JPH0339096A - High-performance liquid chromatography utilizing immobilized enzyme - Google Patents

High-performance liquid chromatography utilizing immobilized enzyme

Info

Publication number
JPH0339096A
JPH0339096A JP17324689A JP17324689A JPH0339096A JP H0339096 A JPH0339096 A JP H0339096A JP 17324689 A JP17324689 A JP 17324689A JP 17324689 A JP17324689 A JP 17324689A JP H0339096 A JPH0339096 A JP H0339096A
Authority
JP
Japan
Prior art keywords
nad
immobilized enzyme
immobilized
oxidase
dehydrogenase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17324689A
Other languages
Japanese (ja)
Inventor
Yoshihide Sawada
芳秀 澤田
Kazutoshi Yamazaki
和俊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP17324689A priority Critical patent/JPH0339096A/en
Publication of JPH0339096A publication Critical patent/JPH0339096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To make it possible to simply and inexpensively measure the aimed substance in high sensitivity by measuring H2O2 produced by bringing a sample into contact with a specific immobilized enzyme. CONSTITUTION:A dehydrogenase (A) (e.g. 3alpha-hydroxysteroid dehydrogenase) each using an aimed substance such as bile acid as a substrate and oxidation type nicotic amide adenine dinucleotide phosphate [NAD(P)] as a coenzyme is immobilized on a carrier such as cellulose, etc., to afford bile acid dehydrogenase immobilized enzyme column 11. On the other hand, a reduction type NAD(P)H oxidase (B) derived from soil microorganism, etc., is immobilized on cellulose carrier, etc., to provide a NAD(P)H oxidase immobilized enzyme column 12. Then these columns 11 and 12 and pumps 8 and 10, etc., are arranged to prepare the high performance liquid chromatography (C) utilizing the immobilized enzyme. Then NAD(P)R produced by feeding transfer phases 1 and 2 and reaction liquids 7 and 9 to the column 11 is introduced into the column 12 and the produced H2O2 is detected through a reaction coil 13 with a chemical luminescence detecting device 14 to measure the aimed substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分析測定方法に関するものであるが、更に詳細
には高速液体クロマトグラフィーにおいて固定化酵素を
利用して目的物質を正確に且つ簡便に測定する方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an analysis and measurement method, and more specifically to a method for accurately and easily determining a target substance using an immobilized enzyme in high-performance liquid chromatography. It concerns the method of measurement.

〔従来の技術〕[Conventional technology]

高速液体クロマトグラフィー(HPLC)は、試料中の
多数の目的物質を一斉に分離定量できるという面で生化
学分野や臨床検査分野で非常に有益な方法として広く用
いられている。
High-performance liquid chromatography (HPLC) is widely used as a very useful method in the fields of biochemistry and clinical testing because it can simultaneously separate and quantify a large number of target substances in a sample.

このHPLCにおいて、目的物質を測定する際、目的物
質が関与する酵素反応をHPLC測定系に組み入れ、酵
素反応により生成する物質や該酵素反応に関与する補酵
素を測定することにより、更に、高感度で、かつ特異性
のある測定が可能である。
In this HPLC, when measuring the target substance, the enzyme reaction involving the target substance is incorporated into the HPLC measurement system, and the substances produced by the enzyme reaction and the coenzymes involved in the enzyme reaction are measured, thereby achieving even higher sensitivity. and specific measurement is possible.

他方、多くの酵素反応に関与する補酵素ニコチンアミド
アデニンジヌクレオチド(酸化型はNADで、還元型は
NADHで示される)又はニコチンア果ドアデニンジヌ
クレオチドホスフエート(酸化型はNADPで、還元型
はNADPHで示される)を測定し、目的物質濃度を定
量する方法が広く用いられている。
On the other hand, the coenzymes involved in many enzymatic reactions include nicotinamide adenine dinucleotide (the oxidized form is NAD and the reduced form is indicated by NADH) or nicotinamide adenine dinucleotide phosphate (the oxidized form is NADP and the reduced form is indicated by NADH). A method of quantifying the target substance concentration by measuring NADPH (expressed as NADPH) is widely used.

これらの技術を結合して、現在、このようなHPLCに
おける固定化酵素カラム法が開発され、ある種の測定に
おいて実用化されているものもある。例えば、胆汁酸1
5分画測定の場合、胆汁酸分離カラムで15分画を分離
後、3α−ヒドロキシステロイドデヒドロゲナーゼを固
定化させた固定化酵素反応による胆汁酸の酸化によって
生じるNADHを蛍光測定することにより各胆汁酸濃度
の定量を行うことが知られている(特開昭59−513
49号)。
Combining these techniques, such immobilized enzyme column methods for HPLC have now been developed, and some have been put to practical use in certain types of measurements. For example, bile acid 1
In the case of 5-fraction measurement, after separating 15 fractions with a bile acid separation column, each bile acid is determined by fluorescence measurement of NADH produced by oxidation of bile acids by an immobilized enzyme reaction with immobilized 3α-hydroxysteroid dehydrogenase. It is known that concentration can be determined (Japanese Patent Application Laid-Open No. 59-513
No. 49).

