JPS63250405A - Production of high strength product of powder - Google Patents

Production of high strength product of powder

Info

Publication number
JPS63250405A
JPS63250405A JP8352087A JP8352087A JPS63250405A JP S63250405 A JPS63250405 A JP S63250405A JP 8352087 A JP8352087 A JP 8352087A JP 8352087 A JP8352087 A JP 8352087A JP S63250405 A JPS63250405 A JP S63250405A
Authority
JP
Japan
Prior art keywords
density
forging
powder
product
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8352087A
Other languages
Japanese (ja)
Other versions
JPH0472882B2 (en
Inventor
Hiroshi Takigawa
滝川 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8352087A priority Critical patent/JPS63250405A/en
Publication of JPS63250405A publication Critical patent/JPS63250405A/en
Publication of JPH0472882B2 publication Critical patent/JPH0472882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To economically produce a small-sized high strength product by heating and hot forging a cold compacted body of metal powder to increase the density and by subjecting the forged product to hot isostatic press forming. CONSTITUTION:Metal powder as starting material is cold compacted and the compacted body is heated and hot forged in closed dies so that the forged product has >=96% density ratio. The compacted body may be heated, cooled and reheated before the hot forging. The forged product is then subjected to hot isostatic press forming to eliminate the residual voids. Thus, the wear of the dies can be suppressed, compression to true density is enabled and a high density and high strength product can be produced at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属粉末を圧縮成形した後焼結して製造する
というプロセスからなる粉末冶金製品の製造方法に関し
、殊に高強度粉末冶金製品を経済的に製造する方法に関
するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing powder metallurgy products, which comprises a process of manufacturing metal powder by compression molding and then sintering, and particularly relates to a method for manufacturing powder metallurgy products, particularly high-strength powder metallurgy products. The present invention relates to a method for economically producing .

[従来の技術] 原料金属粉を金型内で圧縮成形し、次いで連続的に焼結
することにより同一寸法形状機械部品を大量に生産する
ことのできる粉末冶金法は、原料から製品までの生産工
程が短く、複雑な形状であっでも容易に成形でき、且つ
寸法精度も高いところから後工程での機械加工を削減す
ることができる等の利点があり、自動車部品等の分野で
は粉末冶金製品の需要が着実に増加している。
[Prior art] The powder metallurgy method, which can produce large quantities of mechanical parts of the same size and shape by compression molding raw metal powder in a mold and then sintering it continuously, is a method that enables production from raw materials to products. Powder metallurgy products have the advantage of being short, can be easily molded even into complex shapes, and have high dimensional accuracy, reducing the need for machining in subsequent processes. Demand is steadily increasing.

ところで粉末冶金製品は上述の如き利点を有する一方で
、圧縮成形段階で粉末間に空隙が残り、又寸法精度を高
める為に焼結時の収縮をできるだけ小さく抑えているこ
ともあって、空隙率は一般に10〜20%にも及んでい
る。その為機械的強度で見ると、伸びが小さい上に靭性
の低いものとなっており、引張強度は10〜50 kg
f/m+n2にとどまっている。
By the way, while powder metallurgy products have the above-mentioned advantages, voids remain between the powder during the compression molding stage, and shrinkage during sintering is kept as small as possible to improve dimensional accuracy, so the porosity is low. generally ranges from 10 to 20%. Therefore, in terms of mechanical strength, it has low elongation and low toughness, with a tensile strength of 10 to 50 kg.
It remains at f/m+n2.

そこでより高強度をもつ粉末冶金製品を製造するために
、例えばNiやMOを粉末の形で添加して粉末相互の滑
りを良くすることにより圧縮性の高い粉末としたり、2
段圧縮により密度を上昇させるといった対策が採られて
きた。
Therefore, in order to manufacture powder metallurgy products with higher strength, for example, Ni and MO are added in the form of powder to improve the mutual sliding of the powders, making the powder highly compressible.
Measures have been taken to increase the density by stage compression.

