JPS6324948B2 - - Google Patents

Info

Publication number
JPS6324948B2
JPS6324948B2 JP55130939A JP13093980A JPS6324948B2 JP S6324948 B2 JPS6324948 B2 JP S6324948B2 JP 55130939 A JP55130939 A JP 55130939A JP 13093980 A JP13093980 A JP 13093980A JP S6324948 B2 JPS6324948 B2 JP S6324948B2
Authority
JP
Japan
Prior art keywords
porcelain
barium titanate
plane
barium
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55130939A
Other languages
Japanese (ja)
Other versions
JPS5756380A (en
Inventor
Yasutaka Horibe
Masaki Inada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55130939A priority Critical patent/JPS5756380A/en
Publication of JPS5756380A publication Critical patent/JPS5756380A/en
Publication of JPS6324948B2 publication Critical patent/JPS6324948B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は特定の結晶方位が一定面内に配向した
チタン酸バリウム磁器の製造方法を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing barium titanate porcelain in which a specific crystal orientation is oriented in a constant plane.

チタン酸バリウムを主成分とする焼結磁器は、
コンデンサや圧電部品材料として広汎に使用され
ており、それぞれの用途に応じて種々の添加物や
工程条件の検討を加えることにより、電気的諸特
性の改善がなされている。電気的諸特性を向上す
る方法として、結晶の電気的特性の異方性を利用
することも可能である。チタン酸バリウムの場
合、周知のごとく、正方晶相のa軸方向とc軸方
向とで誘電率や圧電特性が著しく異なる。従つて
結晶粒子の結晶方位を制御することにより、チタ
ン酸バリウム焼結磁器の電気的性質の制御が可能
である。しかしながらチタン酸バリウム焼結磁器
の作製において、出発原料として、特定の粒子形
状および結晶方位を有する二酸化チタン(TiO2
や酸化バリウム(BaO)、炭酸バリウム
(BaCO3)等のバリウム化合物の粉末が得られて
いなかつたため、結晶方位の制御された配向性焼
結磁器を作製することは不可能であつた。
Sintered porcelain whose main component is barium titanate is
It is widely used as a material for capacitors and piezoelectric parts, and its electrical properties have been improved by examining various additives and process conditions depending on each application. It is also possible to utilize the anisotropy of the electrical properties of crystals as a method of improving electrical properties. In the case of barium titanate, as is well known, the dielectric constant and piezoelectric properties are significantly different between the a-axis direction and the c-axis direction of the tetragonal phase. Therefore, by controlling the crystal orientation of crystal grains, it is possible to control the electrical properties of barium titanate sintered porcelain. However, in the production of barium titanate sintered porcelain, titanium dioxide (TiO 2 ) with a specific grain shape and crystal orientation is used as a starting material.
Because barium compound powders such as barium oxide (BaO), barium carbonate (BaCO 3 ), etc., had not been obtained, it was impossible to produce oriented sintered porcelain with controlled crystal orientation.