HPLCにおけるNAD(P)Hの定量方法としては、
以下の(1)〜(3)の方法が知られている:(1) 
 NAD(P)Hの紫外領域の特定波長(例えば、NA
D(P)Hの極大吸収波長である340ns)における
吸収を直接測定する方法; (2)  N A D (P ) Hに特定の励起波長
の光を照射し光励起させ、その特発する蛍光を測定する
方法(上記した特開昭59−51349号の胆汁酸測定
法は本坊を用いている); (3)  NAD(P)Hにメチレンブルーを作用させ
HzOtを生成させ、該H20,によりフェリシアン化
カリウム存在化でルミノールを酸化することによって生
じる化学発光を測定する方法〔佐伯行−他:臨床化学、
第10巻、第4号286−293 (1981)) ;
しかし、上記(1)〜(3)の方法には次のような問題
がある。
As a method for quantifying NAD(P)H in HPLC,
The following methods (1) to (3) are known: (1)
A specific wavelength in the ultraviolet region of NAD(P)H (for example, NA
A method to directly measure the absorption at the maximum absorption wavelength of D(P)H (340 ns); (2) irradiate NAD(P)H with light of a specific excitation wavelength to optically excite it, and measure its unique fluorescence (The bile acid measurement method of JP-A No. 59-51349 mentioned above uses Honbo); (3) NAD(P)H is reacted with methylene blue to generate HzOt, and the H20 is used to generate potassium ferricyanide. A method for measuring chemiluminescence produced by oxidizing luminol in the presence of oxidation [Yuki Saeki et al.: Clinical Chemistry,
Volume 10, No. 4 286-293 (1981));
However, the methods (1) to (3) above have the following problems.

(1)の方法においては、NAD(P)Hは紫外領域で
測定されるため、特に血液や生体組織等の生体試料を分
析する場合には、該生体試料に含有される干渉物質の影
響を受は易い。
In method (1), NAD(P)H is measured in the ultraviolet region, so especially when analyzing biological samples such as blood or biological tissues, the influence of interfering substances contained in the biological samples must be avoided. It's easy to accept.

(2)の方法においては、NAD(P)Hの蛍光強度が
弱いため、検出器の感度を上げようとしてもノイズレベ
ルも同時に上昇してしまうため、感度を一定以上上げる
ことが困難である。
In method (2), since the fluorescence intensity of NAD(P)H is weak, even if an attempt is made to increase the sensitivity of the detector, the noise level will also increase at the same time, making it difficult to increase the sensitivity beyond a certain level.

(3)の方法においては、発生するH、O□を化学励起
し発光させて蛍光検出するため、同じ蛍光検出法でも(
2)のような光源の光のフラツキ等の影響を、はとんど
受けないため、ダイナミックレンジが広い高感度測定が
可能であるが、NAD(P)Hとメチレンブルーとの反
応速度が遅いという欠点がある。
In method (3), the generated H and O□ are chemically excited and emitted to perform fluorescence detection, so even the same fluorescence detection method (
2) Since it is hardly affected by fluctuations in the light from the light source, it is possible to perform high-sensitivity measurements with a wide dynamic range, but the reaction rate between NAD(P)H and methylene blue is slow. There are drawbacks.

上記したようにいずれの方法を用いても、現在既知の方
法では、酵素カラム反応により移動相中に発生したNA
D(P)Hを安定的に高感度で測定する方法がないため
、目的成分の濃度が低くなると測定不可能になってしま
う、このような理由から、現在、HPLCにおいて、干
渉物質の影響を受けにくく、高価な機器を必要とせず、
操作が簡単であり、かつ、オンライン測定が可能である
新しいNAD(P)H定量法の開5発が望まれているの
である。
As mentioned above, no matter which method is used, in the currently known method, the NA generated in the mobile phase by the enzyme column reaction is
There is no way to measure D(P)H stably and with high sensitivity, so it becomes impossible to measure when the concentration of the target component is low.For this reason, currently HPLC is trying to eliminate the influence of interfering substances. It is difficult to receive, does not require expensive equipment,
There is a need for the development of a new NAD(P)H quantitative method that is easy to operate and allows online measurement.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記従来の課題を解決するものであり、その目
的とする所は、HPLCによる目的物質の測定方法にお
いて、NAD(P)を補酵素とする酵素反応によって生
成するNAD(P)Hを精度よく高感度で、簡便かつ安
価に定量することにより、目的物質を高感度で、簡便か
つ安価に定量する方法を提供することにある。
The present invention is intended to solve the above-mentioned conventional problems, and its purpose is to use NAD(P)H produced by an enzymatic reaction using NAD(P) as a coenzyme in a method for measuring a target substance by HPLC. It is an object of the present invention to provide a method for quantifying a target substance with high sensitivity, simply and inexpensively by quantifying it accurately, highly sensitively, simply and inexpensively.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するためになされたものであっ
て、従来法にしたがって生成するNAD(P) Hを直
接定量するシステムについて、各方面から検討したけれ
ども成功するには到らず、発想の根本的変換の必要性を
痛感した。
The present invention has been made to achieve the above object, and although various studies have been conducted on a system for directly quantifying NAD(P)H produced according to conventional methods, no success has been achieved. I became keenly aware of the need for fundamental changes.

そこで本発明者らは、HPLCにおいてNAD(P)H
を効果的に定量し得る方法について研究を重ねた結果、
@NAD(P)Hオキシダーゼをある種の担体に固定化
させたNAD(P)Hオキシダーゼ固定化酵素カラムを
利用する方法が有利であることを見いだし、NAD(P
)Hオキシダーゼとしては、本発明者らが先に土壌中の
微生物から分離したものであって、中性から弱アルカリ
性でも安定であり、NAD(P)Hに特異的に作用して
過酸化水素を性成する性質を有するNAD(P)Hオキ
シダーゼ(特開昭63−251082号)に着目した。
Therefore, the present inventors investigated NAD(P)H in HPLC.
As a result of repeated research on methods for effectively quantifying
We found that it is advantageous to use a NAD(P)H oxidase-immobilized enzyme column in which @NAD(P)H oxidase is immobilized on a certain type of carrier.
) H oxidase was isolated by the present inventors from microorganisms in soil, is stable even in neutral to weak alkaline conditions, and acts specifically on NAD(P)H to produce hydrogen peroxide. We focused on NAD(P)H oxidase (Japanese Unexamined Patent Publication No. 63-251082), which has the property of producing .

