu4+などの重金
属イオンで阻害される。KCN及びPCMB(p−クロ
ロマーキュリ−ヘンシェード)テ部分的に阻害される。
(10) Inhibitor: Inhibited by heavy metal ions such as Ag", Hg", and Cu4+. KCN and PCMB (p-chloromercury-henshade) are partially inhibited.

本発明により得られるH2O2発生性NADHオキシダ
ーゼの」二記諸性質を、前記ジャーナルオブ バイオケ
ミストリー、98.1433〜1440 (1985)
に記載の同様のNADHオキシダーゼの諸性質と比較す
ると、(1)作用、(2)補酵素及び(3)基質特異性
の点で殆んど変るところがなく、又(4)Km値及び(
5)分子量の点でも近似している。
The properties of the H2O2-generating NADH oxidase obtained by the present invention are described in the Journal of Biochemistry, 98.1433-1440 (1985).
Compared to the properties of similar NADH oxidase described in
5) They are also similar in terms of molecular weight.

酵素活性測定方法: 本発明における酵素活性は、下記条件下1分間にNAD
Hの1μmo l eを酸化するに要する酵素量を1単
位とし、NADHの340nmでの吸光度の減少を測定
することにより定量する。
Enzyme activity measurement method: Enzyme activity in the present invention is determined by measuring NAD in 1 minute under the following conditions.
The amount of enzyme required to oxidize 1 μmol of H is defined as 1 unit, and the amount is determined by measuring the decrease in the absorbance of NADH at 340 nm.

試薬:  (A)0.25Mリン酸カリウム緩衝液pH
7,0 (B)2mM  NADH水溶液 (C)1mM  FAD水溶液 (D)IM  NaN3水溶液 (E)酵素液:NaN3の濃度が0.1Mになるように
I M  N a N 3水溶液(D)を予め1710
量添加する。
Reagents: (A) 0.25M potassium phosphate buffer pH
7,0 (B) 2mM NADH aqueous solution (C) 1mM FAD aqueous solution (D) IM NaN3 aqueous solution (E) Enzyme solution: Prepare IM NaN3 aqueous solution (D) in advance so that the concentration of NaN3 is 0.1M. 1710
Add amount.

duj定手順:光路長10mmのキュベツトに上記リン
酸カリウム緩衝液(A) 0. 6ml、基質溶液(B
)0.3ml、補酵素溶液(C) 0. 1011、I
M  NaN3水溶液(D) 0. 3ml、及び蒸留
水1.6mlを入れて混和し、30°C下10分間予備
加温後酵素液(E)0.1mlを加えて直ちに混和し、
反応を開始する。30°C下基質NADHの340nm
での吸光度の減少 (ΔA34o)の初速度を測定し、下記式に従って酸化
されたNADH量を算出する。酵素濃度は反応開始後3
0秒〜90秒間の1分間のΔA34oが0.035〜0
.050程度の変化量になるように調節して測定する。
duj determination procedure: Into a cuvette with an optical path length of 10 mm, add the above potassium phosphate buffer (A) 0. 6ml, substrate solution (B
) 0.3ml, coenzyme solution (C) 0. 1011, I
M NaN3 aqueous solution (D) 0. Add 3 ml of enzyme solution and 1.6 ml of distilled water and mix. After prewarming at 30°C for 10 minutes, add 0.1 ml of enzyme solution (E) and mix immediately.
Start the reaction. 340nm of substrate NADH at 30°C
The initial rate of decrease in absorbance (ΔA34o) at is measured, and the amount of oxidized NADH is calculated according to the following formula. The enzyme concentration is 3 after the start of the reaction.
ΔA34o for 1 minute from 0 seconds to 90 seconds is 0.035 to 0
.. Measurement is performed by adjusting the amount of change to be approximately 0.050.

6.22 H2O2の測定方法: 上記酵素活性測定条件下NADHを完全に酸化するに充
分な量の酵素を加えて反応を行なわせ、340nmの吸
光度の減少が0になった時点でその反応終了液中の生成
H2O2量を反応終了液の一定回についてH2O2の定
量法である酸化発色法(4−アミノアンチピリン−N、
N’ −ジメチルアニリン−ペルオキシダーゼ系)で測
定する。
6.22 H2O2 measurement method: Under the enzyme activity measurement conditions described above, add enough enzyme to completely oxidize NADH and carry out the reaction. When the decrease in absorbance at 340 nm reaches 0, the reaction completed solution is The amount of H2O2 produced in the reaction solution was determined using the oxidative color method (4-aminoantipyrine-N,
N'-dimethylaniline-peroxidase system).