本発明はこのような欠点を除去し、特定の結晶
方位が一定面内に配向したチタン酸バリウム磁器
の製造方法を提供するものである。具体的には例
えばチタン酸バリウムを作製するにあたり、板状
の粒子形状を有する二酸化チタンに着目した。す
なわち四塩化チタン(TiCl4)―酸素(O2)―窒
素(N2)からなる混合ガスを高温中で反応させ
ることにより、C面が発達した板状形状を有する
アナターゼ型の結晶構造を有する二酸化チタン粒
子を得ることができる。かかる二酸化チタンとバ
リウムを含有する化合物、有機結合剤、可塑剤、
溶剤を混練した後、押出成形法あるいは、ロール
成形法を用いて一軸性の加圧下で成形した成形体
を焼結することにより、特定の結晶方位が一定面
内に配向したチタン酸バリウム焼結磁器が得られ
るものである。このようにして得られたチタン酸
バリウム焼結磁器においては、成形時の加圧方向
に垂直な方向と平行な方向とで誘電率が異なるな
どの電気的異方性を示すことが確認された。かか
る磁器ないしは、これに微量の添加物を含有する
磁器を用いることにより、コンデンサ材料の容量
の向上等をはかることが可能となるなど、本発明
による実用上の効果は、きわめて大なるものがあ
る。
The present invention eliminates these drawbacks and provides a method for manufacturing barium titanate porcelain in which specific crystal orientations are oriented in a constant plane. Specifically, when producing barium titanate, for example, we focused on titanium dioxide having a plate-like particle shape. In other words, by reacting a mixed gas consisting of titanium tetrachloride (TiCl 4 ), oxygen (O 2 ), and nitrogen (N 2 ) at high temperatures, it has an anatase crystal structure with a plate-like shape with a developed C-plane. Titanium dioxide particles can be obtained. Compounds containing such titanium dioxide and barium, organic binders, plasticizers,
After kneading a solvent, the molded body is sintered under uniaxial pressure using an extrusion molding method or a roll molding method, resulting in barium titanate sintered with a specific crystal orientation oriented in a constant plane. Porcelain is what you get. It was confirmed that the barium titanate sintered porcelain obtained in this way exhibits electrical anisotropy such that the dielectric constant is different in the direction perpendicular to and parallel to the direction of pressure applied during molding. . By using such porcelain or porcelain containing a small amount of additives, the practical effects of the present invention are extremely large, such as the ability to improve the capacity of capacitor materials. .

以下実施例にもとづいて詳細に説明する。 A detailed explanation will be given below based on examples.

実施例 四塩化チタン(TiCl4)―酸素(O2)―窒素
(N2)の各濃度が3.9vol%、49.0vol%、47.1vol%
となるよう配合した混合ガスを200ml/minの速
度で980℃の加熱部を通過させ、白色粉体を得た。
この粉体をX線回折により相解折を行なうととも
に、その粒子形状を走査型電子顕微鏡により観察
した。その結果、この粉体はアナターゼ型の結晶
構造をもち、一辺が0.5〜1.0μmの板状形状を有し
ていることがわかつた。また電子線回折測定の結
果から、C面が発達した板状形状粒子であること
が確認された。この二酸化チタンと、平均粒径が
0.2μm以下の微細な酸化バリウムが等モル比とな
るよう秤量した後、混合した。かかる混合粉100
重量部に対して、ブチラール樹脂10重量部、フタ
ル酸ジ―n―ブチル(DBP)10重量部及びイソ
プロピルアルコール15重量部を添加し、ミキシン
グロールで充分に混練した後、押出成形法によ
り、600Kg/cm2の圧力で、厚さ0.6mm、巾1.5cmの生
シートのテープを作製した。かかる生シートテー
プを、3.0cmの長さに切断して、1.5×3.0cm2のシー
トを多数作製し、これらを30枚重ねあわせた後、
金型に入れ、100℃で50Kg/cm2の圧力で圧着成形を
行ない、縦1.5cm、横3.0cm、厚さ約1.3cmの角型成
形体を作製した。この成形体を400℃で10時間保
持して、有機結合剤等を飛散させ、しかる後、
1300℃で2時間焼結することにより、角型の焼結
磁器を作製した。この焼結磁器の一番面積の大き
い面、すなわち、押出成形時において、押出方向
に垂直な面(今後A面と呼ぶ)についてX線回折
を行つた結果、(001)(002)などのC面の回折強
度が著しく大きくなり、一方他の面の回折強度が
著しく小さくなつた。正方晶系の全回折強度の積
分強度の総和Itに対するC面の回折線の積分強度
の総和Icの比Ic/Itは、従来のチタン酸バリウム
焼結磁器に比べて6倍以上の値を示した。このこ
とは、本実施例に示したチタン酸バリウム焼結磁
器のA面はC面配向していることを示している。
Example The respective concentrations of titanium tetrachloride (TiCl 4 ), oxygen (O 2 ), and nitrogen (N 2 ) are 3.9 vol%, 49.0 vol%, and 47.1 vol%.
A mixed gas blended so that
This powder was subjected to phase analysis using X-ray diffraction, and its particle shape was observed using a scanning electron microscope. As a result, it was found that this powder had an anatase crystal structure and a plate-like shape with a side of 0.5 to 1.0 μm. Further, from the results of electron beam diffraction measurement, it was confirmed that the particles were plate-shaped particles with a developed C-plane. This titanium dioxide and the average particle size are
Fine barium oxide particles of 0.2 μm or less were weighed and mixed in an equimolar ratio. Mixed powder takes 100
Based on the weight part, 10 parts by weight of butyral resin, 10 parts by weight of di-n-butyl phthalate (DBP) and 15 parts by weight of isopropyl alcohol were added, and after sufficiently kneading with a mixing roll, it was extruded to produce 600 kg. A green sheet tape with a thickness of 0.6 mm and a width of 1.5 cm was produced under a pressure of /cm 2 . The raw sheet tape was cut to a length of 3.0 cm to produce a large number of 1.5 x 3.0 cm 2 sheets, and 30 of these were stacked together.
It was placed in a mold and pressure-molded at 100° C. with a pressure of 50 kg/cm 2 to produce a rectangular molded product measuring 1.5 cm long, 3.0 cm wide and about 1.3 cm thick. This molded body was held at 400℃ for 10 hours to scatter the organic binder, and then
Square sintered porcelain was produced by sintering at 1300°C for 2 hours. As a result of performing X-ray diffraction on the surface with the largest area of this sintered porcelain, that is, the surface perpendicular to the extrusion direction during extrusion molding (hereinafter referred to as A surface), it was found that C The diffraction intensity of one surface became significantly larger, while the diffraction intensity of the other surfaces became significantly smaller. The ratio Ic/It of the total integrated intensity Ic of the C-plane diffraction lines to the total integrated intensity It of the total diffraction intensity of the tetragonal system is more than 6 times that of conventional barium titanate sintered porcelain. Ta. This indicates that the A-plane of the barium titanate sintered porcelain shown in this example is oriented in the C-plane.

