JPS6325070B2 - - Google Patents

Info

Publication number
JPS6325070B2
JPS6325070B2 JP59178764A JP17876484A JPS6325070B2 JP S6325070 B2 JPS6325070 B2 JP S6325070B2 JP 59178764 A JP59178764 A JP 59178764A JP 17876484 A JP17876484 A JP 17876484A JP S6325070 B2 JPS6325070 B2 JP S6325070B2
Authority
JP
Japan
Prior art keywords
auxiliary electrode
glow discharge
gas
workpiece
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59178764A
Other languages
Japanese (ja)
Other versions
JPS6156273A (en
Inventor
Akyoshi Takahashi
Naotatsu Asahi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17876484A priority Critical patent/JPS6156273A/en
Publication of JPS6156273A publication Critical patent/JPS6156273A/en
Publication of JPS6325070B2 publication Critical patent/JPS6325070B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はグロー放電により、被処理品に表面か
ら物質を拡散させ、或いはコーテイング膜を形成
する装置に係り、特に原料ガスの供給される容器
内において被処理部材およびこれに対向して配置
された補助電極よりなる陰極と容器壁又は容器内
の陽極との間に直流電圧を印加し、これら電極間
でグロー放電を発生させて、被処理品の表面処理
或いはコーテイング被膜の形成を行う装置に関す
る。 〔発明の背景〕 従来、グロー放電による表面処理法として、プ
ラズマCVD法がある。直流グロー放電型のプラ
ズマCVD法を行う装置の公知例として、特公昭
57―188670がある。この装置は第2図に示すよう
な装置であつて、ガス供給系8から供給された金
属のハロゲン化物等のガス物質を含む0.1〜数
Torrの減圧雰囲気の容器1中に直流電源6の陰
極に接続された導電性部材2を配設し、該導電性
部材2に対向して導電性部材2とほぼ等電位の補
助電極3を設け、容器1を電源6の陽極に接続
し、導電性部材2の被処理部表面21のグロー放
電と補助電極3のグロー放電の間に相互作用を発
生させてグロー放電処理を行ない、被処理部表面
21に目的物質をコーテイングするものである。
このような処理装置においては、被処理部近傍で
反応種の電離密度を高めることが出来るので、他
の単純なグロー放電のみによる方式に比べて、高
速で良質の被膜を作製することが出来る。 しかし第2図のような方式においてさらに高速
処理させるには、印加電圧を高めてグロー放電の
エネルギーを高めるか、或いは被処理部表面21
と補助電極との間隙を少くしてグロー放電間の相
互作用をより強力にするか、が必要である。しか
し前者の方法の場合、グロー放電のエネルギーを
高めることは直接被処理品表面のグロー放電電流
密度の増加となり、このことは被処理品表面への
エネルギーの供給量の増大になるので、印加電圧
を高くすると被処理品の温度が上昇することにな
る。従つて、被処理品の材質によつて適用温度に
限界がある場合には、この方法の適用には限界が
ある。例えばAl系合金にTiCl4とCH4によつて
TiCをコーテイングする場合、TiCの反応温度は
900℃以上を要する。この方法の場合Al合金もほ
ぼ同じような温度に加熱されることになるのであ
るが、しかしAl合金の溶融温度は600℃前後であ
るので、この方法でTiCコーテイングを適用する
ことは困難になる。 一方、後者の方法の場合、即ち補助電極と被処
理品との間隙を少さくする場合については、間隙
を小さくするとグロー放電間の相互作用が強くな
るので、高電流密度の放電となり反応は促進され
る。しかし間隙が小さくなると、被処理面近傍の
プラズマ空間内への新しい反応ガスの均一な供給
が不十分になるとともに、その空間では双方の表
面から放出されるスパツタ原子の帯留時間が長く
なり、コーテイング層内に混入し被膜の純度が低
下する。この現象は、特に機能性被膜の形成では
問題となる。 以上のことより、被処理部材を高温に加熱する
ことなく、さらに反応に関与するガスが被処理面
全体に均質に且つ新鮮な状態で分配される状態
で、プラズマによるガスの電離密度を被処理面で
不均一になることなく高めて反応種を活性化する
ことにより、低温で成膜する物質(たとえばアモ
ルフアスシリコン、250℃)や、低温での成膜に
より特殊な性質を示すことが予想されるような被
膜(たとえばTiC、600℃)を、高純度で均質に
高速に成膜する表面処理技術の開発が望まれる。 〔発明の目的〕 本発明の目的は、直流グロー放電型プラズマ
CVD法において、供給したガスの電離密度を被
処理品と対向して配置した補助電極表面で高め、
且つ、被処理品に均一に新鮮なガスを十分に供給
して、被処理品の温度上昇なしに、良質の被膜を
高速に成膜することが可能な表面処理装置を提供
することにある。 〔発明の概要〕 本発明は、内部を減圧され得る容器と、該容器
内にあつて被処理部材と近接対向して配置された
補助電極と、該容器内に反応ないしは処理に関与
するガスを供給するガス供給系と、被処理部材お
よび補助電極を陰極としこれと該容器又はその内
部の陽極との間に直流電圧を印加して両者間にグ
ロー放電を生ぜしめるための電圧源と、を備えた
被処理部材のグロー放電による表面処理装置にお
いて、補助電極は、少くとも被処理部材に対向す
る側に、補助電極の被処理部材側の表面における
グロー放電の電離密度を被処理部材の表面におけ
るそれよりも高くするような凹凸を有すると共
に、その凹凸によつて形成された凹部内に開口す
る上記ガス供給のためのガス供給口を有すること
を特徴とする。 本発明の装置においては、補助電極の被処理部
材側の表面におけるグロー放電の電離密度を、補
助電極の凹凸部のグロー放電の相互作用により、
被処理部材の表面におけるグロー放電の電離密度
よりも高めることによつて、被処理品を高温に加
熱することなく被処理部材表面近傍の反応種の電
離、励起、ラジカルの割合を増大させ、且つグロ
ー放電域に反応に関与する新鮮なガスを導びき、
電極のスパツタ等による不必要な不純物を少くし
てプラズマ化させ、さらに被処理部材と補助電極
の間のグロー放電域を通過させて、被処理部材近
傍に高電離密度のガスを導びいて被膜を形成す
る。 先に述べたように、従来の表面処理方法におい
ては、高速に表面処理或いは、反応種を成膜させ
ようとすると、印加電圧或いは電流密度を高くす
るか、温度を高くする必要がある。しかし高電圧
を印加すると、被処理部材表面上でのスパツタリ
ング作用による表面原子の放出が生ずるととも
に、被処理部材自体の温度が上昇し、形成被膜に
悪影響を与えることがある。また、温度の上昇は
用いる被処理品の材質に制限を加えることとなる
と共に、被処理品の材料の性質及び被膜の特性に
変化をもたらすことがある。また、アモルフアス
シリコンのような非晶質膜の形成の点で問題があ
つた。 そこで、本発明者らは、被処理品そのものの温
度を高温に上昇させることなく、且つ高速で成
膜、高純度で均質な被膜を作製する表面処理を可
能にすべく強力に研究した結果、直流グロー放電
による表面処理法において、被処理部材の表面で
の電流密度を従来のように高めることなく、電離
密度を被処理部材表面近傍で高くすること、且
つ、その空間域に常に新しいガスを供給し、放電
電圧を低くし、さらに新しいガスが被処理部材表
面に対し均等に供給分布されるようにすることに
より、これを達成できることを見出し、本発明を
なすに到つた。 供給するガスとしては、水素ガス又はアルゴン
ガスの1種以上と、被処理部材に拡散もしくはコ
ーテイング膜を形成する物質のシラン等のシリコ
ン系ガス、金属のハロゲン化ガス、メタンガス、
窒素ガス、炭化水素を含むガス、アンモニアガ
ス、硫化物系ガス、金属のガス、半金属のハロゲ
ン化ガス、半金属のガスなどの少くも1種以上の
混合ガスを用いることができる。 本発明においては、補助電極の形状、構造が重
要である。すなわち、本発明の装置においては、
被処理部材から熱エネルギーの点からみて比較的
離れたところ、すなわち、補助電極の被処理部材
に面する側に、凹凸部でグロー放電が相互作用を
及ぼして他のグロー放電域より多くの電離密度を
生じさせるような複数の凹凸(この凹凸は、その
凹凸の互に接した又は対向した面に生じるグロー
放電が相互作用することにより、そこでのグロー
放電の電離密度が、相互作用のない単独のグロー
放電域の電離密度よりも高くなるような構造のも
のである。)を形成し、さらにそのグロー放電域
に反応種の新しいガスが均一に分布するよう該凹
凸部内に開口するガス供給口を形成してある。 本発明において、さらに不純物の少ない高純度
表面処理をするには、被処理部材と補助電極との
連続的或いは間欠的な相対移動をさせる機構を設
けることが望ましい。すなわち、新鮮なガスを補
助電極と被処理部材間に供給しながら表面処理或
いはコーテイングをするに際し、補助電極と被処
理部材が常に固定されていると、プラズマによる
スパツター作用で放電面からの異種原子の混入或
いは供給ガスの分解原子の滞留等が起り、表面処
理層の純度の低下や、表面処理或いはコーテイン
グ速度の低下などが生ずることがあり、これに起
因する欠点の防止策として最も簡単で効果的な方
策はガスの供給口の移動、補助電極と被処理部材
の相対的位置の移動等であるが、ガスの供給口の
移動はある程度効果があるけれども、各放電面か
らの不純物原子をプラズマ空間から除去するとい
うことを考えると、補助電極と被処理部材との相
対位置を移動させる方策が最も効果的である。こ
れは補助電極或いは被処理品の少なくとも一方を
移動させることによつて行われるが、特に、どち
らか一方に放電を発生しない空間を設けることが
望ましい。 あるいは又、グロー放電を瞬間的に停止しても
同様の効果がある。すなわち、スパツタされた原
子がプラズマ空間に混入して滞留しているような
状態において、放電を瞬間的に停止すると、スパ
ツタ原子は冷却され排気されやすくなるのであ
る。 相対的に位置を移動させる場合には、放電をあ
る一定時間発生しその後移動させるような間欠的
移動式と、連続して移動させる連続移動式とがあ
る。このような方策によつて不純物が極めて少な
くなると共に、被処理部材の場所による放電の不
均一の影響を少なくすることもできる。また反応
に不必要な残留ガスを排出し、反応種の割合の多
いガスが供給され易くなるなどにより、高純度で
迅速に被膜が形成されるようになる。 〔発明の実施例〕 実施例 1 第1図は、本発明の一実施例を示す図である。
減圧容器1内に直流電源6の陰極に接続された被
処理部材2を配設し、被処理部材2と対向してそ
れと等電位の補助電極3を配設した。容器1は電
源6の陽極に接続されている。 この補助電極は第3図に例示したようなもので
ある。すなわち、補助電極3の被処理部材に面し
た側には、この例では直径0.02mmのガス供給口4
が多数整然と配列されており、これらのガス供給
口の近傍にはこれを挾むように7mmの間隔を置い