試薬:  (A)0.25Mリン酸カリウム緩衝液pH
7,0 (B)0.3%4−アミノアンチピリン水溶液 (C)0.2%N、N’  −ジメチルアニリン−0,
0IN  HCI溶液 (D)ペルオキシダーゼ溶液:50u/鵬の30mMリ
ン酸カリウム緩衝液 pH7,2 測定手順:試験管に上記リン酸カリウム緩衝液(A) 
0. 2ml、4−アミノアンチピリン水溶液(B) 
O,1ml、N、N’ −ジメチルアニリン溶液(C)
 0. 2rrvQ及びH2O2定量用試料溶液0. 
8mGを加えて混和し、これにペルオキシダーゼ溶液(
D) 0. 1auQを添加、混和して室温下10分間
放置後、蒸留水1.6鵬を加え、終液ff13. 0I
TIQとして565nmにおける吸光度を測定する。H
2O2含有量は、予め上記測定法により既知量のH2O
2について作製した検母線から測定吸光度に相当するH
2O2量を読み取り求める。
Reagents: (A) 0.25M potassium phosphate buffer pH
7,0 (B) 0.3% 4-aminoantipyrine aqueous solution (C) 0.2% N,N'-dimethylaniline-0,
0IN HCI solution (D) Peroxidase solution: 50u/Peng's 30mM potassium phosphate buffer pH 7.2 Measurement procedure: Add the above potassium phosphate buffer (A) to a test tube
0. 2ml, 4-aminoantipyrine aqueous solution (B)
O, 1 ml, N, N'-dimethylaniline solution (C)
0. 2rrvQ and H2O2 quantitative sample solution 0.
Add 8mG, mix, and add peroxidase solution (
D) 0. Add 1auQ, mix and leave at room temperature for 10 minutes, then add 1.6mm of distilled water and leave the final solution ff13. 0I
The absorbance at 565 nm is measured as TIQ. H
The 2O2 content is determined by measuring a known amount of H2O in advance by the above measurement method.
H corresponding to the measured absorbance from the standard line prepared for 2.
Read and determine the amount of 2O2.

発明の効果 本発明によれば、特にバチルス属の特定の種を用いるこ
とにより、H2O2発生性NADHオキシダーゼを容易
に且つ大量に製造することができ、該酵素の安価で安定
な供給が実現される。
Effects of the Invention According to the present invention, especially by using a specific species of the genus Bacillus, H2O2-generating NADH oxidase can be easily produced in large quantities, and the enzyme can be stably supplied at low cost. .

実施例 以下に本発明によるNADHオキシダーゼの製造法を実
施例を挙げて説明するが、本発明はこれらの実施例に限
定されるものではない。
EXAMPLES The method for producing NADH oxidase according to the present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜9及び比較例 培地組成 グルコース1.0%、ペプトン1.0%、酵
母エキス0.2%、クエン酸ナトリウム0,1%、(N
Ha )2 SOa  0.2%、KH2PO40,6
%、K2HPO410,4%、M g S O4・7H
200,02%、pH7,2 ト記培地5TlIQ及び50能をそれぞれ試験管及び3
00(財)容フラスコに分注して綿栓17.120’C
115分間オートクレーブ滅菌し7た。先ず5mlの試
験管培地に各種菌株を斜面培地から]白菌耳接種し、3
0’C1約20時間振盪培養して種培養物を調製した。
Examples 1 to 9 and comparative examples Medium composition Glucose 1.0%, peptone 1.0%, yeast extract 0.2%, sodium citrate 0.1%, (N
Ha)2SOa 0.2%, KH2PO40.6
%, K2HPO410.4%, M g S O4 7H
200.02%, pH 7.2.
Dispense into a 17.120'C flask with a cotton plug.
It was sterilized in an autoclave for 115 minutes. First, inoculate various bacterial strains from slant culture into 5 ml of test tube culture, and
A seed culture was prepared by shaking culture at 0'C1 for about 20 hours.