[発明が解決しようとする問題点コ この様に高密度化技術は種々を是案されているが、内部
の空隙を十分に解消し得た訳ではなく、溶製鍛造材に匹
敵する程の高強度・高靭性をもった製品は得られておら
ず高強度・高靭性を達成する為にはどうしても真密度化
が必要となる。
[Problems to be solved by the invention] Although various high-density technologies have been proposed, none of them has been able to sufficiently eliminate internal voids, and it has not been possible to sufficiently eliminate internal voids, and Products with high strength and high toughness have not been obtained, and in order to achieve high strength and high toughness, it is necessary to increase the true density.

しかるに冷間加工で真密度化を達成することは困難であ
るところから種々研究が行なわれ、熱間鍛造を採用すれ
ば高密度化を達成し得ることが分かってきたことから、
通常の粉末冶金の手法に従って圧縮成形及び焼結をした
後、熱間で型鍛造を行う粉末鍛造技術が提案されるに至
った。即ち粉末鍛造技術を採用した場合は焼結完了後の
熱間型鍛造によって焼結品中に残存する空隙を消滅させ
て緻密化することができるので、粉末冶金であっても高
強度・高靭性の製品を得ることができる様になった。又
この粉末鍛造技術は高精度鍛造を実施できるものである
為、従来の粉末冶金と同様に後加工が省略され製造コス
トも低減できると期待されていた。
However, since it is difficult to achieve true density through cold working, various studies have been conducted, and it has been found that high density can be achieved by hot forging.
A powder forging technique has been proposed in which hot die forging is performed after compression molding and sintering according to the usual powder metallurgy method. In other words, when powder forging technology is adopted, the voids remaining in the sintered product can be eliminated and densified by hot die forging after sintering is completed, so even powder metallurgy can achieve high strength and high toughness. Now you can get the following products. Furthermore, since this powder forging technology enables high-precision forging, it was expected that post-processing could be omitted and manufacturing costs could be reduced, similar to conventional powder metallurgy.

しかしながら粉末鍛造技術を実用化してみると、真密度
化による強度・靭性の改善はほぼ満足すべき成果を与え
たものの、熱間鍛造金型の寿命が短い為金型コストが高
騰し、全製造コストを比較してみると、それ程有利なも
のでないことが明らかになってきた。その為特殊な用途
を除いては実用化が殆んど進んでいないのが現状である
However, when powder forging technology was put into practical use, although improvements in strength and toughness through true densification yielded almost satisfactory results, the short lifespan of hot forging dies led to high mold costs, and When comparing the costs, it becomes clear that it is not that advantageous. Therefore, at present, there has been little progress in practical use except for special uses.

さらに粉末鍛造法のもう一つの欠点としては、小規模製
品の製造に適さないことが挙げられる。
Another disadvantage of the powder forging method is that it is not suitable for manufacturing small-scale products.

即ち従来の粉末鍛造法では高温状態にある予備焼結晶を
迅速に鍛造金型中へ穆して熱間鍛造する工程をとってい
るが、製品規模が小さいときは品物の熱容景が小さくな
る為、8送中に冷却されてしまい、通常の鍛造圧力では
製品内部まで十分に高密度化することが困難であった。
In other words, in the conventional powder forging method, pre-sintered crystals in a high temperature state are quickly sieved into a forging die and hot forged, but when the product size is small, the thermal profile of the product is small. As a result, the product was cooled during the 8th feeding process, making it difficult to sufficiently increase the density inside the product using normal forging pressure.

又無理して鍛造圧力を高めると金型が破損したり、破損
に至らずとも金型の寿命が一層短くなるという問題が生
じた。
Further, if the forging pressure is increased too much, the mold may be damaged, or even if the mold does not break, the life of the mold will be further shortened.

本発明はこうした事情に着目してなされたものであって
、金型破損あるいは金型寿命の低下といった金型コスト
の高騰につながる問題点を解消することによって粉末鍛
造技術の特長を生かし、高強度製品殊に小型の高強度製
品を経済的に製造することができる様な方法を提供しよ
うとするものである。
The present invention has been made with attention to these circumstances, and it takes advantage of the features of powder forging technology to solve problems that lead to a rise in mold costs, such as mold breakage and shortened mold life, and achieves high strength. The object is to provide a method by which products, especially small, high-strength products, can be manufactured economically.