次に焼結体磁器のA面に銀を0.5μmの厚みに蒸
着し、誘電率を測定した結果、室温での誘電率は
500であり、無配向のチタン酸バリウム磁器に比
べて約1/3となることがわかつた。一方A面と垂
直な面の一つと、それに相対する面にも同様に銀
電極を設け、室温での誘電率を測定した結果、そ
の値は約2800であり、無配向のチタン酸バリウム
磁器に比べて約1.8倍以上も大きくなることがわ
かつた。
Next, silver was evaporated to a thickness of 0.5 μm on the A side of the sintered porcelain, and the dielectric constant was measured. As a result, the dielectric constant at room temperature was
500, which is approximately 1/3 that of non-oriented barium titanate porcelain. On the other hand, silver electrodes were similarly placed on one of the planes perpendicular to the A plane and on the opposite plane, and the dielectric constant was measured at room temperature.The value was approximately 2800, which is the same as that of non-oriented barium titanate porcelain. It was found that the size is about 1.8 times larger than that of the previous one.

また誘電的及び圧電的性質を制御するために従
来から用いられているMgO、SiO2、SrO、
La2O3、Bi2O2、MnO2、CoO、Cr2O3などの微量
成分を添加しても何らさしつかえないことは言う
までもない。さらに一軸性の加圧法として本実施
例では、押出成形法を用いたが、この他、ロール
法を用いても、同様の配向性の制御が可能である
ことも明らかである。
In addition, MgO, SiO 2 , SrO, which has been traditionally used to control dielectric and piezoelectric properties,
It goes without saying that there is no harm in adding trace components such as La 2 O 3 , Bi 2 O 2 , MnO 2 , CoO, Cr 2 O 3 . Furthermore, although an extrusion molding method was used in this example as a uniaxial pressing method, it is clear that similar control of orientation is also possible by using a roll method.

