JPS63250Y2 - - Google Patents

Info

Publication number
JPS63250Y2
JPS63250Y2 JP1981162738U JP16273881U JPS63250Y2 JP S63250 Y2 JPS63250 Y2 JP S63250Y2 JP 1981162738 U JP1981162738 U JP 1981162738U JP 16273881 U JP16273881 U JP 16273881U JP S63250 Y2 JPS63250 Y2 JP S63250Y2
Authority
JP
Japan
Prior art keywords
subject
probe
signal
temperature
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981162738U
Other languages
Japanese (ja)
Other versions
JPS5867412U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16273881U priority Critical patent/JPS5867412U/en
Publication of JPS5867412U publication Critical patent/JPS5867412U/en
Application granted granted Critical
Publication of JPS63250Y2 publication Critical patent/JPS63250Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 この考案は超音波パルスを被検体内部に放射し
その反射波の強度分布信号をCRTに受像し、内
部器官の組織や病変部の断層像を撮影し、診断す
る超音波診断装置の探触子の改良に関するもので
ある。
[Detailed description of the device] This device emits ultrasonic pulses inside the subject, receives the intensity distribution signal of the reflected waves on a CRT, and takes tomographic images of internal organ tissues and diseased areas to make a diagnosis. This invention relates to the improvement of a probe for a sonic diagnostic device.

超音波診断装置は圧電素子(以下振動子と記
す)から出る2〜3MHzの超音波パルス波が体内
の各種組織の異なる音響インピーダンス(密度×
音速)差によつてその境界面で反射して返つてく
るエコーを同じ振動子で受信し、そのエコー強度
をCRTに受像し、診断部位の断層像を撮影・診
断する装置である。この装置に用いる探触子は超
音波を放射・受信する振動子と、この振動子の裏
から出てくる不要の超音波を吸収する吸収体、さ
らに上記振動子を支える基板(多くは上記吸収体
が兼ねている)とで構成され振動子としては、た
とえばチタン酸ジルコン酸鉛系の圧電セラミツク
スを用いその厚み振動による超音波を放射する。
この振動子の上記機械的振動に起因する電子回路
などの劣化を低減させるため従来の探触子は劣化
防止機構としてのたとえば診断装置外函に設けた
保護ケースがあり、診断しない時このケースに探
触子を挿入すると、ケース内のたとえばマイクロ
スイツチが作動し、探触子の駆動電源をOFFす
るように構成されており、探触子の劣化を防止す
るものである。しかしながら上記した従来の劣化
防止機構では診断中の検体に当てていない期間す
なわち上記探触子の駆動電源をONしてから、探
触子を被検体に当てるまでの時間と、診断中に探
触子をつぎにのべる理由によつて一時被検体から
離している時間(理由診断画像を観察し、撮影
するための画像凍結被検体にゼリーを塗り直す
とき)などにおいては探触子の駆動電源がONの
ままなので継続的に不要の超音波ビームが放射さ
れる。この不要な超音波ビームは被検体とくに胎
児への悪影響が生じるおそれがあり、また上記探
触子の劣化を早めることにもなる。
Ultrasonic diagnostic equipment uses a 2-3MHz ultrasonic pulse wave emitted from a piezoelectric element (hereinafter referred to as a transducer) to detect different acoustic impedances (density x
This device uses the same transducer to receive the echoes that are reflected and returned by the boundary surface due to the difference in sound speed (sound velocity), and the echo intensity is received by the CRT to take and diagnose tomographic images of the diagnostic site. The probe used in this device consists of a transducer that emits and receives ultrasonic waves, an absorber that absorbs unnecessary ultrasonic waves coming out from the back of this transducer, and a substrate that supports the transducer (mostly The transducer is made of, for example, piezoelectric ceramics based on lead zirconate titanate, and emits ultrasonic waves due to its thickness vibration.
In order to reduce the deterioration of electronic circuits caused by the above-mentioned mechanical vibrations of the transducer, conventional probes have a protective case installed on the outer case of the diagnostic equipment as a deterioration prevention mechanism. When a probe is inserted, for example, a micro switch inside the case is activated to turn off the drive power to the probe, which prevents the probe from deteriorating. However, with the conventional deterioration prevention mechanism described above, the period when the probe is not applied to the specimen under diagnosis, that is, the time from turning on the drive power of the probe to the time when the probe is applied to the specimen, and the time during which the probe is not applied to the specimen during diagnosis. During times when the probe is temporarily separated from the subject for reasons such as reapplying jelly to the image-frozen subject for observing and photographing diagnostic images, the drive power for the probe may be interrupted. Since it remains ON, unnecessary ultrasonic beams are continuously emitted. This unnecessary ultrasonic beam may have an adverse effect on the subject, especially the fetus, and may also accelerate deterioration of the probe.