そしてこのNAD(P)Hオキシダーゼが脱水素酵素と
共存し得ること及び固定化し得ることを発見し、これら
の新知見を基礎として更に検討した結果、HPLCにお
いて試料中に存在するか、もしくは、NAD(P)を補
酵素とする脱水素酵素反応により生成するNAD(P)
Hを、過酸化水素発生型NAD(P)Hオキシダーゼ固
定化酵素カラムに流通させ、発生したHtOtを適切な
820□検出法で検出することに成功し、本発明を完成
するに至った。
We discovered that this NAD(P)H oxidase can coexist with dehydrogenase and can be immobilized.As a result of further investigation based on these new findings, we found that NAD(P)H oxidase exists in samples in HPLC or NAD (P) produced by a dehydrogenase reaction with (P) as a coenzyme
The present invention was completed by passing H through a hydrogen peroxide-generating NAD(P)H oxidase-immobilized enzyme column and successfully detecting the generated HtOt using an appropriate 820□ detection method.

すなわち、本発明は、高速液体クロマトグラフィーによ
る目的物質の測定方法において、目的物質を基質としN
AD(P)を補酵素とする脱水素酵素と過酸化水素発生
型NAD(P)Hオキシダーゼを固定化しておき、この
固定化酵素に目的物質を含む試料を接触せしめ、該酵素
反応によって生成した過酸化水素を測定することにより
目的物質を測定することを特徴とする固定化酵素利用高
速液体クロマトグラフィーであり、これにより前記目的
が達成される。
That is, the present invention provides a method for measuring a target substance by high-performance liquid chromatography, in which the target substance is used as a substrate and N.
A dehydrogenase with AD(P) as a coenzyme and a hydrogen peroxide-generating NAD(P)H oxidase are immobilized, and a sample containing the target substance is brought into contact with the immobilized enzyme, and the target substance is produced by the enzymatic reaction. The present invention is a high performance liquid chromatography using immobilized enzymes characterized in that a target substance is measured by measuring hydrogen peroxide, thereby achieving the above object.

本発明において、測定対象物質を基質としてNAD(P
)を補酵素とする脱水素酵素反応であれば、すべてのも
のが適宜使用することができる。その非限定的な例とし
ては、3α−ヒドロキシステロイド脱水素酵素、アルコ
ール脱水素酵素、グルコース脱水素酵素、乳酸脱水素酵
素、コレステロール脱水素酵素、β−ヒドロキシステロ
イド脱水素酵素などがあり、これらの基質である3α−
ヒドロキシステロイド(胆汁酸等)、アルコール、グル
コース、乳酸、コレステロール、3β−ヒドロキシステ
ロイド等が測定出来る。
In the present invention, NAD (P
) as a coenzyme, any dehydrogenase reaction can be used as appropriate. Non-limiting examples include 3α-hydroxysteroid dehydrogenase, alcohol dehydrogenase, glucose dehydrogenase, lactate dehydrogenase, cholesterol dehydrogenase, and β-hydroxysteroid dehydrogenase. Substrate 3α-
Hydroxysteroids (bile acids, etc.), alcohol, glucose, lactic acid, cholesterol, 3β-hydroxysteroids, etc. can be measured.

このようにして本発明の第1工程では脱水素酵素の作用
によりNAD(P)Hが生成するのであるが、ひき続き
第2工程において、NAD(P)Hオキシダーゼを作用
せしめ、測定を行う、NAD(P)Hオキシダーゼとし
ては、)1201発生性のものとH20発生性のものと
が知られているが、本発明においては前者のタイプのも
のを使用する。
In this way, in the first step of the present invention, NAD(P)H is generated by the action of dehydrogenase, and subsequently, in the second step, NAD(P)H oxidase is caused to act and measurement is performed. NAD(P)H oxidases are known to be of the )1201-generating type and H20-generating type, and the former type is used in the present invention.

本発明において使用する過酸化水素発生型NAD(P)
Hオキシダーゼの酵素化学的および理化学的諸性質を次
に示す。
Hydrogen peroxide-generating NAD (P) used in the present invention
The enzyme-chemical and physicochemical properties of H oxidase are shown below.

(1)作用および基質特異性:NADHおよび/または
NADPHの酸化を特異的に触媒してNADおよび/ま
たはNADPと過酸化水素とを生成させる。
(1) Action and substrate specificity: specifically catalyzes the oxidation of NADH and/or NADPH to produce NAD and/or NADP and hydrogen peroxide.

(2)至適pH:pH6,5〜8.0において高い活性
を示す。
(2) Optimum pH: Shows high activity at pH 6.5 to 8.0.

(3)pH安定性:30℃にて24時間保持すると、p
H7〜9において90%以上の活性が残存する。
(3) pH stability: When kept at 30°C for 24 hours, the pH stability
More than 90% activity remains in H7-9.

(4)分子量及び構造:分子量約5万のサブユニット2
個から構成される。1個のサブユニットあたり1分子の
FADを含む。
(4) Molecular weight and structure: Subunit 2 with a molecular weight of approximately 50,000
Consists of individuals. Contains one molecule of FAD per subunit.

本酵素の作用機構は次式(1)で示される。The action mechanism of this enzyme is shown by the following formula (1).

(1) 上記のごとく、本NAD(P)Hオキシダーゼは、中性
からアルカリ性側でも強い活性を示すため、同しく中性
からアルカリ性側で至適活性域をもつNAD(P)を補
酵素とする脱水素酵素と組み合わせて使用可能である。
(1) As mentioned above, this NAD(P)H oxidase shows strong activity even in the neutral to alkaline range, so it uses NAD(P) as a coenzyme, which also has an optimal activity range in the neutral to alkaline range. Can be used in combination with dehydrogenase.