て高さ15mm、厚さ2mmの板5が長手方向に複数凸
設配置されている。 まず反応容器1内を10-5Torr以下に真空ポン
プ7で減圧した。その後ガス供給系8から水素ガ
スをキヤリアーとしたTiCl4とCH4ガスを上記ガ
ス供給口4を通じて容器1内に導入して、2Torr
の圧力に保持しながら直流電圧6を印加してグロ
ー放電を発生させた。本例では被処理部材2は
SUS304の100mm×100mm×3mmの板とした。グロ
ー放電は補助電極の凸設板5で囲まれた空間内が
最も強くなつていることが認められた。この状態
で被処理品2の温度を600℃に維持しながらTiC
のコーテイングを行なつた。放電の維持電圧は、
ほぼ500Vであつた。導入されたガスは、補助電
極の板5の各面に発生するグロー放電間の相互作
用が起きている放電域で分解、電離などによつて
活性化され、続いて補助電極内のガス供給口4か
らは新しいガスが供給されることにより、反応ガ
スは被処理品2の表面部へと送られることが認め
られた。結果として充分良好なTiCのコーテイン
グを得た。 一方、従来方式である第2図に示すような平板
状の補助電極3を被処理品2(SUS304)に7mm
に接近させて、補助電極と被処理品間のグロー放
電の相互作用を発生させて同様の処理をしたとこ
ろ、放電電圧は約800V、被処理品の温度は900℃
であつた。 上記の本発明実施例と従来方式との対比を下表
に示す。
[Field of Application of the Invention] The present invention relates to an apparatus that uses glow discharge to diffuse a substance from the surface of an object to be processed or to form a coating film thereon. A direct current voltage is applied between a cathode consisting of auxiliary electrodes arranged opposite to each other and an anode on the wall of the container or inside the container, and a glow discharge is generated between these electrodes to perform surface treatment on the object to be treated or to remove the coating film. The present invention relates to an apparatus for forming. [Background of the Invention] Conventionally, there is a plasma CVD method as a surface treatment method using glow discharge. As a well-known example of a device that performs a DC glow discharge type plasma CVD method,
There is 57-188670. This device is as shown in FIG.
A conductive member 2 connected to the cathode of a DC power source 6 is provided in a container 1 in a reduced pressure atmosphere of Torr, and an auxiliary electrode 3 having approximately the same potential as the conductive member 2 is provided opposite to the conductive member 2. , the container 1 is connected to the anode of the power source 6, and an interaction is generated between the glow discharge on the surface 21 of the treated part of the conductive member 2 and the glow discharge of the auxiliary electrode 3 to perform glow discharge treatment, and the treated part The surface 21 is coated with a target substance.
In such a processing apparatus, since the ionization density of the reactive species can be increased near the part to be processed, a high-quality film can be produced at high speed compared to other methods using only simple glow discharge. However, in order to achieve even faster processing using the method shown in Figure 2, it is necessary to increase the applied voltage to increase the energy of the glow discharge, or to increase the energy of the glow discharge by increasing the applied voltage.
It is necessary to make the interaction between the glow discharge stronger by reducing the gap between the electrode and the auxiliary electrode. However, in the case of the former method, increasing the energy of glow discharge directly increases the glow discharge current density on the surface of the workpiece, which in turn increases the amount of energy supplied to the surface of the workpiece, so the applied voltage If the temperature is increased, the temperature of the product to be processed will rise. Therefore, if there is a limit to the applicable temperature depending on the material of the object to be treated, there is a limit to the application of this method. For example, by TiCl 4 and CH 4 on Al alloy
When coating TiC, the reaction temperature of TiC is
Requires temperature of 900℃ or higher. In this method, Al alloy will be heated to almost the same temperature, but since the melting temperature of Al alloy is around 600℃, it will be difficult to apply TiC coating with this method. . On the other hand, in the case of the latter method, that is, when the gap between the auxiliary electrode and the workpiece is made smaller, the interaction between the glow discharges becomes stronger as the gap is made smaller, resulting in a discharge with a high current density, which accelerates the reaction. be done. However, as the gap becomes smaller, the uniform supply of new reactive gas into the plasma space near the surface to be treated becomes insufficient, and the residence time of spatter atoms emitted from both surfaces becomes longer in that space, causing the coating to deteriorate. It gets mixed into the layer and reduces the purity of the coating. This phenomenon is particularly problematic in the formation of functional films. From the above, it is possible to reduce the ionization density of the gas by plasma without heating the workpiece to high temperatures, and in a state in which the gas involved in the reaction is uniformly and freshly distributed over the entire workpiece surface. By activating reactive species by increasing the temperature without causing non-uniformity on the surface, it is expected that materials that are formed at low temperatures (e.g. amorphous silicon, 250°C) or that films formed at low temperatures will exhibit special properties. It is desired to develop a surface treatment technology that can rapidly form a highly pure, homogeneous film (for example, TiC at 600°C). [Object of the invention] The object of the present invention is to develop a direct current glow discharge type plasma.