この考案は、従来の超音波診断装置の探触子に
おける上記問題点を解決するためになされたもの
であつて、被検体への探触子の密着を正確かつ確
実に検出してその駆動回路を制御し、不要な超音
波ビームの放射を完全に無くすることができるよ
うな超音波探触子を提供することを技術的課題と
する。
This invention has been made in order to solve the above-mentioned problems in the probes of conventional ultrasonic diagnostic equipment, and has as its technical object to provide an ultrasonic probe which can accurately and reliably detect the close contact of the probe with the subject to control its drive circuit and completely eliminate the emission of unnecessary ultrasonic beams.

その課題達成のため、この考案は、振動子が設
けられた被検体当接面の対向する両側に、被検体
との接触による被検体体温もしくは機械的変位を
検出する一対の検出器を設け、この検出器の検出
信号によつて前記振動子への高周波パルスの供給
を制御するように超音波探触子を構成した。
In order to achieve this goal, this invention provides a pair of detectors on opposite sides of the subject contact surface on which the vibrator is provided, which detects the body temperature or mechanical displacement of the subject due to contact with the subject. The ultrasonic probe was configured to control the supply of high-frequency pulses to the transducer based on the detection signal of this detector.

このように超音波探触子を構成することによ
り、被検体への探触子の密着を正確かつ確実に検
出して、探触子が被検体に接触している時にのみ
超音波ビームを放射し、被検体と非接触の時は超
音波ビームの放射を停止してその不要な放射を完
全に無くすることができる。
By configuring the ultrasound probe in this way, it is possible to accurately and reliably detect the close contact of the probe to the subject and emit an ultrasound beam only when the probe is in contact with the subject. However, when not in contact with the subject, emission of the ultrasonic beam can be stopped to completely eliminate unnecessary radiation.

