JPS63250192A - Method of providing continuity of conductor in double-sided printed circuit - Google Patents

Method of providing continuity of conductor in double-sided printed circuit

Info

Publication number
JPS63250192A
JPS63250192A JP8527387A JP8527387A JPS63250192A JP S63250192 A JPS63250192 A JP S63250192A JP 8527387 A JP8527387 A JP 8527387A JP 8527387 A JP8527387 A JP 8527387A JP S63250192 A JPS63250192 A JP S63250192A
Authority
JP
Japan
Prior art keywords
welding
conductor
double
sided printed
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8527387A
Other languages
Japanese (ja)
Inventor
佐圓 元
佳久 森
俊彦 杉本
大家 義幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP8527387A priority Critical patent/JPS63250192A/en
Publication of JPS63250192A publication Critical patent/JPS63250192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は両面プリント配線板における導体導通方法の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a method for conducting conductors in a double-sided printed wiring board.

〈従来の技術〉 両面プリント配線板においては導体回路形成にあたり、
両面の導電体パターンを所定の箇所で電気的に導電する
必要がある。
<Conventional technology> When forming conductor circuits on double-sided printed wiring boards,
The conductor patterns on both sides must be electrically conductive at predetermined locations.

この導電方法として、(A>両面プリント配線板の上記
所定箇所を導体溶接可能温度に加熱せるチップで加圧し
、このチップによって両導体を溶接する方法、あるいは
、(B)両面プリント配線板の所定箇所を、プローブ電
極で加圧すると共に通電を行い、両導体を溶接する方法
が知られてくる。
This conduction method includes (A) a method of pressurizing the above-mentioned predetermined location of the double-sided printed wiring board with a chip that heats the conductor to a temperature that allows conductor welding, and welding both conductors with this chip, or (B) a method of welding both conductors with the tip. A method has become known in which both conductors are welded by pressurizing the location with a probe electrode and energizing the location.

〈解決しようとする問題点〉 しかしながら、(A)の方法では、溶接すべき箇所の両
扉体間の基板が炭化し、この炭化による低流動性のため
に、上記加圧による両扉体間からの介在物(基板材料)
の完全な排除が困難であり、低抵抗導通性、高溶接強度
を保証し難い。また、(B)の方法μおいては、用いる
絶縁′層の厚さに結果が大きく左右されるという問題が
あり、実用的な方法ではない。
<Problem to be solved> However, in method (A), the substrate between the two door bodies at the location to be welded is carbonized, and due to the low fluidity due to this carbonization, the welding between the two door bodies due to the above-mentioned pressurization is Inclusions from (substrate material)
It is difficult to completely eliminate this, and it is difficult to guarantee low resistance conductivity and high welding strength. Furthermore, method (B) μ has the problem that the results are largely dependent on the thickness of the insulating layer used, and is not a practical method.

本発明の目的は、低抵抗導通性、強溶接強度を確保でき
る両面プリント配線板における導体導通方法を提供する
ことにある。
An object of the present invention is to provide a method for conducting conductors in a double-sided printed wiring board that can ensure low resistance conductivity and strong welding strength.

く問題点を解決するための技術的手段〉本発明に係る両
面プリント配線板における導体導通方法は、絶縁板の両
面に導電体パターンを形成し、両面の導電体パターンを
所定の箇所で溶接する方法において、上記の所定箇所を
導電体の融点よりは低温で、かつ、絶縁板の融点よりも
高温の加熱下で加圧減厚し、而るのち、その箇所の善導
体を溶接することを特徴とする方法である。
Technical Means for Solving the Problems> The conductor continuity method in a double-sided printed wiring board according to the present invention involves forming conductor patterns on both sides of an insulating board, and welding the conductor patterns on both sides at predetermined locations. The method involves reducing the thickness of the above-mentioned predetermined area under pressure at a temperature lower than the melting point of the conductor and higher than the melting point of the insulating plate, and then welding the good conductor at that point. This method is characterized by

〈実施例の説明〉 以下、図面により本発明を説明する。<Explanation of Examples> The present invention will be explained below with reference to the drawings.