次にこの各種菌株の種培養物0.5鵬を50m!Q容の
フラスコ培地に植菌して30℃、約20時間振盪培養し
た。培養終了後、遠心分離により菌体を集め、生菌体を
約10%濃度(重量/容はパーセント)に30m〜1リ
ン酸カリウム緩衝液pH7,2に+3濁し7て水冷下で
超音波処理(20KC15分)した。この超音波処理7
1kを遠心分離し、上清を粗酵素液として活性を測定し
た。
Next, 50 m of seed cultures of these various strains! The cells were inoculated into a Q-volume flask medium and cultured with shaking at 30°C for about 20 hours. After culturing, collect the bacterial cells by centrifugation, suspend the viable bacterial cells to a concentration of approximately 10% (weight/volume in percent) in 30 m~1 potassium phosphate buffer pH 7.2, and treat with ultrasonication under water cooling. (20KC15 minutes). This ultrasonic treatment 7
1k was centrifuged and the supernatant was used as a crude enzyme solution to measure the activity.

また、比較例として、バチルス・メガテリウムAHU1
240を用い、同様に培養、酵素の精製、測定をしまた
In addition, as a comparative example, Bacillus megaterium AHU1
240 was used for culturing, enzyme purification, and measurement in the same manner.

測定結果は第2表に示した。The measurement results are shown in Table 2.

第2表において、NADHオキシダーゼ活性は、粗酵素
液の酵素活性を元の培養液の1mQ当りに換算したもの
である。H20□発生率とは、NADHかNADHオキ
シダーゼによって反応式に従い酸化された時発生する理
論値に対する反応液中でのH20□の実測値の比率を表
わしたものである。
In Table 2, the NADH oxidase activity is the enzyme activity of the crude enzyme solution converted per 1 mQ of the original culture solution. The H20□ generation rate represents the ratio of the measured value of H20□ in the reaction solution to the theoretical value generated when NADH or NADH oxidase is oxidized according to the reaction formula.

実施例10 実施例1と同様に調製した培地30Qを含む50Q容ジ
ャーファーメンタ−を1−20°Cで20分間蒸気滅菌
17た。予め実施例1−と同(工に(7て培養したバチ
ルス・リケニフオルミスIAMIIO54の種培養物3
00m1を植菌し、30°CC1300rp、通気量3
0&/minで6hr培養した。得られた培養液のNA
DHオキシダ−セ活性は0.43u/mQであった。’
?3 ii液3(lを遠心分離し、菌体を集め30m〜
Iリン酸カリウム緩衝液pH7,23,2Qに懸濁し、
菌体破砕機ダイノミルKDL (ライlルー・工・ハッ
コーフエン社製)により破砕した。
Example 10 A 50 Q jar fermenter containing 30 Q of medium prepared in the same manner as in Example 1 was steam sterilized at 1-20°C for 20 minutes. Seed culture 3 of Bacillus licheniformis IAMIIO54 cultured in advance in the same manner as in Example 1-7
00ml inoculated, 30°CC 1300rp, aeration rate 3
The cells were cultured for 6 hours at 0min. NA of the obtained culture solution
DH oxidase activity was 0.43 u/mQ. '
? 3 Centrifuge the ii solution 3 (l) and collect the bacterial cells from 30 m~
Suspended in potassium phosphate buffer pH 7, 23, 2Q,
The cells were crushed using a bacterial cell crusher Dynomil KDL (manufactured by Lyle Roux Hakkofuen Co., Ltd.).

菌体破砕液を連続遠心分離(1200Orpm)し、上
清3200ITII2を得た。上滑に硫安を添加、硫安
塩析し、硫安35%で溶解し、硫安60%で沈澱する両
分を集め、30mMリン酸カリウム緩衝液に溶解、同緩
衝液に透析し、同緩衝液に平衡化したDEAEセファロ
ースCL−6Bカラム1゛2に吸着させ、0.2M  
NaCQにて溶出した。
The cell suspension was subjected to continuous centrifugation (1200 rpm) to obtain a supernatant of 3200 ITII2. Add ammonium sulfate to the supernatant, salt out ammonium sulfate, dissolve in 35% ammonium sulfate, and precipitate in 60% ammonium sulfate. Collect the two parts, dissolve in 30mM potassium phosphate buffer, dialyze against the same buffer, and add to the same buffer. It was adsorbed onto an equilibrated DEAE Sepharose CL-6B column 1゛2, and 0.2M
It was eluted with NaCQ.