また、Km値が3.2 Xl0−’Mであり、NAD(
P)Hは速やかに酸化され過酸化水素が生成すると考え
られる。
In addition, the Km value is 3.2 Xl0-'M, and the NAD (
It is thought that P)H is rapidly oxidized to generate hydrogen peroxide.

即ち、本NAD(P)Hオキシダーゼと脱水素酵素を同
時に、あるいは、別個にある種の担体に固定化させた固
定化酵素カラムに脱水素酵素の基質及びNAD(P)流
通させることによりNADLPJ tlT干ンツ−で の反応が進み、生成したH、O,を適切なHt01検出
法で検出することにより、基質量を定量することが可能
となる。
That is, NADLPJ tlT can be obtained by flowing the dehydrogenase substrate and NAD(P) through an immobilized enzyme column in which the present NAD(P)H oxidase and dehydrogenase are immobilized on a certain type of carrier simultaneously or separately. The amount of the substrate can be quantified by detecting the H and O generated as the reaction progresses using an appropriate Ht01 detection method.

H,0,の検出法としては、(1)白金電極を用いた電
気化学的検出法、(2)フェリシアン化カリウム存在下
(アルカリ領域)で、ルミノールを酸化することによっ
て生じる化学発光を測定する方法などがあり、いずれも
、従来のNAD(P)H測定法と比較して高感度測定が
可能である。特に、(1)の場合、検出装置が安価で使
用法も簡便であり、また、(2)の場合、ダイナミック
レンジの広い高感度測定が可能であるという長所がある
。NtO1検出法としては、なんら使用を制限されるも
のでない。
H,0, detection methods include (1) electrochemical detection using a platinum electrode, (2) method of measuring chemiluminescence generated by oxidizing luminol in the presence of potassium ferricyanide (alkaline region). These methods allow for highly sensitive measurements compared to conventional NAD(P)H measurement methods. In particular, in the case of (1), the detection device is inexpensive and easy to use, and in the case of (2), high sensitivity measurement with a wide dynamic range is possible. There are no restrictions on the use of the NtO1 detection method.

このように、本NAD(P)Hオキシダーゼ固定化酵素
カラム法に、はとんどすべてのNAD(P)を補酵素と
する脱水素酵素を組み合わせることが可能であり、従来
感度不足で測定出来なかった物質も、本発明により測定
可能となる。
In this way, this NAD(P)H oxidase-immobilized enzyme column method can be combined with almost any dehydrogenase that uses NAD(P) as a coenzyme, making it possible to perform measurements that conventionally lacked sensitivity. The present invention makes it possible to measure substances that were not previously available.

本発明においては、脱水素酵素及びNAD(P)Hオキ
シダーゼは固定化したものを使用するのであるが、固定
化法としては酵素や微生物、細胞を固定化するための常
法が適宜広範に利用できる。
In the present invention, immobilized dehydrogenase and NAD(P)H oxidase are used, but conventional methods for immobilizing enzymes, microorganisms, and cells can be used as appropriate. can.

例えば、(1)水不溶性の担体に酵素を吸着させて、イ
オン結合又は、共有結合により結合させる方法(2)半
透性物質の膜で出来たマイクロカプセルやゲル粒子の格
子の中に閉じ込めた包括法(3)酵素タンパク賞分子間
に架橋試薬を反応させて、架橋結合を作り分子と分子を
つなぎ不溶性粒子とする方法などがある。
For example, (1) a method in which the enzyme is adsorbed onto a water-insoluble carrier and bound by ionic or covalent bonds; (2) a method in which the enzyme is confined in a microcapsule made of a semipermeable membrane or a lattice of gel particles; Comprehensive Method (3) Enzyme Protein Prize There is a method in which a cross-linking reagent is reacted between molecules to form cross-linked bonds and connect the molecules to form insoluble particles.

また、固定化担体としては、セルロース、ポリアクリル
アミドゲル、ポリスチレン、セファデックス(ファルマ
シア社製)などを用いることができる。
Further, as the immobilization carrier, cellulose, polyacrylamide gel, polystyrene, Sephadex (manufactured by Pharmacia), etc. can be used.

本発明において、固定化法、固定化担体共いずれも何隻
使用に制限をうけるものではない。
In the present invention, there is no limit to the number of immobilization methods and immobilization carriers that can be used.

望ましくは、担体として耐アルカリ、耐溶媒性の良いセ
ルロース、セファデックス等を用いた結合法を用いる方
法が、酵素の安定性、固定化強度の面で好ましい、脱水
素酵素と組み合わせる方法として、(1)脱水素酵素と
NAD(P)Hオキシダーゼを同一担体に固定化させて
固定化酵素カラムとして用いる方法、(2)脱水素酵素
とNAD(P))Iオキシダーゼを別々の担体に固定化
し、それら担体を適切な割合で混合し固定化酵素カラム
として用いる方法、(3)脱水素酵素を固定化した第一
固定化酵素カラムとNAD(P)Hオキシダーゼを固定
化した第二固定化酵素カラムとを直列につないで用いる
方法等が考えられるがこれらいずれの方法でも使用可能
である。
Desirably, a method using a bonding method using cellulose, Sephadex, etc. with good alkali resistance and solvent resistance as a carrier is preferable in terms of enzyme stability and immobilization strength. 1) A method in which dehydrogenase and NAD(P)H oxidase are immobilized on the same carrier and used as an immobilized enzyme column, (2) Dehydrogenase and NAD(P))I oxidase are immobilized on separate carriers, (3) A first immobilized enzyme column on which dehydrogenase is immobilized and a second immobilized enzyme column on which NAD(P)H oxidase is immobilized. A possible method is to connect the two in series, but any of these methods can be used.