第1図は本発明により導体導通加工を施す直前の両面プ
リント配線板であり、通常、導体回路パターンの形成を
終了したものを対象とする。
FIG. 1 shows a double-sided printed wiring board immediately before being subjected to conductor conduction processing according to the present invention, and is usually intended for a board on which the formation of a conductor circuit pattern has been completed.

絶縁基板1には、通常ポリエチレン、ポリエチレンテレ
フタレートフィルム等の熱可塑性樹脂フ51.  イル
ム(厚さ2μm〜1000μm)を使用でき、導体2に
は、金、銀、銅、アルミニウム、ニッケル1、  鉄の
メッキ層、または金属箔(厚さ5μm〜1000μm)
を使用できる。
The insulating substrate 1 is usually coated with a thermoplastic resin film 51 such as polyethylene or polyethylene terephthalate film. For the conductor 2, a plating layer of gold, silver, copper, aluminum, nickel 1, iron, or metal foil (thickness 5 μm to 1000 μm) can be used.
can be used.

第1図において、Aを善導体2.2の導通予定箇所とし
、この箇所を導体の融点よりも低温で、かつ、絶縁基板
の融点よりも高温の加熱温度下で、第2図並びに第3図
に示すようにヒーターチップ3により加圧減厚する。
In Fig. 1, A is the planned conduction point of the good conductor 2.2, and this point is heated at a temperature lower than the melting point of the conductor and higher than the melting point of the insulating substrate. As shown in the figure, the heater chip 3 applies pressure to reduce the thickness.

この加熱下での加圧により、絶縁基板lが熔融し、両扉
体2.2間から絶縁基板が流動排除される。而して、両
導体間から介在物を除去して、善導体を接触させ得る。
Due to this pressurization under heating, the insulating substrate 1 is melted, and the insulating substrate 1 is fluidly removed from between both door bodies 2.2. In this way, the inclusions can be removed from between the two conductors and the good conductors can be brought into contact.

而るのちは、第4図に示すように善導体の接触箇所にプ
ローブ電極4.4を所定の接触圧のもとで当接し、抵抗
溶接法により通電発熱を利用して善導体を溶接する。抵
抗溶接法の他、超音波溶接法、ビーム溶接法等も使用で
きる。
After that, as shown in Figure 4, the probe electrode 4.4 is brought into contact with the contact point of the good conductor under a predetermined contact pressure, and the good conductor is welded using the heat generated by current through resistance welding. . In addition to resistance welding, ultrasonic welding, beam welding, etc. can also be used.

上記第2図の段階での所定箇所の加熱加圧には、■型ヒ
ーターチップ電極を使用できる・、この電極の加圧力が
設定値以上になると、V型ヒーターチップ電極に抵抗溶
接m電源から通電される。この加圧力の設定値は、通常
、0.1〜100 kgであり、電極への通電時間は、
0.001秒〜1分である。■型ヒーターチップ電極に
おける先端部分の寸法は、0.5 Xo、5mm”以上
10 X 10a++s”以下である。抵抗溶接機には
、交流型抵抗溶接機又は、定温型抵抗溶接機を用いるこ
とができる。
A type heater tip electrode can be used to heat and press the predetermined location in the step shown in Figure 2 above. When the pressure of this electrode exceeds the set value, resistance welding is applied to the V type heater tip electrode from the m power source. Power is applied. The setting value of this pressurizing force is usually 0.1 to 100 kg, and the time for energizing the electrode is:
It is 0.001 seconds to 1 minute. The dimensions of the tip of the (2) type heater tip electrode are 0.5 Xo, 5 mm" or more and 10 X 10a++s" or less. As the resistance welding machine, an AC resistance welding machine or a constant temperature resistance welding machine can be used.

抵抗溶接におけるプローブ電極4.4の加圧力は、通常
0.1〜1000kgの範囲で、溶接エネルギーは、通
常0.1〜100OWsの範囲で、溶接時間は通常0.
001〜0.1秒の範囲内である。
The pressing force of the probe electrode 4.4 in resistance welding is usually in the range of 0.1 to 1000 kg, the welding energy is usually in the range of 0.1 to 100 OWs, and the welding time is usually in the range of 0.1 to 1000 OWs.
It is within the range of 0.001 to 0.1 seconds.