[問題点を解決するための手段] しかして上記目的を達成した本発明方法は、金属粉末を
冷間成形し、更に加熱した後若しくは加熱−冷却−再加
熱した後、熱間鍛造を行ない、少なくとも鍛造品の密度
比を96%とした後、熱間静水圧プレス成形する点に要
旨を有するものである。
[Means for Solving the Problems] The method of the present invention that achieves the above object cold-forms metal powder, further heats it, or heats it, cools it, reheats it, and then hot forges it, The gist is that hot isostatic press forming is performed after the density ratio of the forged product is at least 96%.

[作用] 前述の通り粉末鍛造法は真密度の製品を得ることができ
るという理由から開発されてきたものであるが、熱間と
はいえ真密度(密度比:100%)に到達するまで鍛造
を行なうのであるから鍛造圧力は相当に高くなり、該鍛
造圧力を受は止めて支持する金型に過大な負荷がかかつ
て金型寿命が低下した。
[Function] As mentioned above, the powder forging method has been developed because it is possible to obtain products with true density, but even though it is hot, it is necessary to forge until the true density (density ratio: 100%) is reached. As a result, the forging pressure becomes considerably high, and an excessive load is placed on the mold that supports the forging pressure, reducing the life of the mold.

これに対し本発明においては金型寿命低下の原因となる
無理な鍛造を止め、熱間型鍛造における到達密度比を真
密度よりやや手前で止めそれ以上の真密度化は後段の熱
間然水圧プレス(HIP)にまかせることによって熱間
型鍛造金型の損耗を防止する。即ち製品内部に若干の空
隙が残された状態で熱間型鍛造を終了すれば必要鍛造圧
力も相当小さくて済むと共に空隙が圧力緩衝機能を発揮
して金型にかかる負荷は大幅に低下するので、金型の破
損はほぼ完全に防止されると共に、金型の消耗度も格段
に減少する。但し熱間鍛造は少なくとも密度比96%ま
で実施する必要があり、熱間鍛造終了時点の密度比が9
6%未満であると後述の熱間静水圧プレス処理を行って
も密度比が十分に上がらず、真密度には到底達しない。
On the other hand, in the present invention, we stop forced forging that causes a reduction in die life, and the density ratio reached in hot die forging is kept slightly before the true density. By leaving it to the press (HIP), wear and tear on the hot forging die is prevented. In other words, if hot die forging is completed with some voids left inside the product, the required forging pressure will be considerably smaller, and the voids will act as a pressure buffer, greatly reducing the load on the mold. , damage to the mold is almost completely prevented, and wear and tear on the mold is significantly reduced. However, hot forging must be carried out to a density ratio of at least 96%, and the density ratio at the end of hot forging must be 9.
If it is less than 6%, the density ratio will not increase sufficiently even if the hot isostatic pressing treatment described below is performed, and the true density will not be reached at all.

以上の如く最大4%までの余裕を残すことによって熱間
型鍛造製品内に残留した空孔は、金型を必要としないH
IP法によって外部へ放出する。即ちHIPにおいては
熱間型鍛造品を一般にカプセルに入れあるいは入れない
で、流体を媒体とした高圧々縮を行なうことが可能であ
るので、金型の消耗等の恐れなしに密度比を高め真密度
製品を製造することができる。尚HIP処理に当たって
熱間鍛造品を1個ずつカプセルに入れて処理する方法で
は工程が煩雑になると共に生産コストも高騰するので、
カプセルを使用せず熱間鍛造品をそのまま圧力媒体中に
投入してHIP%埋することが望まれる。
As mentioned above, by leaving a margin of up to 4%, the pores remaining in the hot die forged product can be removed without the need for a die.
Emitted to the outside by IP law. In other words, in HIP, it is possible to compress hot die forged products at high pressure using a fluid as a medium, without putting them in a capsule or in general, so it is possible to increase the density ratio and improve the true quality without fear of die wear. Density products can be manufactured. In addition, the method of placing hot forged products one by one into capsules during HIP processing would complicate the process and increase production costs.
It is desirable to directly insert the hot forged product into a pressure medium and embed it in HIP% without using a capsule.

