JPS63248997A - Automatic water supplying device and control thereof - Google Patents

Automatic water supplying device and control thereof

Info

Publication number
JPS63248997A
JPS63248997A JP62082917A JP8291787A JPS63248997A JP S63248997 A JPS63248997 A JP S63248997A JP 62082917 A JP62082917 A JP 62082917A JP 8291787 A JP8291787 A JP 8291787A JP S63248997 A JPS63248997 A JP S63248997A
Authority
JP
Japan
Prior art keywords
pump
water supply
detection means
motor
parallel operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082917A
Other languages
Japanese (ja)
Inventor
Yasushi Shinko
信耕 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62082917A priority Critical patent/JPS63248997A/en
Priority to KR1019880003679A priority patent/KR920003111B1/en
Priority to GB8807901A priority patent/GB2204153B/en
Priority to CN88101956A priority patent/CN1012514B/en
Publication of JPS63248997A publication Critical patent/JPS63248997A/en
Priority to HK513/91A priority patent/HK51391A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • G05D16/2073Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source with a plurality of pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/022Stopping, starting, unloading or idling control by means of pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/029Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0214Number of working motor-pump units

Abstract

PURPOSE:To obtain the uniform operation time and the number of times of operation of a pump by controlling the parallel operation of the pump certainly with high precision in correspondence with the supplied water quantity by comparing the signal supplied from a motor detecting means with the parallel operation control value. CONSTITUTION:As for an automatic water feeding device, a pump 1 equipped with a motor 1a is connected in parallel, and a pressure tank 8 is connected to the discharge side of the pump 1, and a control part 9 controls the operation of the pump by the signal supplied from a pressure detecting means 7. The operation state of the motor 1a is detected by an electric power detecting part (motor detection means) 10, and a calculation part 11a calculates the parallel operation control valve by the signal supplied from the electric power detection part 10 immediately after the start of the single operation of the pump 1, and a comparison part 11b compares said control value with the electric power value detected by the detecting means 10, and the parallel operation of the pump 1 is controlled. Therefore, the start or stop of the parallel operation can be surely controlled with high precision in correspondence with the supplied water quantity, and the dimension of the pressure tank can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動給水装置およびその制御方法、特にポンプ
を並列接続した自動給水装置およびその制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic water supply device and a control method thereof, and more particularly to an automatic water supply device in which pumps are connected in parallel and a control method thereof.

〔従来の技術〕[Conventional technology]

従来のこの種自動給水装置は、第11図に示すようにモ
ータla’ を有するポンプ1′を並列に接続し、ポン
プ1′の吐出側に圧力タンク8′を接続し、ポンプ1′
の吐出側に圧力スイッチ7′を設け、この圧力スイッチ
7′からの信号を受けてポンプ1′の運転開始或いは停
止を制御する制御部9′を備えている。
In the conventional automatic water supply system of this kind, as shown in FIG. 11, pumps 1' having motors la' are connected in parallel, a pressure tank 8' is connected to the discharge side of the pumps 1', and the pumps 1'
A pressure switch 7' is provided on the discharge side of the pump 1', and a control section 9' is provided for controlling the start or stop of operation of the pump 1' in response to a signal from the pressure switch 7'.

この自動給水装置の動作を第12図で説明する。The operation of this automatic water supply device will be explained with reference to FIG.

第12図はポンプ特性図を示し、軸に給水ff1Qを、
縦軸に圧力Hを示す。Hlはポンプ1′の単独運転の給
水量−圧力曲線を示す゛。Hz’  はポンプ1′の並
列運転の給水量−圧力曲線を示す。R1およびrlはポ
ンプ1の負荷曲線を示す。
Figure 12 shows the pump characteristics diagram, with water supply ff1Q on the shaft,
The vertical axis shows pressure H. Hl represents the water supply amount-pressure curve when the pump 1' is operated independently. Hz' indicates the water supply amount-pressure curve of parallel operation of pump 1'. R1 and rl indicate the load curve of pump 1.