また、超音波溶接法においては、裏面の導電体の下にア
ンビル6を置き、表面の導電体の上からホーン5を置き
、加圧、振動させると表裏の導電体は溶接される(第5
図参照)。この時の加圧力は、0.1〜1000kgの
範囲内で、周波数は、10〜100KHzの範囲内で、
ホーン振幅は、5〜500 pm’−’の範囲内で、溶
接時間は、0.1〜10秒の範囲内でそれぞれ選ぶ、又
、ホーンの先端形状は、溶接部の形状に合わせて自由に
選ぶことが出来る。
In addition, in the ultrasonic welding method, an anvil 6 is placed under the conductor on the back side, a horn 5 is placed over the conductor on the front side, and the front and back conductors are welded by applying pressure and vibration.
(see figure). The pressing force at this time is within the range of 0.1 to 1000 kg, and the frequency is within the range of 10 to 100 KHz.
The horn amplitude is selected within the range of 5 to 500 pm'-', the welding time is selected within the range of 0.1 to 10 seconds, and the shape of the tip of the horn can be freely selected according to the shape of the welded part. You can choose.

この溶接時の状態は必らずしも明らかではないが、超高
波による加熱の結果、溶融接合するのではなく、超音波
による加熱、振動の結果、界面の導体が一体化するので
はないかと考えられている。
Although the state during welding is not necessarily clear, it is possible that the conductors at the interface become integrated as a result of ultrasonic heating and vibration, rather than melting and joining as a result of heating by ultrahigh waves. It is considered.

実施例 厚さ125 μ鋼のポリエチレンテレフタレートフィル
ムの表面と裏面に厚さ300μmの銅板を接着剤バイロ
ンを用いて接着し、プリント配線板を形成し、これを塩
化第二鉄でエツチングし、導体パターンを形成した。
Example A printed wiring board was formed by bonding a 300 μm thick copper plate to the front and back surfaces of a 125 μm thick polyethylene terephthalate film using Vyron adhesive, and etching this with ferric chloride to form a conductor pattern. was formed.

溶接部分の大きさは、φ4mn+とじ、まず、日本アビ
オニクス(株)製サーモコンドロールウエルダーrcw
115で、日本アビオニクス(株)製■型ヒーターチッ
プ電極IT’−16−2(先端形状1.6 x2mm”
)を取り付けた日本アビオニクス(株)製溶接ヘッドN
A62Cに通電した。通電開始の合図は、V型ヒーター
チップ電極が、被溶接物である銅板を6 kgの圧力で
押したときに、ヘッドから電源に信号を送る事により得
られる。通電時間は、・4秒、V型ヒーターチップ電極
の温度は400℃とした。この作業により、上下銅板間
のポリエチレンテレフタレートフィルムが溶融する0次
に、ポリエチレンテレフタレートフィルムが溶融した部
分を、抵抗溶接機で溶接する。抵抗溶接機は、日本アビ
オニクス(株)製NRW−200(改造品)を用い、加
圧力9に+r、溶接エネルギー240Ws 、溶接時間
0.0028秒で行った。プローブ電極の形状はφ1.
2開である。
The size of the welding part is φ4mm + binding. First, we used a thermochondrol welder rcw manufactured by Nippon Avionics Co., Ltd.
115, ■ type heater tip electrode IT'-16-2 (tip shape 1.6 x 2 mm) manufactured by Nippon Avionics Co., Ltd.
) Welding head N made by Nippon Avionics Co., Ltd.
A62C was energized. The signal to start energization is obtained by sending a signal from the head to the power source when the V-shaped heater tip electrode presses the copper plate to be welded with a pressure of 6 kg. The current application time was 4 seconds, and the temperature of the V-shaped heater chip electrode was 400°C. Through this operation, the polyethylene terephthalate film between the upper and lower copper plates is melted, and the melted portion of the polyethylene terephthalate film is welded using a resistance welding machine. The resistance welding machine was NRW-200 (modified product) manufactured by Nippon Avionics Co., Ltd., and the welding was carried out at a pressure of 9 +r, a welding energy of 240 Ws, and a welding time of 0.0028 seconds. The shape of the probe electrode is φ1.
It is 2 open.