又本発明工程は前記構成に示す様に粉末鍛造につづいて
HIP処理を行なうものであるが、粉末鍛造までの操作
は従来の粉末鍛造プロセスに従えばよい。即ち金属粉末
を冷間成形した後、成形品を焼結する為に加熱し、焼結
終了後、引き続いて熱間鍛造を行なうか、あるいは焼結
晶を一旦冷却した後再加熱して熱間鍛造を行なえばよい
。こうした工程中で冷間成形、焼結、熱間鍛造の様式や
条件については特に制限がなく、常法に従えばよい。
Further, in the process of the present invention, as shown in the above structure, powder forging is followed by HIP treatment, but operations up to powder forging may follow conventional powder forging processes. In other words, after cold forming metal powder, the molded product is heated to sinter, and after sintering, hot forging is subsequently performed, or the sintered crystal is once cooled and then reheated for hot forging. All you have to do is There are no particular restrictions on the methods and conditions of cold forming, sintering, and hot forging in these steps, and conventional methods may be followed.

[実施例] S A E 4840相当(2%N i −0,5Mo
%−0,4%C−Fe)の水噴露法による原料粉末を一
80メツシュ(175μm以下)にふるい分け、外径6
5mm、内径34mm、高さ50mmの円筒状に冷間圧
縮成形した。そしてH,X囲気ガス中で、1120℃、
30分間加熱したのち、ただちに外径67mm、内径3
2mmの密閉金型中で鍛造した。
[Example] Equivalent to S A E 4840 (2%N i -0,5Mo
%-0.4%C-Fe) by the water spray method was sieved into 180 meshes (175 μm or less) with an outer diameter of 6
It was cold compression molded into a cylindrical shape with a diameter of 5 mm, an inner diameter of 34 mm, and a height of 50 mm. And in H,X surrounding gas, 1120℃,
After heating for 30 minutes, immediately reduce the outer diameter to 67 mm and the inner diameter to 3.
Forged in a 2mm closed mold.

この時の鍛造圧力を種々変えてできた鍛造材の密度を測
定したものが第1図の横軸である。そして第1図に示さ
れる7、23g/cm3〜7.89g/cm3までの6
種類の製品を夫々鍛造したままの状態でHIP処理した
。HIP条件は、1100℃、1500kg/ctn2
. 1時間である。HIP処理後にもう一度各製品の密
度を測定した結果が第1図の縦軸である。その結果第1
図に示されるようにA、82つのグループに分かれた。
The horizontal axis in FIG. 1 shows the measured density of forged materials obtained by varying the forging pressure at this time. and 6 from 7.23g/cm3 to 7.89g/cm3 shown in Figure 1.
Each type of product was subjected to HIP treatment in its as-forged state. HIP conditions are 1100℃, 1500kg/ctn2
.. It is one hour. The vertical axis of FIG. 1 is the result of measuring the density of each product again after the HIP treatment. As a result, the first
As shown in the figure, A was divided into 82 groups.

つまりAグループのものは、HIP前の密度が、HIP
後も変らなかったものである。これに対して、初めの密
度が7.58g/cm’以上のBグループのものはHI
PIA理によって全て7.89g/c+n3の密度にな
り、顕微鏡で製品内部の組織を詳しく調べたが、空孔は
全く詔められす、完全に100%の密度比を示していた
。つま/ 、Qjl X100)未満のAグループのものは、HIPの効果が
現われないが、初期の密度比を96%以上にしておけば
そのままHIP処理をして内部の空孔が除去されること
が分かった。同様の結果は、F2−2%Cu−0,6%
C,Fe−3%Si及びAIの粉末を原料にした粉末鍛
造材でも夫々認められ、熱間鍛造終了時点で密度比に換
算して96%以上の初期密度を持っておれば、HIPに
よって、はとんどの金属粉末材料は容易に100%の密
度にできることを確認した。
In other words, for the A group, the density before HIP is
This has not changed since then. On the other hand, those in group B with an initial density of 7.58 g/cm' or higher are HI.
The PIA process gave a density of 7.89g/c+n3, and when the internal structure of the product was examined in detail using a microscope, there were no pores at all, and the density ratio was completely 100%. The effect of HIP will not appear on A group with less than 100%, Qjl Do you get it. Similar results are F2-2%Cu-0,6%
It is also recognized in powder forged materials made from C, Fe-3% Si, and AI powders, and if they have an initial density of 96% or more in terms of density ratio at the end of hot forging, by HIP, It was confirmed that most metal powder materials can be easily made to have a density of 100%.