以下図面によつてこの考案の実施例を説明す
る。第1図はその第一の実施例として温度検出器
を設けたリニア電子走査用探触子の外観を示す図
で図は正面図、図は側面図、図はその被検
体当接面図である。および図において探触子
1のケース2の両側面の点線で示す位置に温度検
出器3たとえば赤外線温度センサなどが2個内蔵
されている。その2個の感温部4たとえば熱電対
先端は探触子1の被検体当接面5の両側に設けた
僅かの段差△Lだけ高い平面6に取付けられてい
る。図において上記被検体当接面5の内部に点
線で示すたとえば振動子64個の振動子アレイ7が
収容されており、そのアレイ7の中央両側に上記
感温部4が配置される。このように当接面5の両
側に各1個づつ感温部4および温度検出器3を設
けてあるので、診断部位によつて術者が探触子1
を傾けて被検体に当てがうことがあつても必ず左
右いずれかの検出器3が作動する。また同時に作
動する通常のばあいはその平均温度が検出できる
ものである。この構成によつて探触子1の電源が
ONされると、上記温度検出器3から室温TRを
示す電圧信号STRが出力され、図示しない超音波
診断装置のコントロール部に送られる。第2図
は上記電圧信号の波形を示す図で、タテ軸は温度
信号ST、横軸は経過時間t、secである。今t1
時点で探触子1が被検体に当てられると温度検出
器3はある時間遅れを経てt2時にはその体温TM
を示すSTM信号に上昇する。この温度検出器の電
圧信号STを微分回路に入力すると第2図に示
す微分信号SD1が得られる。この微分信号SD1
超音波ビームの放射開始信号とすることによつて
被検体に探触子1が接触した時点すなわちt1時点
にてSD1信号波形は立上るので、正しく接触時点
に放射を開始する。探触子1はその走査診断中に
前述したようにたとえばCRT画面を凍結し、撮
影するばあいとか、被検体にゼリーを塗り直すば
あいとかに探触子1を被検体から一時離すのであ
るが、その時の温度検出器3の出力信号STおよ
び微分信号SDを第3図にて示す。探触子1
がt3時点にて被検体から離れると温度検出器3の
体温TMを示すSTM信号は上記と逆に徐々に下降
してt4時点で室温TRの信号STRになり、それ以降
安定する。この温度変化によるST信号の変化は
図の微分回路によつて図のような波形の微分信
号SD2にてあらわれる。このSD2信号の立下り時
点t3にて超音波ビームの放射が停止するように構
成されている。
Embodiments of this invention will be described below with reference to the drawings. Figure 1 is a diagram showing the external appearance of a linear electronic scanning probe equipped with a temperature sensor as the first embodiment. be. In the figure, two temperature detectors 3, such as infrared temperature sensors, are built in at positions indicated by dotted lines on both sides of the case 2 of the probe 1. The two temperature-sensing parts 4, for example, the tips of the thermocouples, are attached to a flat surface 6 that is elevated by a slight step ΔL provided on both sides of the subject contacting surface 5 of the probe 1. In the figure, a transducer array 7 of, for example, 64 transducers is housed inside the subject contacting surface 5 as shown by dotted lines, and the temperature sensing section 4 is arranged on both sides of the center of the array 7. As described above, since one temperature sensing part 4 and one temperature detector 3 are provided on each side of the contact surface 5, the operator can use the probe 1 depending on the area to be diagnosed.
Even if the detector 3 is tilted and applied to the subject, either the left or right detector 3 is always activated. Also, in the normal case where they operate simultaneously, the average temperature can be detected. This configuration allows the power supply of probe 1 to
When turned on, the temperature detector 3 outputs a voltage signal STR indicating the room temperature TR, and is sent to the control section of the ultrasonic diagnostic apparatus (not shown). FIG. 2 is a diagram showing the waveform of the voltage signal, in which the vertical axis represents the temperature signal ST, and the horizontal axis represents the elapsed time t, sec. If the probe 1 is applied to the subject at time t 1 , the temperature detector 3 will detect the subject's temperature T M after a certain time delay at t 2 .
rises to the ST M signal indicating. When the voltage signal ST of this temperature detector is input to a differentiating circuit, a differentiated signal SD1 shown in FIG. 2 is obtained. By using this differential signal SD 1 as the emission start signal of the ultrasonic beam, the SD 1 signal waveform rises at the time when the probe 1 contacts the object, that is, at time t 1 , so that the signal is emitted correctly at the time of contact. Start. As mentioned above, the probe 1 freezes the CRT screen during the scanning diagnosis, and the probe 1 is temporarily separated from the subject to take a picture or to reapply jelly to the subject. However, the output signal ST and differential signal SD of the temperature detector 3 at that time are shown in FIG. Probe 1
moves away from the subject at time t 3 , the ST M signal indicating the body temperature T M of the temperature sensor 3 gradually decreases, contrary to the above, and reaches the signal ST R of the room temperature TR at time t 4 , and thereafter Stabilize. The change in the ST signal due to this temperature change is expressed by the differential circuit shown in the figure as a differential signal SD2 having a waveform as shown in the figure. The configuration is such that the emission of the ultrasonic beam stops at the falling time t3 of the SD2 signal.