In the CVD method, the ionization density of the supplied gas is increased on the surface of an auxiliary electrode placed opposite the workpiece.
Another object of the present invention is to provide a surface treatment apparatus capable of uniformly and sufficiently supplying a fresh gas to a workpiece to form a high-quality coating at high speed without increasing the temperature of the workpiece. [Summary of the Invention] The present invention provides a container whose interior can be depressurized, an auxiliary electrode disposed in the container in close opposition to a member to be processed, and a gas involved in reaction or processing in the container. a gas supply system, and a voltage source for applying a DC voltage between the treated member and the auxiliary electrode as cathodes and the container or an anode inside thereof to generate a glow discharge therebetween. In the surface treatment apparatus using glow discharge for a workpiece, the auxiliary electrode is arranged at least on the side facing the workpiece to reduce the ionization density of the glow discharge on the surface of the workpiece of the auxiliary electrode to the surface of the workpiece. It is characterized by having a concavity and convexity that is higher than that of the concave and convex portion, and a gas supply port for supplying the gas that opens into the recess formed by the concavity and convexity. In the apparatus of the present invention, the ionization density of the glow discharge on the surface of the auxiliary electrode on the workpiece side is controlled by the interaction of the glow discharge on the uneven portion of the auxiliary electrode.
By increasing the ionization density of the glow discharge on the surface of the workpiece, the proportion of ionization, excitation, and radicals of reactive species near the surface of the workpiece can be increased without heating the workpiece to a high temperature, and Introducing fresh gas involved in the reaction into the glow discharge area,
Unnecessary impurities caused by electrode spatter are reduced and turned into plasma, and the gas with high ionization density is guided near the workpiece by passing through the glow discharge region between the workpiece and the auxiliary electrode to form a coating. form. As mentioned above, in conventional surface treatment methods, in order to rapidly treat the surface or form a film of reactive species, it is necessary to increase the applied voltage or current density, or increase the temperature. However, when a high voltage is applied, surface atoms are emitted by sputtering on the surface of the member to be processed, and the temperature of the member to be processed itself increases, which may adversely affect the formed film. In addition, an increase in temperature places restrictions on the material of the workpiece to be used, and may change the properties of the material of the workpiece and the properties of the coating. Further, there was a problem in forming an amorphous film such as amorphous silicon. As a result of intensive research, the inventors of the present invention have conducted intensive research to enable surface treatment that can form a film at high speed and produce a highly pure and homogeneous film without raising the temperature of the product itself to a high temperature. In the surface treatment method using direct current glow discharge, it is possible to increase the ionization density near the surface of the workpiece without increasing the current density on the surface of the workpiece as in the conventional method, and to constantly introduce new gas into that spatial region. The inventors have discovered that this can be achieved by supplying gas, lowering the discharge voltage, and evenly supplying and distributing fresh gas to the surface of the member to be treated, and have arrived at the present invention. The gases to be supplied include one or more of hydrogen gas or argon gas, silicon-based gas such as silane which is a substance that diffuses or forms a coating film on the member to be treated, metal halide gas, methane gas,
A mixed gas of at least one of nitrogen gas, hydrocarbon-containing gas, ammonia gas, sulfide gas, metal gas, metalloid halide gas, metalloid gas, and the like can be used. In the present invention, the shape and structure of the auxiliary electrode are important. That is, in the device of the present invention,