実施例I S A E 4120相当(1%Cr−0,2%Mo−
0,6%Mn−0,2%C−Fe)の水噴露粉を一80
メツシュ(175μm以下)にふるい分け、外径52.
5mm、高さ15.5mmの円板に冷間金型圧縮成形し
た。そして、H2ガス雰囲気中で1120℃。
Example I SAE 4120 equivalent (1%Cr-0,2%Mo-
0,6%Mn-0,2%C-Fe) water spray powder
Sieve into mesh (175 μm or less), outer diameter 52.
Cold mold compression molding was carried out into a disc having a diameter of 5 mm and a height of 15.5 mm. Then, at 1120°C in an H2 gas atmosphere.

30分間加熱し、つづいて密閉金型を用いて、第2図に
示すような外径54.85mmのギアー形状に鍛造した
。このとき、同一の金型を3個準備し、夫々鍛造圧力を
3種類に変えて金型寿命まで鍛造した。鍛造圧力が6 
t/cm’のときの鍛造体の平均密度は98%であった
。そしてこの場合金型寿命に達するまでに45000個
の製品が鍛造できた。また鍛造圧力が10 t/cm2
のときは密度比が99%の製品が得られ、金型寿命は1
5000シヨツトであった。一方密度比100%の製品
を得るには鍛造圧力として12 t/cm”′が必要で
あり、この時の金型寿命は9000シヨツトであった。
It was heated for 30 minutes and then forged into a gear shape with an outer diameter of 54.85 mm as shown in FIG. 2 using a closed mold. At this time, three identical molds were prepared, and the forging pressure was changed to three different types, and forging was carried out until the life of the mold. Forging pressure is 6
The average density of the forged body at t/cm' was 98%. In this case, 45,000 products could be forged before the mold life expired. Also, the forging pressure is 10 t/cm2
When , a product with a density ratio of 99% is obtained, and the mold life is 1.
It was 5,000 shots. On the other hand, in order to obtain a product with a density ratio of 100%, a forging pressure of 12 t/cm"' was required, and the mold life at this time was 9000 shots.

次いで密度比が98%、99%の製品についてはそのま
まHIP装置に装入し、1100℃。
Next, products with a density ratio of 98% and 99% were directly charged into a HIP device and heated to 1100°C.

1500 kg/cm’、  1時間の条件で、加熱、
加圧を行って残留する空孔を完全に除去した。密度比1
00%になったことはHIP後の製品の密度を測定する
ことによって確認した。
Heating at 1500 kg/cm' for 1 hour,
Pressurization was applied to completely remove remaining pores. density ratio 1
00% was confirmed by measuring the density of the product after HIP.