両方のポンプ1′が停止状態で、蛇口6a’ から給水
が始まり、圧力タンク8′内の圧力が低下して単独運転
開始圧力Pon(H1′ のa′点)になると、圧力ス
イッチ7′が閉じて1号ポンプ1′が単独運転する。運
転後に給水量が減少し、圧力H1が上昇して単独運転停
止圧力Pozz(Hzのb′点)になると、1号ポンプ
1は停止する。
When both pumps 1' are stopped, water starts to be supplied from the faucet 6a', and the pressure in the pressure tank 8' decreases to the independent operation start pressure Pon (point a' of H1'), the pressure switch 7' is turned on. When closed, the No. 1 pump 1' operates independently. After operation, when the water supply amount decreases and the pressure H1 increases to reach the individual operation stop pressure Pozz (point b' in Hz), the No. 1 pump 1 stops.

前述の1号ポンプ1の運転後に給水量が増加し、圧力H
1が下降して1号ポンプ1のモータ1aが並列運転開始
圧力Pon′ (HlのC′点)になると2号ポンプ1
も追従して運転する。ポンプ1の並列運転はその負荷曲
線R1’  と給水量−圧力曲線Ht’  との交点d
′で運転されることになる。
After the above-mentioned operation of No. 1 pump 1, the water supply amount increases and the pressure H
1 and the motor 1a of the No. 1 pump 1 reaches the parallel operation starting pressure Pon' (point C' of Hl), the No. 2 pump 1
also follow and drive. Parallel operation of pump 1 is performed at the intersection d of its load curve R1' and water supply amount-pressure curve Ht'.
’ will be operated.

この状態で、蛇口6a’ からの給水iQが減少して並
列運転解除圧力Pozz  (I4t’  のf′点)
になると、一方のポンプ1の運転が停止し、単独運転と
なる。尚、この種装置として関連するものには例えば特
公昭59−720号公報が挙げられる。
In this state, the water supply iQ from the faucet 6a' decreases and the parallel operation release pressure Pozz (point f' of I4t')
When this happens, one of the pumps 1 stops operating and becomes an independent operation. Incidentally, related devices of this type include, for example, Japanese Patent Publication No. 59-720.

〔発明が解決しようとする問題点〕 かかる従来の自動給水装置は、ポンプ1の吐出側の圧力
を圧力スイッチ7′で検知し、この圧力スイッチ7′に
よって並列運転を制御しているため、給水量に精度よく
対応して制御できなかった。
[Problems to be Solved by the Invention] In such a conventional automatic water supply device, the pressure on the discharge side of the pump 1 is detected by the pressure switch 7', and parallel operation is controlled by this pressure switch 7'. It was not possible to control the amount accurately.

即ち、ポンプ1′の吐出側の圧力は、ポンプ1′が運転
開始された直後の場合等に実際の給水量に追いつかずに
一時的な低下を伴うことがある。特に、圧力タンク8′
を小形化した場合にこのような一時的な圧力低下を生じ
易い。一時的な圧力低下が生じて並列運転開始圧力p 
on’ まで低下すると、ポンプ1が並列運転を開始す
るが、実際には並列運転をする程の給水量を必要として
いないので、すぐに並列運転解除圧力に達してポンプ1
の一方が停止し、単独運転となる。この単独運転で給水
量がそのままであれば、再度圧力低下が生じて、追従ポ
ンプ1′が運転され、チャタリング現象を生ずる。
That is, the pressure on the discharge side of the pump 1' may not catch up with the actual amount of water supplied, such as immediately after the pump 1' starts operating, and may be accompanied by a temporary drop. In particular, the pressure tank 8'
When downsizing, such a temporary pressure drop is likely to occur. A temporary pressure drop occurs and the parallel operation start pressure p
When the pressure drops to 'on', pump 1 starts parallel operation, but since the water supply amount is not actually required to perform parallel operation, the parallel operation release pressure is immediately reached and pump 1 starts operating in parallel.
One of the two stops and becomes a standalone operation. If the amount of water supplied remains unchanged during this independent operation, the pressure will drop again and the follow-up pump 1' will be operated, causing a chattering phenomenon.

又、かかる自動給水装置は、ポンプ1の並列運転と単独
運転との繰返しの際にポンプ1の運転時間を均一にする
ことについて何等配慮されていなかった。
Further, in this automatic water supply device, no consideration was given to making the operating time of the pump 1 uniform when the pump 1 is repeatedly operated in parallel and independently.