溶出液の活性画分を硫安塩析し、硫安70%飽和で沈澱
する両分を100mMリン酸カリウム緩衝1(kpH7
,2に溶解し、同緩衝液に平衡化したウルトロゲルAC
A34にてゲル濾過を行なった。
The active fraction of the eluate was salted out with ammonium sulfate, and both fractions precipitated at 70% saturation with ammonium sulfate were added to 100 mM potassium phosphate buffer 1 (kpH 7).
, 2 and equilibrated in the same buffer.
Gel filtration was performed using A34.

活性溶出画分を限外濾過により濃縮し、30mMリン酸
カリウム緩衝液pH7,2に透析し、同緩衝液に平衡化
した5’ −AMP−セファロース4Bカラムに吸着さ
せ、非吸着画分を洗浄溶出後、0.5M  NaCQを
含む同緩衝液で活性画分を溶出し、更にこの活性画分を
100mMリン酸カリウム緩衝液pI(’7. 2に平
衡化したセファクリルS−200(ファルマシア社製)
にてゲル濾過を行ないその活性溶出画分を限外濾過によ
り濃縮してNADHオキシダーゼを単離、精製した。水
精製NADHオキシダーゼは5DS−ポリアクリルアミ
ド電気泳動分析的に単一のバンドを示し、比活性56.
4.u/mg−蛋白であり、比活性は137倍に上昇し
た、活性の回収率は44%であった。この酵素の諸性質
は、前記の通りである。
The active elution fraction was concentrated by ultrafiltration, dialyzed against 30 mM potassium phosphate buffer pH 7.2, adsorbed on a 5'-AMP-Sepharose 4B column equilibrated with the same buffer, and the non-adsorbed fraction was washed. After elution, the active fraction was eluted with the same buffer containing 0.5M NaCQ, and this active fraction was further added to Sephacryl S-200 (manufactured by Pharmacia) equilibrated to 100mM potassium phosphate buffer pI ('7.2). )
The active eluate fraction was concentrated by ultrafiltration to isolate and purify NADH oxidase. Water-purified NADH oxidase showed a single band on 5DS-polyacrylamide electrophoresis, with a specific activity of 56.
4. u/mg-protein, the specific activity was increased 137 times, and the recovery rate of activity was 44%. The properties of this enzyme are as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により得られるH2O2発生性NAD
Hオキシダーゼの至適pHを示すグラフである。第2図
は、当該オキシダーゼの至適温度を示すグラフである。 第3図は、当該オキシダーゼのpH安定性を示すグラフ
である。第4図は、当該オキシダーゼの熱安定性を示す
グラフである。 (以 上) 第1図 pH 第2図 温度(°C) 第3図 第4図
FIG. 1 shows H2O2-generating NAD obtained by the present invention.
It is a graph showing the optimum pH of H oxidase. FIG. 2 is a graph showing the optimum temperature of the oxidase. FIG. 3 is a graph showing the pH stability of the oxidase. FIG. 4 is a graph showing the thermostability of the oxidase. (Above) Figure 1 pH Figure 2 Temperature (°C) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)バチルス・リケニホルミス、バチルス・ズブティ
リス、バチルス・プミルス、バチルス・アノイリノリテ
ィカス、バチルス・スフェリカス、バチルス・アミロリ
クエファシエンス、バチルス・セレウス又はバチルス・
テューリンギエンシスを培地に培養し、培養物からH_
2O_2発生性NADHオキシダーゼを採取することを
特徴とするH_2O_2発生性NADHオキシダーゼの
製造法。
(1) Bacillus licheniformis, Bacillus subtilis, Bacillus pumilus, Bacillus anoirinolyticus, Bacillus sphaericus, Bacillus amyloliquefaciens, Bacillus cereus or Bacillus cereus
thuringiensis in a medium, and H_ from the culture.
A method for producing H_2O_2-generating NADH oxidase, which comprises collecting 2O_2-generating NADH oxidase.
JP8747487A 1987-04-08 1987-04-08 Method for producing NADH oxidase Expired - Lifetime JPH07108219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8747487A JPH07108219B2 (en) 1987-04-08 1987-04-08 Method for producing NADH oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8747487A JPH07108219B2 (en) 1987-04-08 1987-04-08 Method for producing NADH oxidase