以下、本発明を実施例により更に詳述する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 胆汁酸の分画定量 (NAD(P)Hオキシダーゼの固定化〕同酵素の固定
化はセルロースを担体とした臭化シアン法を採用した。
Example 1 Fractional determination of bile acids (immobilization of NAD(P)H oxidase) The cyanogen bromide method using cellulose as a carrier was used for immobilization of the enzyme.

即ち、500unit N A D (P )Hオキシ
ダーゼを0.5 M NaC1を含む0.1 M炭酸緩
衝液(p H8,3) 10I11に溶解し同緩衝液で
十分膨潤させたCNBr−activated 5ep
harose 4B(ファルマシア社製)10dのゲル
懸濁液に添加し、2時間室温にて攪拌反応させる0反応
後ろ過により同緩衝液を除き、ゲルを1Mエタノールア
ミン溶液に懸濁し、2時間室温にて攪拌させる。攪拌後
ろ過にてエタノールアミン溶液を除き、炭酸緩衝液及び
0、5 M NaC1を含む酢酸緩衝液(pH4)で洗
浄し、再度炭酸緩衝液に懸濁し、NAD(P)Hオキシ
ダーゼ固定化酵素ゲル懸濁液とする。これによりCNB
r−activated 5epharose 4B 
 1 d当たり30un i tのNAD(P)Hオキ
シダーゼが固定化されていた。
That is, CNBr-activated 5ep was prepared by dissolving 500 units of NAD(P)H oxidase in 0.1 M carbonate buffer (pH 8,3) 10I11 containing 0.5 M NaCl and sufficiently swelling with the same buffer.
Harose 4B (manufactured by Pharmacia) 10d was added to the gel suspension, and stirred and reacted at room temperature for 2 hours. After the zero reaction, the same buffer was removed by filtration, and the gel was suspended in 1M ethanolamine solution and allowed to stand at room temperature for 2 hours. Stir. After stirring, remove the ethanolamine solution by filtration, wash with carbonate buffer and acetate buffer (pH 4) containing 0,5 M NaCl, suspend again in carbonate buffer, and prepare NAD(P)H oxidase-immobilized enzyme gel. Make a suspension. This allows CNB
r-activated 5epharose 4B
30 units of NAD(P)H oxidase was immobilized per 1 d.

本固定化酵素ゲル懸濁液を直ちにHPLC用ステンレス
カラム(4,On+m 1.D、X 20■饋積水化学
工業社製)に充填し、NAD(P)Hオキシダーゼ固定
化酵素カラムとして使用した。
This immobilized enzyme gel suspension was immediately filled into a stainless steel column for HPLC (4, On+m 1.D,

〔胆汁酸の分画定量〕[Fractional determination of bile acids]

第1図に図示した胆汁酸測定装置を用いて胆汁酸の分画
定量を行った。該装置は以下の各要素で構成した。
Bile acids were fractionated and quantified using the bile acid measuring device shown in FIG. The device was composed of the following elements.

1、移動相A、2.移動相B、3.送液ポンプA、4.
送液ポンプB、5.インジェクタ、6゜分析カラム、7
.酵素反応液■、8.酵素反応液I送液ポンプ、9.酵
素反応液I[,10,酵素反応液■送液ポンプ、 11
. 3α−ヒドロキシステロイド脱水素酵素固定化酵素
カラム、 12. NAD(P)Hオキシダーゼ固定化
酵素カラム、130反応コイル、14.化学発光検出器
1. Mobile phase A; 2. Mobile phase B, 3. Liquid feed pump A, 4.
Liquid feed pump B, 5. Injector, 6° analytical column, 7
.. Enzyme reaction solution ■, 8. Enzyme reaction solution I liquid sending pump, 9. Enzyme reaction solution I [, 10, Enzyme reaction solution ■Liquid pump, 11
.. 3α-hydroxysteroid dehydrogenase immobilized enzyme column, 12. NAD(P)H oxidase immobilized enzyme column, 130 reaction coil, 14. Chemiluminescence detector.

本装置において、HPLCポンプは島津製作所社製LC
−6Aポンプ、検出器は日本分光社製825−CL化学
発光検出器、分析カラムおよび3α−ヒドロキシステロ
イドデヒドロゲナーゼ固定化酵素カラムは日本分光社製
B11epak−11C4,6mm CD、 X 12
5IIIll)およびEnzymepak−H2O(4
,6n+n+ 1.D、X 35au+)を用いた。移
動相Aとして、30mM酢酸アンモニュウム(pH6,
8)/アセトニトリル/メタノール(60/20/20
) 、移動相Bとして、30mM酢酸アンモニュウム(
pH6,8)/アセトニトリル/メタノール(40/3
0/30)をもちいて、移動相A、Bのグラジェント溶
出法で胆汁酸15分画を溶出した。また、酵素反応液I
として5mMβ−N A D 、  5 mMフェリシ
アン化カリウム、2mM  FADを含む10mMリン
酸緩上酸欠上記置を用い、以下の測定を行い、それぞれ
の結果を得た。
In this device, the HPLC pump is an LC manufactured by Shimadzu Corporation.
-6A pump, the detector is JASCO Corporation's 825-CL chemiluminescence detector, the analytical column and 3α-hydroxysteroid dehydrogenase immobilized enzyme column are JASCO Corporation's B11epak-11C 4,6 mm CD, X 12
5IIIll) and Enzymepak-H2O (4
,6n+n+ 1. D, X 35au+) was used. As mobile phase A, 30mM ammonium acetate (pH 6,
8)/acetonitrile/methanol (60/20/20
), 30 mM ammonium acetate (
pH6,8)/acetonitrile/methanol (40/3
0/30), and 15 fractions of bile acids were eluted using a gradient elution method using mobile phases A and B. In addition, enzyme reaction solution I
The following measurements were performed using a 10 mM phosphoric acid deficient condition containing 5 mM β-NAD, 5 mM potassium ferricyanide, and 2 mM FAD, and the respective results were obtained.