In areas that are relatively far away from the workpiece in terms of thermal energy, that is, on the side of the auxiliary electrode facing the workpiece, glow discharge interacts with the uneven parts, causing more ionization than in other glow discharge areas. Multiple irregularities that cause density (these irregularities are caused by the interaction of glow discharges generated on mutually contacting or opposing surfaces of the irregularities, so that the ionization density of the glow discharge there is different from that of the individual without interaction) ionization density is higher than the ionization density of the glow discharge region), and furthermore, a gas supply port is opened in the uneven portion so that the new gas of the reactive species is uniformly distributed in the glow discharge region. has been formed. In the present invention, in order to perform high-purity surface treatment with even fewer impurities, it is desirable to provide a mechanism for continuous or intermittent relative movement between the member to be treated and the auxiliary electrode. In other words, when performing surface treatment or coating while supplying fresh gas between the auxiliary electrode and the workpiece, if the auxiliary electrode and workpiece are always fixed, foreign atoms from the discharge surface will be removed by the sputtering action of the plasma. Contamination or retention of decomposed atoms in the supplied gas may occur, resulting in a decrease in the purity of the surface treatment layer and a decrease in the surface treatment or coating speed. Measures such as moving the gas supply port or moving the relative position of the auxiliary electrode and the workpiece are effective, but although moving the gas supply port is effective to some extent, impurity atoms from each discharge surface are removed from the plasma. When considering removal from space, the most effective measure is to move the relative positions of the auxiliary electrode and the member to be processed. This is done by moving at least one of the auxiliary electrode or the object to be processed, and it is particularly desirable to provide a space in which neither one of them will generate discharge. Alternatively, the same effect can be obtained even if the glow discharge is momentarily stopped. That is, if the discharge is momentarily stopped in a state where sputtered atoms are mixed into the plasma space and remain there, the sputtered atoms are cooled and easily exhausted. When relatively moving the position, there are an intermittent movement type in which discharge is generated for a certain period of time and then the movement is made, and a continuous movement type in which the position is moved continuously. By such measures, impurities can be extremely reduced, and the influence of non-uniform discharge depending on the location of the member to be treated can also be reduced. In addition, by discharging residual gas unnecessary for the reaction and making it easier to supply gas with a high proportion of reactive species, a high-purity film can be formed quickly. [Embodiments of the Invention] Example 1 FIG. 1 is a diagram showing an example of the present invention.
A member to be processed 2 connected to the cathode of a DC power supply 6 was placed in a reduced pressure container 1, and an auxiliary electrode 3 having the same potential as the member to be processed 2 was placed opposite to the member to be processed 2. The container 1 is connected to the anode of a power source 6. This auxiliary electrode is as illustrated in FIG. That is, on the side of the auxiliary electrode 3 facing the workpiece, there is a gas supply port 4 with a diameter of 0.02 mm in this example.
A large number of gas supply ports are arranged in an orderly manner, and a plurality of plates 5, each having a height of 15 mm and a thickness of 2 mm, are arranged in a protruding manner in the longitudinal direction at intervals of 7 mm in the vicinity of these gas supply ports. First, the pressure inside the reaction vessel 1 was reduced to 10 -5 Torr or less using the vacuum pump 7. After that, TiCl 4 and CH 4 gases with hydrogen gas as a carrier are introduced into the container 1 through the gas supply port 4 from the gas supply system 8, and the gas is heated to 2 Torr.
A glow discharge was generated by applying a DC voltage of 6 while maintaining the pressure at . In this example, the member to be processed 2 is
A 100mm x 100mm x 3mm plate of SUS304 was used. It was observed that the glow discharge was strongest in the space surrounded by the convex plate 5 of the auxiliary electrode. In this state, while maintaining the temperature of workpiece 2 at 600℃, TiC
coating was carried out. The sustaining voltage of discharge is
It was almost 500V. The introduced gas is activated by decomposition, ionization, etc. in the discharge area where the interaction between the glow discharges generated on each surface of the plate 5 of the auxiliary electrode occurs, and then the gas is activated by the gas supply port in the auxiliary electrode. It was confirmed that by supplying new gas from No. 4, the reaction gas was sent to the surface of the article to be processed 2. As a result, a sufficiently good TiC coating was obtained. On the other hand, in the conventional method, a flat plate-shaped auxiliary electrode 3 as shown in Fig. 2 is attached to the workpiece 2 (SUS304) by 7 mm.
When similar processing was performed by bringing the auxiliary electrode close to the workpiece to generate a glow discharge interaction between the auxiliary electrode and the workpiece, the discharge voltage was approximately 800V and the temperature of the workpiece was 900℃.
It was hot. A comparison between the above embodiment of the present invention and the conventional system is shown in the table below.