Publications (2)

Publication Number Publication Date
JPS63251082A true JPS63251082A (en) 1988-10-18
JPH07108219B2 JPH07108219B2 (en) 1995-11-22

Family

ID=13915916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8747487A Expired - Lifetime JPH07108219B2 (en) 1987-04-08 1987-04-08 Method for producing NADH oxidase

Country Status (1)

Country Link
JP (1) JPH07108219B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339096A (en) * 1989-07-04 1991-02-20 Sekisui Chem Co Ltd High-performance liquid chromatography utilizing immobilized enzyme
JPH03151898A (en) * 1989-11-10 1991-06-28 Sekisui Chem Co Ltd Method for measuring flow injection utilizing immobilized enzyme
US5336608A (en) * 1989-02-28 1994-08-09 Mitsubishi Petrochemical Co., Ltd. Process for producing NADH oxidase
JP2008092832A (en) * 2006-10-10 2008-04-24 Keio Gijuku Novel nadh oxidase of generating hydrogen peroxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336608A (en) * 1989-02-28 1994-08-09 Mitsubishi Petrochemical Co., Ltd. Process for producing NADH oxidase
US5416012A (en) * 1989-02-28 1995-05-16 Mitsubishi Petrochemical Co., Ltd. Process for producing NADH oxidase
JPH0339096A (en) * 1989-07-04 1991-02-20 Sekisui Chem Co Ltd High-performance liquid chromatography utilizing immobilized enzyme
JPH03151898A (en) * 1989-11-10 1991-06-28 Sekisui Chem Co Ltd Method for measuring flow injection utilizing immobilized enzyme
JP2008092832A (en) * 2006-10-10 2008-04-24 Keio Gijuku Novel nadh oxidase of generating hydrogen peroxide

Also Published As

Publication number Publication date
JPH07108219B2 (en) 1995-11-22

Similar Documents

Publication Publication Date Title
JPS61280272A (en) Uricase and production thereof
JP2850515B2 (en) Glucose dehydrogenase and method for producing the same
JPS59198972A (en) Microbiologically produced l-phenylalanine dehydrogenase, obtaining method thereof and production of l-alpha-amino- carboxylic acid
JPH0329399B2 (en)
JPS61268178A (en) Fructosylamino acid oxidase and production thereof
JP3041840B2 (en) Novel glycerol dehydrogenase, its production method and its use
JPS63251082A (en) Production of nadh oxidase
JPS5910190B2 (en) Novel method for producing lactate oxidase
JPH0117674B2 (en)
JPS6041594B2 (en) Glutathione sulfhydryl oxidase and its production method
JP3156832B2 (en) Ammonia measurement reagent composition
JP3781806B2 (en) Novel pyruvate oxidase, its production method and pyruvate analysis method
JP3040228B2 (en) L-fucose dehydrogenase, method for producing the same, and method for quantifying L-fucose
JPS5934884A (en) Leucine dehydrogenase and its preparation
JP3102543B2 (en) Glutamate dehydrogenase and method for producing the same
JPH0239237B2 (en) SHUSANOKISHIDAAZENOSEIZOHO
JPS6318471B2 (en)
JP2680686B2 (en) Method for producing putrescine: pyruvate transaminase
JPH0638756B2 (en) Pyruvate assay using pyruvate oxidase and its reagent
JP2868905B2 (en) Diacetyl polyamine amide hydrolase
JPH0661278B2 (en) Sensitive method for quantitative determination of myo-inositol and composition for quantitative determination
JPS59132889A (en) Preparation of l-alanine dehydrogenase
JP3150868B2 (en) 6-Phosphogluconate dehydrogenase and its production
JPS63313580A (en) Formic acid dehydrogenase
JPS6012027B2 (en) Novel glycerol dehydrogenase and its production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 12