第2図は、既知濃度のコール酸ナトリウムを用いた検量
線であり良好な直線性が得られた。第3図はコール酸、
グリココール酸、タウロコール酸、デオキシコール酸、
グリコデオキシコール酸、タウロデオキシコール酸、ウ
ルソデオキシコール酸、グリコウルソデオキシコール酸
、タウロウルソデオキシコール酸、ケノデオキシコール
酸、グリコケノデオキシコール酸、タラロケノブキシコ
ール酸、リトコール酸、グリコリトコール酸、タウロリ
トコール酸(CA、GCA、TCA、DCA。
FIG. 2 shows a calibration curve using sodium cholate at a known concentration, and good linearity was obtained. Figure 3 shows cholic acid,
Glycocholic acid, taurocholic acid, deoxycholic acid,
Glycodeoxycholic acid, taurodeoxycholic acid, ursodeoxycholic acid, glycoursodeoxycholic acid, tauroursodeoxycholic acid, chenodeoxycholic acid, glycochenodeoxycholic acid, talalochenoboxycholic acid, lithocholic acid, glycolitocholic acid, taurolithocholic acid (CA, GCA, TCA, DCA.

GDCA、TDCA、UDCA、GUDCA、TUDC
A、CDCA、GCDCA、TCDCA。
GDCA, TDCA, UDCA, GUDCA, TUDC
A, CDCA, GCDCA, TCDCA.

LCA、GLCA、TLCA)の15種の胆汁酸標準品
をメタノールに各濃度2ng/μlになるように熔解し
、10μlを注入したときのクロマトグラムであり、本
結果よりS/N=3の時、LCAの検出限界は2ngで
あった。第4図は、健常人血清0、5−にメタノール2
dを加え、混和遠心分離後、メタノール上清の1011
1を本測定システムに注入したクロマトグラムである。
This is a chromatogram obtained when 15 bile acid standard products (LCA, GLCA, TLCA) were dissolved in methanol to a concentration of 2 ng/μl, and 10 μl was injected. From this result, when S/N = 3 , the detection limit of LCA was 2 ng. Figure 4 shows methanol 2 in healthy human serum 0, 5-.
1011 of the methanol supernatant after mixing and centrifugation.
This is a chromatogram obtained by injecting Sample No. 1 into this measurement system.

第4図に示したごとく、健常人血清中の胆汁酸15分画
測定に本システムは充分使用出来得るものである。
As shown in FIG. 4, this system can be fully used for measuring 15 fractions of bile acids in the serum of healthy individuals.

〔比較例〕[Comparative example]

第5図は、従来の胆汁酸15分画測定法(3α−ヒドロ
キシステロイドデヒドロゲナーゼ固定化酵素カラムにま
り生成したNADH量を励起波長349nm、測定波長
460nmの蛍光測定法)で前述の胆汁酸標準液を同濃
度注入したときのクロマトグラムであり、S/N−3の
時、LCAの検出限界は6ngであった。実施例1と比
較例から分かるように、本発明により、従来法と比較し
て3倍の感度での測定が可能である。
Figure 5 shows the conventional method for measuring 15 fractions of bile acids (fluorometric measurement of the amount of NADH accumulated on a 3α-hydroxysteroid dehydrogenase immobilized enzyme column using an excitation wavelength of 349 nm and a measurement wavelength of 460 nm) using the above-mentioned bile acid standard solution. This is a chromatogram obtained when the same concentration of was injected, and at S/N-3, the LCA detection limit was 6 ng. As can be seen from Example 1 and Comparative Example, the present invention enables measurement with three times the sensitivity compared to the conventional method.

実施例2 デヒドロエピアンドロステロン及び17α−
ヒドロキシプレグネノロンの分画定量〔β−ヒドロキシ
ステロイド脱水素酵素とNAD(P)Hオキシダーゼの
同時固定化〕 β−ヒドロキシステロイド脱水素酵素とNAD(P)H
オキシダーゼの同時固定化は、実施例1において用いた
500unitN A D (P ) Hオキシダーゼ
を500unit NAD (P) Hオキシダーゼと
1000un i tβ−ヒドロキシステロイド脱水素
酵素(シグマ社製)に変更した以外は、実施例1の操作
で行った。
Example 2 Dehydroepiandrosterone and 17α-
Fractional determination of hydroxypregnenolone [Simultaneous immobilization of β-hydroxysteroid dehydrogenase and NAD(P)H oxidase] β-hydroxysteroid dehydrogenase and NAD(P)H
For simultaneous immobilization of oxidase, the 500 units NAD (P) H oxidase used in Example 1 was changed to 500 units NAD (P) H oxidase and 1000 units β-hydroxysteroid dehydrogenase (manufactured by Sigma). The procedure of Example 1 was followed.

〔デヒドロアンドロステロン及び17α−ヒドロキシプ
レグネノロンの分画定量〕 第6図に図示した測定装置を用いてデヒドロアンドロス
テン及び17α−ヒドロキシプレグネノロンの分画定量
を行った。該装置は以下の各要素で横取した。
[Fractional quantification of dehydroandrosterone and 17α-hydroxypregnenolone] Fractional quantification of dehydroandrostene and 17α-hydroxypregnenolone was carried out using the measuring device illustrated in FIG. The device was intercepted with the following elements.

15、移動相、16.送液ポンプ、17.インジェクタ
、180分析カラム、19.NAD(P)Hオキシダー
ゼ及びβ−ヒドロキシステロイド脱水素酵素同時固定化
酵素カラム、20.電気化学検出器、21゜酵素反応液
送液ポンプ、22.酵素反応液。
15. Mobile phase; 16. Liquid pump, 17. Injector, 180 analytical column, 19. NAD(P)H oxidase and β-hydroxysteroid dehydrogenase co-immobilized enzyme column, 20. Electrochemical detector, 21° enzyme reaction liquid feed pump, 22. Enzyme reaction solution.