つぎに第4,5,6図によつてこの考案の第二
の実施例として被検体と当接して作動する機械的
位置検出器11ならびにそれを設けた探触子を説
明する。第4図は機械的位置検出器の一実施例の
構成を示す断面図で、絶縁体ケース12の内にば
ね13によつて常時矢印a方向に加圧される円板
14に係合する電気絶縁材のピン15が設けてあ
りピン先端15Tは上記ケース12の底孔16か
ら突出している。ピンの上端には導電部17が結
合されている。ピンの先端15Tに被検体が当た
るとピン15はばね13の弾発力に抗して矢印b
方向に導電部7が上昇し、そこに設けた相対する
2枚の電極18を短絡する。この電極18に接続
される端子19に前記超音波診断装置のコントロ
ール部より供給される超音波ビース放射信号回路
を接続しておけば、前記温度検出器3を用いない
で、同様の効果が得られるものとなる。第5図は
上記機械的位置検出器11をリニア電子走査用探
触子1に同じく被検体当接面5の両側に各1個設
けた状態を示す図で、図はその正面図、図は
その被検体当接面図である。このばあいは位置検
出器11のピン先端15Tを設ける面6′は被検体
当接面7と特に段差△Lを必要としないがピン先
端15Tは面6′より突出し、第4図で示した電極
板18を確実に短絡する長さ△l以上の突出量が
必要である。なおこの2個の検出器11は並列に
接続されるので探触子を傾けても同一の作用をす
る。第6図は上記位置検出器11をセクタ電子走
査用探触子9またはリニア機械式走査(コンタク
トコンパウンド走査)用探触子10に設けたばあ
いの正面図(図)とその被検体当接面図(
図)を示す。この形式の探触子は図の当接面5
内部に収容している振動子アレイ22が電子式リ
ニア走査の振動子アレイ7に比し小型であり、当
接面5も円形またはダ円形であり、ケース21も
したがつて小型となつている。図は機械的位置検
出器11装着のものを示したが、温度検出器3を
装着することもできる。
Next, referring to FIGS. 4, 5, and 6, a mechanical position detector 11 that operates in contact with a subject and a probe equipped with the same will be explained as a second embodiment of this invention. FIG. 4 is a cross-sectional view showing the structure of an embodiment of a mechanical position detector, in which an electric current is inserted into an insulating case 12 and engages a disk 14 which is constantly pressed in the direction of arrow a by a spring 13. A pin 15 made of insulating material is provided, and the pin tip 15 T protrudes from the bottom hole 16 of the case 12 . A conductive portion 17 is coupled to the upper end of the pin. When the subject hits the tip 15T of the pin, the pin 15 resists the elastic force of the spring 13 and moves toward arrow b.
The conductive part 7 rises in the direction, and short-circuits the two opposing electrodes 18 provided there. If an ultrasonic beam radiation signal circuit supplied from the control section of the ultrasonic diagnostic apparatus is connected to the terminal 19 connected to the electrode 18, the same effect can be obtained without using the temperature detector 3. It becomes something that can be done. FIG. 5 is a diagram showing a state in which one mechanical position detector 11 is provided on each side of the subject contacting surface 5 of the linear electronic scanning probe 1. FIG. 3 is a view of the subject contacting surface. In this case, the surface 6' on which the pin tip 15T of the position detector 11 is provided does not require a particular step ΔL from the subject contact surface 7, but the pin tip 15T protrudes from the surface 6', as shown in FIG. A protrusion amount greater than the length Δl is required to reliably short-circuit the electrode plate 18 shown. Note that since these two detectors 11 are connected in parallel, they have the same effect even if the probe is tilted. FIG. 6 is a front view (diagram) of the case where the position detector 11 is installed on the sector electronic scanning probe 9 or the linear mechanical scanning (contact compound scanning) probe 10, and its surface in contact with the object. figure(
Figure) is shown. This type of probe has contact surface 5 in the figure.
The transducer array 22 housed inside is smaller than the electronic linear scanning transducer array 7, and the contact surface 5 is also circular or circular, and the case 21 is also small accordingly. . Although the figure shows the device equipped with a mechanical position detector 11, a temperature sensor 3 can also be attached.

以上がこの考案にかかる2つの実施例超音波探
触子の説明であるが、この考案の温度検出器は赤
外線温度センサに限らず、室温と体温の差を感度
よく検出するものであればどのような温度センサ
も使うことができる。また機械的位置検出器も図
示のものは一実施例でありどのような機構でもよ
い。
The above is a description of the two embodiments of the ultrasonic probe according to this invention.The temperature detector of this invention is not limited to an infrared temperature sensor, but any device that can sensitively detect the difference between room temperature and body temperature can be used. Temperature sensors such as these can also be used. Further, the mechanical position detector shown in the figure is just one example, and any mechanism may be used.