【表】【table】

【表】 これを敷衍して説明すれば、下記の如くであ
る。 (a) CVD法でTiC被膜を形成する際、TiCl4
CH4→TiC+4HClの反応によれば、生成自由
エネルギから、熱エネルギのみを用いる場合に
は反応温度は920℃以上を必要とし、一般的に
は結晶性等の点から1020〜1040℃程度で行なわ
れている。この反応にプラズマを用いることに
より処理温度を低くでき、前記従来方式では
900℃において硬さ(Hv2500)、密着性等の点
で熱エネルギのみで形成した被膜と同等の特性
が得られた。しかし、前記従来方式で更に処理
温度を低くすると被膜の硬さが低下し、600℃
ではHv900になつてしまう。この原因は、処理
温度を低くするために放電のエネルギ密度を低
くするので、TiC形成の反応エネルギが低下
し、健全なTiC結合状態にならないこと、ある
いはその為に被膜中に未反応生成物等が混入す
ること(HCl等)である。このように前記従来
方式では、被処理品の加熱と処理ガスの活性化
(反応)を同一放電領域内で行なつているため
に、各々を単独に制御できず、温度を下げるた
めに放電のエネルギ密度を小さくすると、反応
に必要な放電エネルギも低下し、反応に影響を
及ぼして健全な被膜が得られなかつた。 一方、本発明実施例では反応に必要なエネル
ギは凹凸形状の補助電極内で単独に制御してで
き、また、被処理品の温度も反応の密度を保持
した状態で任意に制御でき、このため、被処理
品温度を従来方式よりも低くした状態で従来方
式と同様な健全なTiC被膜が形成できた。 (b) 上述のように、本発明実施例では、反応させ
せるための放電(凹凸の補助電極)密度を高い
状態にするために間隙等を制御することで放電
電圧を低くし、その状態のままで被処理品の温
度を低くして処理できる。そのため、放電電圧
は低い状態になつている。 他方、従来方式では被処理品を高温に加熱す
ることから、電力を多く必要とする。すなわ
ち、印加する電流、電圧が高くなる。 (c) 本発明実施例及び従来方式による処理時間1
時間での膜厚は、本発明実施例では12μm、従
来方式では10μmであつた。この結果より、被
膜形成速度は本発明実施例では12μm/h、従
来方式では10μm/hである。このように本発
明実施例は高速成膜が可能な処理技術である。
これは、補助電極内で反応の密度を高めたこと
による。 なお、一般的に行われている熱エネルギのみ
によるCVD、あるいはR.FプラズマCVD法で
は本発明実施例、あるいは前記従来方式よりも
被膜形成速度は更に遅い。 本発明実施例では、被処理品2近傍で活性化が
単に平板形状の補助電極と被処理品との間のみで
グロー放電の相互作用を発生させた従来方式の場
合よりも多くなつた反応ガスが存在するようにな
る。また、本実施例のグロー放電による放電維持
電圧は、補助電極の凸設板で囲まれた空間内のグ
ロー放電の相互作用部における最も低い放電電圧
となるため、従来方式の場合より低くすることが
できる。さらにこの状態で印加電力を増大させた
場合も、被処理品の温度をさほど上昇させること
なく迅速処理が可能である。 実施例 2 第1図の装置を用い、実施例1と同様の補助電
極を用いて、Tiコーテイングを行なつた。まず
真空ポンプ7を作動させて減圧容器1を
10-2Torr程度の圧力にした後、水素ベースの
TiCl4を補助電極3のガス供給口4より導入し、
マスフローコントローラーと排気圧の調整により
流量と圧力を維持し、直流電圧400Vを前記と同
様に印加してグロー放電を形成し、以てTiCl4
放電エネルギーにより分解し、100mm×100mm×2
mmの被処理部材2(SUS304)にTiをコーテイン
グしたところ、被処理部材2の表面の温度を600
℃以下とした状態でコーテイングできた。 他方、従来法としてTiCl4を熱的に分解する方
法で上記と同じ被処理部材にTiをコーテイング
した。上記の本発明実施例と従来法との対比を下
表に示す。
[Table] If we elaborate on this, it is as follows. (a) When forming a TiC film using the CVD method, TiCl 4 +
According to the reaction of CH 4 → TiC + 4HCl, due to the free energy of formation, if only thermal energy is used, the reaction temperature needs to be 920℃ or higher, but it is generally carried out at about 1020 to 1040℃ from the viewpoint of crystallinity etc. It is. By using plasma for this reaction, the processing temperature can be lowered, and compared to the conventional method described above,
At 900°C, properties equivalent to those of a film formed using only thermal energy were obtained in terms of hardness (Hv2500) and adhesion. However, if the treatment temperature is lowered further using the conventional method, the hardness of the coating will decrease, and the temperature will exceed 600℃.
Then it becomes Hv900. The reason for this is that the energy density of the discharge is lowered to lower the processing temperature, which lowers the reaction energy for TiC formation and does not result in a healthy TiC bonding state, or that unreacted products may be present in the coating. (HCl, etc.). In this way, in the conventional method, since the heating of the processed object and the activation (reaction) of the processing gas are performed in the same discharge area, each cannot be controlled independently, and the discharge is activated to lower the temperature. When the energy density was decreased, the discharge energy required for the reaction also decreased, which affected the reaction and made it impossible to obtain a sound film. On the other hand, in the embodiments of the present invention, the energy required for the reaction can be controlled independently within the uneven