本装置において、HPLCポンプは、島津製作所社製L
C−6^、検出器は積木化学工業社製電気化学検出器E
CD−120を用い、白金電極にてHzOzの検出を行
った。又、分析カラムは、積木化学工業社製005−1
22(6,0ms 1.D、X150+u+)を用い、
移動相として、20mMリン酸緩衝液(pH3,1)/
メタノール(40/60)を用いて分画を行った。また
、酵素反応液として5mMβ−NADを含む10+wM
リン酸緩衝液(pH7,2)を用いた。第7図および第
8図は、本測定系におけるデヒドロアンドロステロンお
よび17α−ヒドロキシプレグネノロンの検量線であり
、双方とも良好な直線性が得られた。第9図はデヒドロ
アンドロステロン(DHEA)および17α−ヒドロキ
シプレグネノロン(17α−HP)標準品混合溶液のク
ロマトグラムであり、第10図は月経期正常婦人血清1
−にメタノール2dを加え混和遠心分離後、メタノール
上清を乾固し、再度メタノール20μlに熔解し、その
10μiを注入したときのクロマトグラムである。図に
示されるように短時間で正常人レベルの血中デヒドロア
ンドロステロンおよび17α−ヒドロキシプレグネノロ
ンの一斉分離定量が可能である。
In this device, the HPLC pump is L manufactured by Shimadzu Corporation.
C-6^, the detector is an electrochemical detector E made by Block Chemical Industry Co., Ltd.
HzOz was detected using a platinum electrode using CD-120. In addition, the analytical column is 005-1 manufactured by Block Chemical Industry Co., Ltd.
22 (6,0ms 1.D, X150+u+),
As the mobile phase, 20mM phosphate buffer (pH 3,1)/
Fractionation was performed using methanol (40/60). In addition, 10+wM containing 5mM β-NAD was used as an enzyme reaction solution.
A phosphate buffer (pH 7.2) was used. FIGS. 7 and 8 are calibration curves for dehydroandrosterone and 17α-hydroxypregnenolone in this measurement system, and good linearity was obtained for both. Figure 9 is a chromatogram of a standard mixed solution of dehydroandrosterone (DHEA) and 17α-hydroxypregnenolone (17α-HP), and Figure 10 is a chromatogram of a standard mixed solution of dehydroandrosterone (DHEA) and 17α-hydroxypregnenolone (17α-HP).
This is a chromatogram obtained when 2 d of methanol was added to -, mixed and centrifuged, the methanol supernatant was dried and dissolved again in 20 μl of methanol, and 10 μl of the solution was injected. As shown in the figure, it is possible to simultaneously separate and quantify blood dehydrandrosterone and 17α-hydroxypregnenolone at normal human levels in a short period of time.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、従来法すなわち脱水素酵素反応により生
成したNADHを蛍光検出する場合と比較すると、本発
明は、より高感度の測定が可能である。また、脱水素酵
素およびNAD (P)Hオキシダーゼを固定化して使
用するので簡便で、かつ、低コストの測定が可能である
As described above, compared to the conventional method, that is, fluorescence detection of NADH produced by a dehydrogenase reaction, the present invention enables measurement with higher sensitivity. Furthermore, since the dehydrogenase and NAD (P)H oxidase are used immobilized, simple and low-cost measurement is possible.

このように本発明によれば、分析対象である目的物質の
測定がきわめて有利に実施できる。
As described above, according to the present invention, the target substance to be analyzed can be measured very advantageously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による胆汁酸測定系の構成国である。 第2図はコール酸ナトリウム検NvA、第3図は胆汁酸
標準液の測定結果を示すクロマトグラム、第4図は健常
人血清中胆汁酸の測定結果を示すクロマトグラム、第5
図は、従来の蛍光法による胆汁酸標準液の測定結果を示
したクロマトグラムである。 第6図は本発明によるデヒドロアンドロステロン及び1
7α−ヒドロキシプレグネノロン測定系の構成国である
。 第7図はデヒドロアンドロステロン検量線、第8図は1
7α−ヒドロキシプレグネノロン検量線、第9図はデヒ
ドロアンドロステロン及び17α一ヒドロキシブレグネ
ノロン標準混合液の測定結果を示すクロマトグラムであ
り、第10図は月経期正常婦人血清のデヒドロアンドロ
ステロン及び17α−ヒドロキシプレグネノロンの測定
結果を示すクロマトグラムである。
FIG. 1 shows the constituent countries of the bile acid measurement system according to the present invention. Figure 2 is a chromatogram showing the measurement results of sodium cholate test NvA, Figure 3 is a chromatogram showing the measurement results of bile acid standard solution, Figure 4 is a chromatogram showing the measurement results of bile acids in the serum of a healthy person, and Figure 5
The figure is a chromatogram showing the measurement results of a bile acid standard solution using a conventional fluorescence method. FIG. 6 shows dehydroandrosterone and 1 according to the present invention.
It is a member country of the 7α-hydroxypregnenolone measurement system. Figure 7 is the dehydroandrosterone calibration curve, Figure 8 is 1
7α-Hydroxypregnenolone calibration curve, FIG. 9 is a chromatogram showing the measurement results of a standard mixture of dehydroandrosterone and 17α-hydroxybregnenolone, and FIG. It is a chromatogram showing the measurement results of hydroxypregnenolone.