この考案は以上のように構成されているので従
来の超音波診断装置の探触子の欠点を解決するも
のである。すなわち、この考案に係る探触子を超
音波診断装置に使用するときは、被検体への探触
子の密着の有無を正確かつ確実に検出することが
でき、診断のために探触子が被検体に直接当てが
われている時以外は絶対に超音波ビームを放射す
ることがないから、不必要な超音波ビームが被検
体とくに胎児などに放射されて障害の原因になつ
たりするといつたおそれが全くなく、したがつて
術者は安心して超音波診断を行なうことができ、
また探触子の劣化も極力防ぐことができ装置の寿
命を長くすることができる。
Since this invention is constructed as described above, it solves the drawbacks of the probes of conventional ultrasonic diagnostic equipment. That is, when the probe according to this invention is used in an ultrasonic diagnostic device, it is possible to accurately and reliably detect whether or not the probe is in close contact with the subject, and the probe can be used for diagnosis. Since the ultrasonic beam is never emitted except when it is directly applied to the subject, there is a risk that unnecessary ultrasound beams may be emitted to the subject, especially the fetus, and cause damage. There is no risk whatsoever, so the surgeon can perform ultrasound diagnosis with peace of mind.
Further, deterioration of the probe can be prevented as much as possible, and the life of the device can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の第一の実施例である温度検
出器を設けたリニア電子走査用超音波探触子を示
すもので、図はその正面図、図はその側面
図、図は被検体当接面図、第2図は上記温度
検出器の感温部被検体接触時の出力信号のタイム
チヤート、第2図は上記出力信号の微分波形で
超音波ビーム放射開始信号のタイムチヤート、第
3図は上記検出器感温部が被検体と離れたとき
の出力信号のタイムチヤート、第3図は上記出
力信号の微分波形で超音波ビーム放射停止信号の
タイムチヤート、第4図はこの考案の第二の実施
例である機械的位置検出器の構成図、第5図は上
記位置検出器をリニア電子走査用超音波探触子に
設けた図で、図はその正面図、図はその被検
体当接面図、第6図は上記位置検出器をリニア機
械式走査用またはセクタ電子走査用超音波探触子
に設けたばあいの図で、図はその正面図、図
はその被検体当接面図である。 1……リニア電子走査用超音波探触子、9……
リニア機械走査用超音波探触子、10……セクタ
電子走査用超音波探触子、3……温度検出器、4
……温度検出器3の感温部、5……探触子の被検
体当接面、STR……室温対応信号、STM……体温
対応信号、t1……被検体が探触子に接した時点、
SD1……温度検出器出力信号の微分信号で上記t1
時超音波ビーム放射開始する信号、t3……被検体
から探触子がはなれた時点、SD2……温度検出器
出力信号の微分信号で上記t3時超音波ビームを停
止する信号、11……機械的位置検出器、13…
…ばね、15……電気絶縁材のピン、15T……
被検体と当接する上記ピン15の先端、17……
導電部、18……電極、19……電極端子、△l
……上記位置検出器11が作動するピン先突出
長。
Figure 1 shows a linear electronic scanning ultrasonic probe equipped with a temperature detector, which is the first embodiment of this invention. Fig. 2 is a time chart of the output signal when the temperature sensing part of the temperature sensor contacts the subject; Fig. 2 is a differential waveform of the output signal, and Fig. 2 is a time chart of the ultrasonic beam emission start signal; Figure 3 is a time chart of the output signal when the temperature sensitive part of the detector is separated from the subject, Figure 3 is the differential waveform of the output signal and a time chart of the ultrasonic beam emission stop signal, and Figure 4 is the time chart of this invention. Fig. 5 is a block diagram of a mechanical position detector which is a second embodiment of the present invention. Fig. 6 is a diagram showing the above-mentioned position detector installed in an ultrasonic probe for linear mechanical scanning or sector electronic scanning. FIG. 1... Ultrasonic probe for linear electronic scanning, 9...
Ultrasonic probe for linear mechanical scanning, 10...Ultrasonic probe for sector electronic scanning, 3...Temperature detector, 4
...Temperature-sensing part of temperature detector 3, 5...Subject contact surface of probe, ST R ...Signal for room temperature, ST M ...Signal for body temperature, t1 ...Subject is probe When it comes into contact with
SD 1 ...Differential signal of temperature sensor output signal, above t 1
Signal to start the ultrasonic beam emission at t 3 ... Time when the probe is separated from the subject, SD 2 ... Signal to stop the ultrasonic beam at the above time t 3 with the differential signal of the temperature detector output signal, 11 ...Mechanical position detector, 13...
... Spring, 15 ... Electrical insulation pin, 15 T ...
The tip of the pin 15 that comes into contact with the subject, 17...
Conductive part, 18... Electrode, 19... Electrode terminal, △l
...The protrusion length of the pin tip at which the position detector 11 is activated.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 振動子が設けられた被検体当接面の対向する両
側に、被検体との接触による被検体体温もしくは
機械的変位を検出する一対の検出器を設け、この
検出器の検出信号によつて前記振動子への高周波
パルスの供給を制御するように構成したことを特
徴とする超音波探触子。
A pair of detectors for detecting the body temperature or mechanical displacement of the subject due to contact with the subject is provided on opposite sides of the subject contacting surface on which the vibrator is provided, and the detection signal of this detector is used to detect the subject's body temperature or mechanical displacement due to contact with the subject. An ultrasonic probe characterized in that it is configured to control the supply of high-frequency pulses to a transducer.
JP16273881U 1981-10-30 1981-10-30 ultrasonic probe Granted JPS5867412U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16273881U JPS5867412U (en) 1981-10-30 1981-10-30 ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16273881U JPS5867412U (en) 1981-10-30 1981-10-30 ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS5867412U JPS5867412U (en) 1983-05-07
JPS63250Y2 true JPS63250Y2 (en) 1988-01-06