溶接開始の合同は、プローブ電極が、被溶接物である銅
板を9 k+rの圧力で押したときに、ヘッドから電源
に信号を送る事により得る。
The timing to start welding is obtained by sending a signal from the head to the power source when the probe electrode presses the copper plate, which is the object to be welded, with a pressure of 9k+r.

溶接後、溶接部の接触抵抗を測定したところ、lOμΩ
以下であった。次に、溶接部の強度を、(株)島原製作
所製のオートグラフAG−200OAを用いて測定した
。強度の測定は90’方向引き剥がし強度で、引き剥が
し速度は、50■/分で行った。
After welding, the contact resistance of the welded part was measured and found to be lOμΩ.
It was below. Next, the strength of the welded portion was measured using Autograph AG-200OA manufactured by Shimabara Seisakusho Co., Ltd. The strength was measured by peeling strength in the 90' direction, and the peeling rate was 50 cm/min.

プリント配線板溶接部の引き剥がし強度は1.6kgで
あった。
The peel strength of the welded portion of the printed wiring board was 1.6 kg.

実施例2 実施例1と同様の方法で、上下銅板間のポリエチレンテ
レフタレートフィルムを溶融させる。次に、ポリエチレ
ンテレフタレートフィルムがン容融した部分を、超音波
溶接機で溶接する。超音波溶接機は、超音波工業曲製の
USR−60022O8を用い、加圧カフ5kg、ホー
ン振幅38p m”、溶接時間9.5秒のタイマー制御
で行った。ローレットは、ピッチ0.8鶴のマス目形状
の物を用いた。
Example 2 In the same manner as in Example 1, the polyethylene terephthalate film between the upper and lower copper plates is melted. Next, the melted portions of the polyethylene terephthalate film are welded using an ultrasonic welder. The ultrasonic welding machine was USR-60022O8 manufactured by Ultrasonic Kogyoku Co., Ltd., and was controlled by a timer with a pressure cuff of 5 kg, a horn amplitude of 38 pm, and a welding time of 9.5 seconds. A grid-shaped object was used.

溶接後、溶接部の接触抵抗を測定したところ、10μΩ
以下であった。次に溶接部の強度を測定したところ3.
8 kgであった。
After welding, the contact resistance of the welded part was measured and found to be 10 μΩ.
It was below. Next, we measured the strength of the welded part.3.
It weighed 8 kg.

比較例 被溶接部分を日本アビオニクス(株)製溶接ヘッドNA
−6011で加圧し、日本アビオニクスc株)製抵抗溶
接1NRW−200(改造品)で通電した。−1ffl
電開始の合図は、プローブ電極が、被溶接物である銅板
を9 kgの圧力で押したときに、ヘッドから電源に信
号を送る事により得られる。1ffl電時間は、0.0
028秒、溶接エネルギーは、240Ws 、プローブ
電極の先端形状は、φ1.2 mmで°溶接を行った。
Comparative example: The part to be welded was a welding head NA made by Nippon Avionics Co., Ltd.
-6011 and energized using resistance welding 1NRW-200 (modified product) manufactured by Nippon Avionics C Co., Ltd. -1ffl
The signal to start electricity is obtained by sending a signal from the head to the power source when the probe electrode presses the copper plate to be welded with a pressure of 9 kg. 1ffl electric time is 0.0
Welding was performed for 0.28 seconds, the welding energy was 240 Ws, and the tip shape of the probe electrode was φ1.2 mm.

溶接後、溶接箇所の接触抵抗を測定したところ、INΩ
以上であった。
After welding, the contact resistance of the welded area was measured and found to be INΩ.
That was it.