Claims (1)

【特許請求の範囲】[Claims] 1、高速液体クロマトグラフィーによる目的物質の測定
方法において、目的物質を基質としNAD(P)を補酵
素とする脱水素酵素と過酸化水素発生型NAD(P)H
オキシダーゼを固定化しておき、この固定化酵素に目的
物質を含む試料を接触せしめ、該酵素反応によって生成
した過酸化水素を測定することにより目的物質を測定す
ることを特徴とする固定化酵素利用高速液体クロマトグ
ラフィー。
1. In a method for measuring a target substance using high-performance liquid chromatography, a dehydrogenase that uses the target substance as a substrate and NAD(P) as a coenzyme and a hydrogen peroxide-generating NAD(P)H
A high-speed method using an immobilized enzyme, characterized in that the target substance is measured by immobilizing oxidase, contacting the immobilized enzyme with a sample containing the target substance, and measuring hydrogen peroxide produced by the enzymatic reaction. liquid chromatography.
JP17324689A 1989-07-04 1989-07-04 High-performance liquid chromatography utilizing immobilized enzyme Pending JPH0339096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17324689A JPH0339096A (en) 1989-07-04 1989-07-04 High-performance liquid chromatography utilizing immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17324689A JPH0339096A (en) 1989-07-04 1989-07-04 High-performance liquid chromatography utilizing immobilized enzyme

Publications (1)

Publication Number Publication Date
JPH0339096A true JPH0339096A (en) 1991-02-20

Family

ID=15956873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17324689A Pending JPH0339096A (en) 1989-07-04 1989-07-04 High-performance liquid chromatography utilizing immobilized enzyme

Country Status (1)

Country Link
JP (1) JPH0339096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139753A (en) * 2001-11-02 2003-05-14 Mitsubishi Pharma Corp Method for simultaneous analysis for 18 components in bile acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951349A (en) * 1982-09-17 1984-03-24 Sekisui Chem Co Ltd Quantitative analysis of bile acid
JPS6043398A (en) * 1983-08-20 1985-03-07 Yamasa Shoyu Co Ltd Determination of nad(p)h
JPS6188898A (en) * 1984-10-05 1986-05-07 Yanagimoto Seisakusho:Kk Simultaneous analysis of acetylcholine and choline by electrochemical detector using immobilized enzyme column
JPS63251082A (en) * 1987-04-08 1988-10-18 Marukin Shoyu Kk Production of nadh oxidase
JPS6475000A (en) * 1987-09-14 1989-03-20 Shimadzu Corp Method and equipment for analyzing creatinine
JPH0191796A (en) * 1987-09-30 1989-04-11 Shimadzu Corp Method for measuring ammonia and column of immobilized enzyme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951349A (en) * 1982-09-17 1984-03-24 Sekisui Chem Co Ltd Quantitative analysis of bile acid
JPS6043398A (en) * 1983-08-20 1985-03-07 Yamasa Shoyu Co Ltd Determination of nad(p)h
JPS6188898A (en) * 1984-10-05 1986-05-07 Yanagimoto Seisakusho:Kk Simultaneous analysis of acetylcholine and choline by electrochemical detector using immobilized enzyme column
JPS63251082A (en) * 1987-04-08 1988-10-18 Marukin Shoyu Kk Production of nadh oxidase
JPS6475000A (en) * 1987-09-14 1989-03-20 Shimadzu Corp Method and equipment for analyzing creatinine
JPH0191796A (en) * 1987-09-30 1989-04-11 Shimadzu Corp Method for measuring ammonia and column of immobilized enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139753A (en) * 2001-11-02 2003-05-14 Mitsubishi Pharma Corp Method for simultaneous analysis for 18 components in bile acid

Similar Documents

Publication Publication Date Title
Wangsa et al. Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide
EP0033462A1 (en) Aminopyrine improved Trinder's reagent and dosing process for hydrogen peroxide from enzimatic oxidation of metabolic substrata with the same
Noma et al. Polarographic method for rapid microdetermination of cholesterol with cholesterol esterase and cholesterol oxidase.
JP2005517960A (en) Electrochemical detection of NADH or NAPH
Gil et al. Competitive heterogeneous enzyme immunoassay for theophylline by flow-injection analysis with electrochemical detection of p-aminophenol
Igarashi et al. Luminol chemiluminescent determination of glucose or glucose oxidase activity using an inverted micellar system
US5306413A (en) Assay apparatus and assay method
Thiruppathi et al. Simple and cost-effective enzymatic detection of cholesterol using flow injection analysis
JPH0339096A (en) High-performance liquid chromatography utilizing immobilized enzyme
JPH0698036B2 (en) Selective quantification of amino acids
JP4364331B2 (en) Analytical methods using enzymes
IWAI et al. Electric microassays of glucose, uric acid and cholesterol using peroxidase adsorbed on a carbon electrode
Hu et al. Determination of free cholesterol based on a novel flow‐injection chemiluminescence method by immobilizing enzyme
US4816394A (en) Quantitative analysis of 3α-hydroxysteroid and reagent useful therefor
Schölmerich et al. [19] Immobilized enzymes for assaying bile acids
Tsuji et al. Chemiluminescent assay of co‐factors
Seiter et al. Automated fluorometric micromethod for blood glucose
Gao et al. A novel assay for determination of sulfated bile acids in urine by use of flow‐injection chemiluminescence principle with immobilized enzymes
EP0245528B1 (en) Quantitative analysis of 3 alpha-hydroxysteroid and reagent useful therefor
JPH03151898A (en) Method for measuring flow injection utilizing immobilized enzyme
JP3362509B2 (en) Mannitol measurement method
Yamaguchi Enzymic color development of urinary 3 alpha-hydroxysteroids on thin-layer chromatograms.
JP2000093197A (en) Measurement of component in liquid sample by immobilized enzyme
KR20240126617A (en) Method for Detecting Hydrogen Peroxide using Glucose Meter
JPS6314692A (en) 3alpha-hydroxysteroid oxidase and method for determining 3alpha-hydroxysteroid using same