auxiliary electrode, and the temperature of the object to be treated can be controlled arbitrarily while maintaining the reaction density. A healthy TiC film similar to that of the conventional method was able to be formed at a lower temperature of the treated object than in the conventional method. (b) As mentioned above, in the embodiments of the present invention, the discharge voltage is lowered by controlling the gap etc. in order to maintain the high density of the discharge (concave and convex auxiliary electrode) for causing the reaction, and The temperature of the item to be processed can be lowered to process it. Therefore, the discharge voltage is in a low state. On the other hand, the conventional method requires a large amount of electric power because the object to be processed is heated to a high temperature. That is, the applied current and voltage become higher. (c) Processing time 1 according to the embodiment of the present invention and the conventional method
The film thickness over time was 12 μm in the example of the present invention and 10 μm in the conventional method. From this result, the film formation rate is 12 μm/h in the embodiment of the present invention and 10 μm/h in the conventional method. As described above, the embodiment of the present invention is a processing technology that enables high-speed film formation.
This is due to the increased reaction density within the auxiliary electrode. Incidentally, in the commonly used CVD method using only thermal energy or RF plasma CVD method, the film formation speed is even slower than in the embodiments of the present invention or the conventional method. In the embodiment of the present invention, the amount of reactive gas activated near the workpiece 2 was greater than in the conventional method in which glow discharge interaction was generated only between the flat plate-shaped auxiliary electrode and the workpiece. comes to exist. In addition, the discharge sustaining voltage due to the glow discharge in this example is the lowest discharge voltage at the interaction part of the glow discharge in the space surrounded by the convex plate of the auxiliary electrode, so it should be lower than that in the conventional method. Can be done. Furthermore, even when the applied power is increased in this state, rapid processing is possible without significantly increasing the temperature of the processed item. Example 2 Ti coating was performed using the apparatus shown in FIG. 1 and the same auxiliary electrode as in Example 1. First, operate the vacuum pump 7 to open the reduced pressure container 1.
After increasing the pressure to about 10 -2 Torr, hydrogen-based
TiCl 4 is introduced from the gas supply port 4 of the auxiliary electrode 3,
The flow rate and pressure are maintained by adjusting the mass flow controller and exhaust pressure, and a DC voltage of 400 V is applied in the same manner as above to form a glow discharge. TiCl 4 is decomposed by the discharge energy, and 100 mm x 100 mm x 2
When Ti was coated on the workpiece 2 (SUS304) of mm, the temperature of the surface of the workpiece 2 was raised to 600
Coating was possible at temperatures below ℃. On the other hand, as a conventional method, the same treated member as above was coated with Ti using a method of thermally decomposing TiCl 4 . A comparison between the above embodiment of the present invention and the conventional method is shown in the table below.