以上の実施例からも明らかなように、本発明に
よればC面が発達した板状形状を有する二酸化チ
タンとバリウムを含有する化合物(たとえば酸化
バリウムあるいは炭酸バリウム等)、有機結合剤、
可塑剤、及び溶剤を混練した後、一軸性の加圧下
で成形体ないしは、これをさらに任意形状に再生
形した成形体を焼結することにより、正方晶相の
C面配向したチタン酸バリウム焼結磁器を作るこ
とが可能である。このような磁器においては、結
晶粒子の配向度を調節することにより、誘電率を
制御できるという大きな特徴がある。またこの結
果、かかるチタン酸バリウム焼結磁器を用いるこ
とにより、従来得ることの出来なかつた種々の誘
電性を有するコンデンサや圧電応用部品の作製が
可能になるほど、本発明の効果は非常に大きいも
のである。
As is clear from the above examples, according to the present invention, a compound containing titanium dioxide and barium (such as barium oxide or barium carbonate) having a plate-like shape with a developed C-plane, an organic binder,
After kneading the plasticizer and the solvent, the molded product or the molded product further regenerated into an arbitrary shape is sintered under uniaxial pressure to produce barium titanate sintered with a C-plane orientation in the tetragonal phase. It is possible to make porcelain ware. A major feature of such ceramics is that the dielectric constant can be controlled by adjusting the degree of orientation of crystal grains. Furthermore, as a result, the effects of the present invention are so great that by using such barium titanate sintered porcelain, it is possible to manufacture capacitors and piezoelectric application parts having various dielectric properties that could not be obtained conventionally. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 C面が発達した板状形状を有する二酸化チタ
ン、バリウムを含有する化合物、有機結合剤、可
塑剤及び溶剤を混練した後、一軸性の加圧下で成
形した成形体を焼成することを特徴とするチタン
酸バリウム磁器の製造方法。
1. After kneading titanium dioxide having a plate-like shape with a developed C-plane, a barium-containing compound, an organic binder, a plasticizer, and a solvent, the molded product is fired under uniaxial pressure. A method for manufacturing barium titanate porcelain.
JP55130939A 1980-09-19 1980-09-19 Manufacture of barium titanate ceramic Granted JPS5756380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55130939A JPS5756380A (en) 1980-09-19 1980-09-19 Manufacture of barium titanate ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55130939A JPS5756380A (en) 1980-09-19 1980-09-19 Manufacture of barium titanate ceramic

Publications (2)

Publication Number Publication Date
JPS5756380A JPS5756380A (en) 1982-04-03
JPS6324948B2 true JPS6324948B2 (en) 1988-05-23

Family

ID=15046211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55130939A Granted JPS5756380A (en) 1980-09-19 1980-09-19 Manufacture of barium titanate ceramic

Country Status (1)

Country Link
JP (1) JPS5756380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043990A1 (en) 2019-09-04 2021-03-11 Tarsia Antonio A teat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021043990A1 (en) 2019-09-04 2021-03-11 Tarsia Antonio A teat

Also Published As

Publication number Publication date
JPS5756380A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
KR101310450B1 (en) Lead-free piezoelectric ceramic composition with high mechanical quality
JP2006315909A (en) Piezoelectric ceramic
US6627104B1 (en) Mechanochemical fabrication of electroceramics
JP2000272962A (en) Piezoelectric ceramic composition
US3963631A (en) Method of preparing ferroelectric ceramics
JPH11217262A (en) Piezoelectric porcelain composition
KR102576609B1 (en) Producing method of lead-free piezoelectric ceramics with high strains
JPS6324948B2 (en)
KR100875479B1 (en) Lead-free piezoelectric ceramic composition and its manufacturing method
JPS6324950B2 (en)
JP2002348173A (en) Piezoelectric ceramic material and its manufacturing method
KR101671672B1 (en) Lead-free piezoelectric ceramic composition, and preparation method thereof
EP0739866A1 (en) Piezoelectric ceramics
JP2000264727A (en) Piezoelectric ceramics
EP1457469B1 (en) Piezoelectric-electrostrictive material and its production method
KR20150129389A (en) Lead-free piezoelectric ceramic composition and Preparation method thereof
KR20190116690A (en) Lead-free piezoelectric ceramic composition, and preparation method thereof
EP0048536A2 (en) Sintered body of lead titanate and method of manufacturing same
JP3696947B2 (en) Dielectric porcelain composition
JP2841344B2 (en) Piezoelectric ceramic composition
JPS6343339B2 (en)
JP3120191B2 (en) High frequency dielectric ceramic composition
JP2000143339A (en) Piezoelectric substance porcelain composition
JPS6324949B2 (en)
JPH02137727A (en) Production of lead titanate zirconate calcined powder