Family

ID=29955045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16273881U Granted JPS5867412U (en) 1981-10-30 1981-10-30 ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5867412U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332337Y2 (en) * 1986-11-07 1991-07-09
JP2012050603A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Ultrasonic diagnostic apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151028A (en) * 1980-04-24 1981-11-21 Tokyo Shibaura Electric Co Ultrasonic diagnosis apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151028A (en) * 1980-04-24 1981-11-21 Tokyo Shibaura Electric Co Ultrasonic diagnosis apparatus

Also Published As

Publication number Publication date
JPS5867412U (en) 1983-05-07

Similar Documents

Publication Publication Date Title
JP3015481B2 (en) Ultrasonic probe system
JPH08238243A (en) Self testing method of ultrasonic wave picture processor andultrasonic wave picture processor with said test means
Chen et al. PMN-PT single-crystal high-frequency kerfless phased array
US6610011B2 (en) Method and system for control of probe heating using lens reflection pulse-echo feedback
US3624744A (en) Ultrasonic tester
JPS61220640A (en) Contact monitor circuit of ultrasonic transducer and patient
JPS63250Y2 (en)
US4233989A (en) Echocardiographic apparatus for myocardial disease diagnosis by A-wave quantification
CA2027647C (en) Method and apparatus for characterizing reflected ultrasonic pulses
US4993427A (en) Heart contraction monitor
JP2006346105A (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JPH02154745A (en) Ultrasonic diagnostic device
JPH10127632A (en) Ultrasonic diagnostic system
JPH0571252B2 (en)
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPS5826283A (en) Ultrasonic measuring device with self-diagnosing function
JPH10118069A (en) Ultrasonograph
JPH08299336A (en) Perioperative measuring method and ultrasonic probe for perioperative measurement of acoustic characteristics of organism tissue
JPS6133511B2 (en)
JPS61146237A (en) Ultrasonic probe
JPS6130643Y2 (en)
JPH04132498A (en) Ultrasonic sensor
JPS5920231B2 (en) Housing for acoustic transducer
JPH0332337Y2 (en)
JP2953909B2 (en) Ultrasonic fat thickness measurement device