【表】 この表から明らかなように、本発明実施例によ
れば600℃未満の処理温度において1時間で2μm
のTi膜を形成することができた。したがつてそ
のTi膜形成温度は2μm/hである。この被膜は
X線回折によりTiであることが同定された。 他方、従来法ではTiCl4とH2との処理ガスを熱
的に分解してTiコーテイングをするため、反応
生成自由エネルギーからその析出温度は2000℃以
上を必要とするが、本例では被処理部材が
SUS304で鉄鋼材であることから、その触媒作用
で1200℃以上でTiが析出する。(本例では1400℃
でTi膜を形成できた。)このため、従来法は被処
理部材の材質によつては適用できない。しかも、
このような高温処理にもかかわらず、従来法では
2時間の処理によつて1μmのTi膜が形成された
ことから、その被膜形成速度は0.5μm/hであつ
て、本発明実施例より遥かに遅い。 以上のように、本発明実施例によればSUS被
処理部材上にTi被膜を低温で高速に形成できる。
従つて、高温で脆化を生じる鉄製部品にも容易に
Tiコーテイング処理ができる。 実施例 3 実施例1と同様の補助電極と第1図に示した装
置によりTiNのコーテイングを行なつた。また、
従来のプラズマCVD法でTiNコーテイングを行
つた。その対比を下表に示す。
[Table] As is clear from this table, according to the embodiments of the present invention, 2 μm in 1 hour at a processing temperature of less than 600°C.
We were able to form a Ti film of Therefore, the Ti film forming temperature is 2 μm/h. This coating was identified to be Ti by X-ray diffraction. On the other hand, in the conventional method, the Ti coating is formed by thermally decomposing the processing gas of TiCl 4 and H 2 , so the precipitation temperature needs to be 2000°C or higher due to the free energy of reaction formation. The parts
Since SUS304 is a steel material, Ti precipitates at temperatures above 1200℃ due to its catalytic action. (1400℃ in this example)
We were able to form a Ti film. ) Therefore, the conventional method cannot be applied depending on the material of the member to be treated. Moreover,
Despite such high-temperature treatment, in the conventional method, a 1 μm thick Ti film was formed after 2 hours of treatment, so the film formation rate was 0.5 μm/h, which is much faster than in the example of the present invention. It's late. As described above, according to the embodiments of the present invention, a Ti film can be formed on a SUS member to be processed at low temperature and at high speed.
Therefore, it can be easily applied to iron parts that become brittle at high temperatures.
Can be treated with Ti coating. Example 3 TiN coating was carried out using the same auxiliary electrode as in Example 1 and the apparatus shown in FIG. Also,
TiN coating was performed using conventional plasma CVD method. The comparison is shown in the table below.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、補助電極の凹凸部のグロー放
電の相互作用により補助電極の被処理部材側の表
面におけるグロー放電の電離密度を高めることに
より、被処理部材表面での電流密度の増大、被処
理部材の高温化を招かずに被処理部材表面近傍で
電離密度を高め、電極面から出るスパツタ原子等
に影響されずに高純度・均質の表面処理を高い速
度で行うことができる。また、ガスの電離、励
起、解離を図るための高電離密度放電は補助電極
の凹凸形状によつて単独に制御することができ、
また被処理部材の温度も、補助電極および被処理
部材のグロー放電間の相互作用を用いていないこ
とから、任意に制御できる。また被膜形成とガス
の活性化が別々に行われるので被膜内への不純度
の混入が少くなる。
According to the present invention, by increasing the ionization density of the glow discharge on the surface of the auxiliary electrode on the workpiece side due to the interaction of the glow discharge of the uneven portion of the auxiliary electrode, the current density on the surface of the workpiece is increased. It is possible to increase the ionization density near the surface of the member to be treated without raising the temperature of the member to be treated, and to perform high-purity, homogeneous surface treatment at a high speed without being affected by spatter atoms etc. emitted from the electrode surface. In addition, high ionization density discharge for ionizing, excitation, and dissociation of gas can be independently controlled by the uneven shape of the auxiliary electrode.
Furthermore, the temperature of the member to be treated can be controlled arbitrarily since the interaction between the auxiliary electrode and the glow discharge of the member to be treated is not used. Furthermore, since film formation and gas activation are performed separately, there is less contamination of impurities into the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概要図、第2図は
従来の表面処理装置の概要図、第3図は第1図中
の補助電極の拡大斜視図、第4図は本発明の他の
実施例における被処理部材と補助電極の概要斜視
図、第5図および第6図は該補助電極の表面図お
よび一部断面図である。 1…反応容器、2…被処理部材、3…補助電
極、4…ガス供給口、5,5a…凸部、6…直流
電源、7…排気ポンプ、8…ガス供給系。
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a schematic diagram of a conventional surface treatment apparatus, Fig. 3 is an enlarged perspective view of the auxiliary electrode in Fig. 1, and Fig. 4 is a schematic diagram of an embodiment of the present invention. A schematic perspective view of a member to be processed and an auxiliary electrode in another embodiment, and FIGS. 5 and 6 are a surface view and a partially sectional view of the auxiliary electrode. DESCRIPTION OF SYMBOLS 1... Reaction container, 2... To-be-processed member, 3... Auxiliary electrode, 4... Gas supply port, 5, 5a... Convex part, 6... DC power supply, 7... Exhaust pump, 8... Gas supply system.