以上のように上記3種類の工程を経た製品は最終的には
夫々密度比100%の完成品が得られたが、鍛造金型費
、HIP処理費の合計は第3図のように相違があり、本
発明で述べたように、HIP処理が可能となる程度に若
干の空孔を残した状態で粉末鍛造を行ない、次いでHI
P処理を行う方が経済性にすぐれることを確認した。も
フとも、この実施例で用いた材料(S A E 412
0)では、鍛造密度比が99%では経済的なメリットが
なく、98%以下で、かつHI PIA理の有効な96
%以上で鍛造する方が、経済面ですぐれることが分かっ
た。ここで、経済的に有利になる鍛造材密度比の上限は
、本実施例では99%未満であるが、種々の材料、およ
び製品形状について検討した結果、この数値が色々変わ
ることが分かった。しかし、少なくとも96%以上の密
度比で、引きつづいてHIP処理を行なえば、真密度ま
での圧縮が可能であると共に従来よりも安価となること
を確認した。
As mentioned above, finished products with a density ratio of 100% were finally obtained for each of the products that went through the above three types of processes, but the total cost of forging molds and HIP processing costs differed as shown in Figure 3. As described in the present invention, powder forging is performed with some pores left to the extent that HIP treatment is possible, and then HIP treatment is performed.
It was confirmed that P treatment is more economical. Also, the material used in this example (SAE 412
0), there is no economic advantage if the forging density ratio is 99%, and if it is less than 98% and the HI PIA process is effective.
It was found that forging at % or higher is economically superior. Here, the upper limit of the economically advantageous forging material density ratio is less than 99% in this example, but as a result of studying various materials and product shapes, it was found that this value varies in various ways. However, it has been confirmed that if the HIP treatment is performed continuously at a density ratio of at least 96%, compression to the true density is possible and the cost is lower than that of the conventional method.

実施例2 一100メツシュ(147μm以下)の純鉄粉に、−3
25メツシユ(44μm以下)のFe−3i合金粉末を
混合し、Fe−3%Siの組成とした。この混合粉末を
、冷間プレス成形で、外径10mm、高さ8mmの円柱
状にした。これをH2中toooで、30分間加熱後た
だちに、金型中で密閉鍛造した。このとき、金型の許容
圧力の上限値である2 0 t/cm2で鍛造したにも
かかわらず、鍛造品の密度比は99%であり、従来の粉
末鍛造法では100%の製造を得ることができなかった
。この理由はまず素材がFe−3%Siと硬いこと、お
よび製品形状が外径10mmと小さいだけに、加熱炉か
ら鍛造プレスへの移動中に温度低下を来たし、変形抵抗
が上昇したためであり、これらは従来粉末鍛造技術の宿
命であった。そこで、密度比99%の粉末鍛造品を、た
だちにHIP装置に入れて、1000℃、  1500
 kg/cm2. 1時間の処理を行ったところ、密度
測定により100%の密度比になっていることがわかっ
た。従来の粉末鍛造材および本発明品の直流磁気特性と
して最大透磁率μmを測定したところ、第1表の結果が
得られ、本発明材の方がすぐれていることを確認した。
Example 2 -100 mesh (147 μm or less) pure iron powder was added with -3
25 meshes (44 μm or less) of Fe-3i alloy powder were mixed to give a composition of Fe-3%Si. This mixed powder was formed into a columnar shape with an outer diameter of 10 mm and a height of 8 mm by cold press molding. This was heated in H2 for 30 minutes and then immediately sealed and forged in a mold. At this time, even though it was forged at 20 t/cm2, which is the upper limit of the allowable pressure of the die, the density ratio of the forged product was 99%, and it was impossible to obtain 100% production with the conventional powder forging method. I couldn't do it. The reason for this is firstly that the material is hard, Fe-3%Si, and because the product shape is small with an outer diameter of 10 mm, the temperature drops during transfer from the heating furnace to the forging press, increasing deformation resistance. These have been the fate of conventional powder forging technology. Therefore, the powder forged product with a density ratio of 99% was immediately put into a HIP machine and heated at 1000°C and 1500°C.
kg/cm2. After 1 hour of treatment, density measurement revealed that the density ratio was 100%. When the maximum magnetic permeability μm was measured as the direct current magnetic property of the conventional powder forged material and the product of the present invention, the results shown in Table 1 were obtained, confirming that the material of the present invention is superior.