〈発明の効果〉 上述した通り、本発明に係る両面プリント配線板におけ
る導体導通方法は、被溶接箇所の絶縁材を溶融除去した
うえで、両導体を溶接しており、溶接界面への介在物(
絶縁材)の残存をよく排除できるので、溶接部の電気的
導電性を良好に保証できる。
<Effects of the Invention> As described above, in the method for conducting conductors in a double-sided printed wiring board according to the present invention, both conductors are welded after melting and removing the insulating material at the welded area, and there is no possibility of inclusions at the welding interface. (
Since the remaining insulating material can be effectively eliminated, the electrical conductivity of the welded part can be ensured well.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】[Claims] 絶縁板の両面に導電体パターンを形成し、両面の導電体
パターンを所定の箇所で溶接する方法において、上記の
所定箇所を導電体の融点よりは低温で、かつ、絶縁板の
融点よりも高温の加熱下で加圧減厚し、而るのち、その
箇所の両導体を溶接することを特徴とする両面プリント
配線板における導体導通方法。
In a method of forming conductor patterns on both sides of an insulating plate and welding the conductor patterns on both sides at predetermined locations, the above predetermined locations are heated at a temperature lower than the melting point of the conductor and higher than the melting point of the insulating plate. A method for conducting conductors in a double-sided printed wiring board, characterized by reducing the thickness under pressure under heating, and then welding both conductors at that point.
JP8527387A 1987-04-07 1987-04-07 Method of providing continuity of conductor in double-sided printed circuit Pending JPS63250192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8527387A JPS63250192A (en) 1987-04-07 1987-04-07 Method of providing continuity of conductor in double-sided printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8527387A JPS63250192A (en) 1987-04-07 1987-04-07 Method of providing continuity of conductor in double-sided printed circuit

Publications (1)

Publication Number Publication Date
JPS63250192A true JPS63250192A (en) 1988-10-18

Family

ID=13853953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8527387A Pending JPS63250192A (en) 1987-04-07 1987-04-07 Method of providing continuity of conductor in double-sided printed circuit

Country Status (1)

Country Link
JP (1) JPS63250192A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015968A (en) * 2006-07-10 2008-01-24 Dainippon Printing Co Ltd Conductive member for non-contact type data carrier and its manufacturing method and device
JP2009239267A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
JP2014120568A (en) * 2012-12-14 2014-06-30 Showa Denko Packaging Co Ltd Front and back conduction method for wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015968A (en) * 2006-07-10 2008-01-24 Dainippon Printing Co Ltd Conductive member for non-contact type data carrier and its manufacturing method and device
JP2009239267A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
JP2009239266A (en) * 2008-03-03 2009-10-15 Showa Denko Packaging Co Ltd Both-sides conduction method for wiring board
JP2014120568A (en) * 2012-12-14 2014-06-30 Showa Denko Packaging Co Ltd Front and back conduction method for wiring board

Similar Documents

Publication Publication Date Title
US6908318B2 (en) Batch electrically connecting sheet
US5511719A (en) Process of joining metal members
JP2001007511A (en) Method for joining wiring boards, production of data carrier, and device for mounting module of electronic part
EP0870346B1 (en) Electrical connection method
JPH08300169A (en) Ultrasonic deposition method
JPS63250192A (en) Method of providing continuity of conductor in double-sided printed circuit
GB2338200A (en) Ultrasonic soldering
JPH09263079A (en) Electric part element and its printing
CN103004294A (en) Method for surface mounting electronic component, and substrate having electronic component mounted thereon
JPH04186697A (en) Connection method of flexible printed board
EP1415369B1 (en) Batch electrically connecting sheet
JP3715337B2 (en) How to create an electrical circuit
JPS6041429B2 (en) Conductive bonding method between metal and metal foil
JPH0330494A (en) Through-hole forming method for flexible circuit board
JP2002015792A (en) Terminal structure of flexible board and joining method of connection terminal
JPS63126240A (en) Packaging for electronic component
JPS62117391A (en) Connection of circuit substrate
JP2001237526A (en) Connecting method of printed wiring board and metal terminal
JP2003069216A (en) Method for connecting conductive connectors to each other
JPH08340176A (en) Connecting method of lead wire
JPH098453A (en) Ultrasonic connection of insulating substrate with flexible substrate
JP2669478B2 (en) How to connect terminals to a printed wiring board
JP2002158443A (en) Multilayer circuit board manufacturing method and press device
JPH01260885A (en) Method for conducting conductors of double-side printed board
JPH03241787A (en) Formation of through-hole continuity by welding