Claims (1)

【特許請求の範囲】 1 内部を減圧され得る容器と、該容器内にあつ
て被処理部材と近接対向して配置された補助電極
と、該容器内に反応ないしは処理に関与するガス
を供給するガス供給系と、被処理部材および補助
電極を陰極としこれと該容器又はその内部の陽極
との間に直流電圧を印加して両者間にグロー放電
を生ぜしめるための電圧源と、を備えた被処理部
材のグロー放電による表面処理装置において、補
助電極は、少くとも被処理部材に対向する側に、
補助電極の被処理部材側の表面におけるグロー放
電の電離密度を被処理部材の表面におけるそれよ
りも高くするような凹凸を有すると共に、その凹
凸によつて形成された凹部内に開口する上記ガス
供給のためのガス供給口を有することを特徴とす
るグロー放電による表面処理装置。 2 被処理部材と補助電極との相対移動を行わせ
る機構を有する特許請求の範囲第1項記載のグロ
ー放電による表面処理装置。
[Claims] 1. A container whose interior can be depressurized, an auxiliary electrode disposed within the container in close opposition to a member to be processed, and a gas involved in reaction or processing supplied into the container. It is equipped with a gas supply system, and a voltage source for applying a direct current voltage between the treated member and the auxiliary electrode as cathodes and the container or an anode inside the container to generate a glow discharge therebetween. In a surface treatment apparatus using glow discharge for a member to be treated, the auxiliary electrode has at least one side facing the member to be treated;
The gas supply has an unevenness that makes the ionization density of the glow discharge higher on the surface of the auxiliary electrode on the side of the member to be processed than that on the surface of the member to be processed, and opens into the recess formed by the unevenness. 1. A surface treatment device using glow discharge, characterized by having a gas supply port for. 2. A surface treatment apparatus using glow discharge according to claim 1, which has a mechanism for relative movement between the member to be treated and the auxiliary electrode.
JP17876484A 1984-08-28 1984-08-28 Method and device for surface processing by glow electric discharge Granted JPS6156273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17876484A JPS6156273A (en) 1984-08-28 1984-08-28 Method and device for surface processing by glow electric discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17876484A JPS6156273A (en) 1984-08-28 1984-08-28 Method and device for surface processing by glow electric discharge

Publications (2)

Publication Number Publication Date
JPS6156273A JPS6156273A (en) 1986-03-20
JPS6325070B2 true JPS6325070B2 (en) 1988-05-24

Family

ID=16054198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17876484A Granted JPS6156273A (en) 1984-08-28 1984-08-28 Method and device for surface processing by glow electric discharge

Country Status (1)

Country Link
JP (1) JPS6156273A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631379B2 (en) * 1987-12-21 1997-07-16 株式会社日立製作所 Film forming equipment
FR2630133B1 (en) * 1988-04-18 1993-09-24 Siderurgie Fse Inst Rech PROCESS FOR IMPROVING THE CORROSION RESISTANCE OF METAL MATERIALS
FR2652591B1 (en) * 1989-10-03 1993-10-08 Framatome PROCESS OF SURFACE OXIDATION OF A PASSIVABLE METAL PART, AND FUEL ASSEMBLY ELEMENTS COATED WITH A METAL ALLOY COATED WITH A PROTECTIVE OXIDE LAYER.
JP4578694B2 (en) * 2001-02-09 2010-11-10 株式会社カネカ Plasma CVD apparatus and silicon-based film manufacturing method using plasma CVD apparatus
JP4917904B2 (en) * 2007-02-01 2012-04-18 株式会社ピュアロンジャパン Deposition equipment
JP6990162B2 (en) * 2018-10-15 2022-01-12 株式会社神戸製鋼所 Nitriding processing equipment and nitriding processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136476A (en) * 1983-01-21 1984-08-06 Semiconductor Energy Lab Co Ltd Apparatus for plasma vapor-phase reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136476A (en) * 1983-01-21 1984-08-06 Semiconductor Energy Lab Co Ltd Apparatus for plasma vapor-phase reaction

Also Published As

Publication number Publication date
JPS6156273A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
US5403399A (en) Method and apparatus for vapor deposition of diamond
US5626922A (en) Plasma processing method
KR20170038778A (en) Method and apparatus for the coating and for the surface treatment of substrates by means of a plasma beam
JPH0774162A (en) Apparatus and method for vapor phase reaction
JPH03120362A (en) Apparatus and method for plasma treatment
JP2002115068A (en) Showerhead, substrate treatment apparatus, and substrate manufacturing method
JPH10503747A (en) Formation of diamond material by rapid heating and quenching of carbon-containing materials
JPS6325070B2 (en)
JP4319263B2 (en) Annealing method of passing metal substrate
JPS62203328A (en) Plasma cvd apparatus
Lee et al. Diamond thick film deposition in wafer scale using single-cathode direct current plasma assisted chemical vapour deposition
JPH042795A (en) Continuous production of metallic porous body
JPS62177180A (en) Surface treatment
JPS60125366A (en) Surface treatment of member
JPH0284717A (en) Plasma treatment equipment
JPS6320447A (en) Method and apparatus for continuous coating of metallic strip with ceramics
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
JPH03215671A (en) Cvd method and device by sheet plasma
JPH0527707B2 (en)
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JPH0477709B2 (en)
JP2611633B2 (en) Method for producing chromium nitride film-coated substrate
JP2676091B2 (en) How to make a thin film
JPH0411627B2 (en)