第   1   表 [発明の効果] 本発明は以上の様に構成されており、粉末鍛造を真密度
より若干手前で止めてHIPIA埋を行なうので金型の
損耗を減少させることができ、高密度高強度製品を経済
的に得ることかでざる。
Table 1 [Effects of the Invention] The present invention is configured as described above, and since powder forging is stopped slightly before the true density and HIPIA filling is performed, wear and tear on the mold can be reduced, and high-density, high-density It is important to obtain strong products economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHIP処理に際し、HIP処理前の密度とHI
P処理後の密度の関係を示すグラフ、第2図は実施例1
における粉末鍛造製品(ギアー)の形状を示す断面説明
図、第3図は実施例2における工程別の処理費等を比較
する説明図である。 第3図
Figure 1 shows the density before HIP treatment and HI
A graph showing the density relationship after P treatment, Figure 2 is Example 1
FIG. 3 is an explanatory cross-sectional view showing the shape of a powder forged product (gear) in Embodiment 2, and FIG. Figure 3

Claims (1)

【特許請求の範囲】[Claims] 金属粉末を冷間成形し、更に加熱した後若しくは加熱−
冷却−再加熱した後、熱間鍛造を行ない、少なくとも鍛
造品の密度比を96%とした後、熱間静水圧プレス成形
することを特徴とする高強度粉末製品の製造法。
After cold forming metal powder and further heating or
A method for producing a high-strength powder product, which comprises cooling and reheating, hot forging to a density ratio of at least 96%, and then hot isostatic pressing.
JP8352087A 1987-04-04 1987-04-04 Production of high strength product of powder Granted JPS63250405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8352087A JPS63250405A (en) 1987-04-04 1987-04-04 Production of high strength product of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8352087A JPS63250405A (en) 1987-04-04 1987-04-04 Production of high strength product of powder

Publications (2)

Publication Number Publication Date
JPS63250405A true JPS63250405A (en) 1988-10-18
JPH0472882B2 JPH0472882B2 (en) 1992-11-19

Family

ID=13804759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8352087A Granted JPS63250405A (en) 1987-04-04 1987-04-04 Production of high strength product of powder

Country Status (1)

Country Link
JP (1) JPS63250405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080063A1 (en) * 2009-01-12 2010-07-15 Metec Powder Metal Ab Method for the manufacture of a metal part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205404A (en) * 1983-05-06 1984-11-21 Daido Steel Co Ltd Powder solidifying method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205404A (en) * 1983-05-06 1984-11-21 Daido Steel Co Ltd Powder solidifying method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080063A1 (en) * 2009-01-12 2010-07-15 Metec Powder Metal Ab Method for the manufacture of a metal part
JP2012515258A (en) * 2009-01-12 2012-07-05 メテック・パウダー・メタル・アクチボラゲット Manufacturing method of metal parts
US9796020B2 (en) 2009-01-12 2017-10-24 Metec Powder Metal Ab Method for the manufacture of a metal part

Also Published As

Publication number Publication date
JPH0472882B2 (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JP4304245B2 (en) Powder metallurgy object with a molded surface
US3811878A (en) Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder
US3785038A (en) Process of working a sintered powder metal compact
CN110193601B (en) Preparation method of double-layer or multi-layer refractory metal composite pipe
JPH02185904A (en) Hot pressing of powder and granule
CN103056369A (en) Process for producing part by powder metallurgy
RU2311263C1 (en) Method for making sintered metallic articles with compacted surface
JPS63250405A (en) Production of high strength product of powder
JP2014001427A (en) Method of manufacturing sintered component
KR101874608B1 (en) A method of producing a connecting rod
JPH03226504A (en) Manufacture of high density titanium alloy powder sintered product
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JPS5871302A (en) Production of high density sintered material
JPS6144103A (en) Production of connecting rod
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder
JP6228733B2 (en) Induction hardening method of iron-based sintered body
JPS63190102A (en) Production of sintered and forged product of aluminum alloy
JP2000017307A (en) Production of sintered member
JPS63183104A (en) Method for superplastic warm die pack forging of high-strength hard-to-work material
SU1007831A1 (en) Method of producing metallic powder articles
JPS61264101A (en) Production of high-strength sintered member
JPS6156204A (en) Production of high-strength sinter-forged member
RU2508961C2 (en) Method of making 3d complex-shape nanostructured structural and functional materials
JPS6245008B2 (en)