更に、かかる自動給水装置は、ポンプ1へ加わる電圧変
動等によって回転数が変化し、これによって給水量が変
化するという問題点があった。
Furthermore, such an automatic water supply device has a problem in that the rotation speed changes due to changes in the voltage applied to the pump 1, etc., and the amount of water supplied changes accordingly.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第1の手段は、モータを有するポンプを並列に
接続し、前記ポンプの吐出側に圧力タンクを接続し、前
記ポンプの吐出側に圧力検出手段を設け、この圧力検出
手段からの信号を受けて前記ポンプの運転を制御する制
御部を備えた自動給水装置において、前記モータの運転
状態を検知するモータ検出手段を設け、前記ポンプの単
独運転開始直後の前記モータ検出手段からの信号により
演算して並列運転制御値を作る演算部と、前記モータ検
出手段からの(i号を前記並列運転制御値と比較して前
記ポンプの並列運転を制御する比較部とを前記制御部に
備えたことを特徴とする自動給水装置としたものである
A first means of the present invention is to connect pumps each having a motor in parallel, connect a pressure tank to the discharge side of the pump, provide pressure detection means on the discharge side of the pump, and receive a signal from the pressure detection means. The automatic water supply device includes a control unit that controls the operation of the pump in response to a signal, and further includes a motor detection means for detecting the operating state of the motor, and a signal from the motor detection means immediately after the pump starts operating independently. The control unit includes a calculation unit that calculates a parallel operation control value, and a comparison unit that compares (i) from the motor detection means with the parallel operation control value to control parallel operation of the pump. This automatic water supply device is characterized by:

本発明の第2の手段は、モータを有する並列に接続させ
たポンプと、前記ポンプの吐出側に接続された圧力タン
クと、前記ポンプの吐出側に設けられた圧力検出手段と
、前記モータの運転状態を検知するモータ検出手段と、
前記圧力検出手段からの信号を受けて前記ポンプの運転
を制御する制御部とを備え、前記ポンプの単独運転の開
始を前記圧力検出手段からの信号にて行った後、その直
後の前記モータ検出手段からの信号により並列運転制御
値を演算し、しかる後前記モータ検出手段からの信号を
常時前記並列運転制御値と比較して所定の信号になった
時に前記ポンプを並列運転を開始させることを特徴とす
る自動給水装置の制御方法としたものである。
A second means of the present invention includes a pump having a motor connected in parallel, a pressure tank connected to the discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and a pressure tank connected to the discharge side of the pump, a motor detection means for detecting the operating state;
a control unit that controls the operation of the pump in response to a signal from the pressure detection means, and detects the motor immediately after starting independent operation of the pump in response to the signal from the pressure detection means; A parallel operation control value is calculated based on the signal from the motor detection means, and then the signal from the motor detection means is constantly compared with the parallel operation control value, and when a predetermined signal is reached, the pump is started to operate in parallel. This is a characteristic feature of a control method for an automatic water supply device.

本発明の第3の手段は、モータを有する並列に接続させ
たポンプと、前記ポンプの吐出側に接続された圧力タン
クと、前記ポンプの吐出側に設けられた圧力検出手段と
、前記圧力検出手段からの信号を受けて前記ポンプの運
転を制御する制御部とを備えた自動給水装置において、
前記モータの運転状態を検知するモータ検出手段を設け
、前記ポンプの単独運転開始直後の前記モータ検出手段
からの信号により演算して並列運転制御値を作る演算部
と、前記モータ著出手段からの信号を前記並列運転制御
値と比較して前記ポンプの並列運転を制御する比較部と
、前記ポンプの単独運転と並列運転との繰返しの際の単
独運転のポンプを交互になるように制御する位置付は部
とを前記制御部に備えたことを特徴とする自動給水装置
としたものである。
A third means of the present invention includes a pump having a motor connected in parallel, a pressure tank connected to the discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and a pressure detection means provided on the discharge side of the pump. An automatic water supply device comprising: a control unit that controls operation of the pump in response to a signal from the means;
A motor detection means for detecting the operating state of the motor is provided, a calculation section for calculating a parallel operation control value based on a signal from the motor detection means immediately after the start of independent operation of the pump, and a calculation section for generating a parallel operation control value; a comparison unit that controls the parallel operation of the pumps by comparing a signal with the parallel operation control value; and a position that controls the pumps in the individual operation alternately when the individual operation and the parallel operation of the pumps are repeated. The automatic water supply device is characterized in that the control section is equipped with an attached section.

本発明の第4の手段は、モータを有する並列に接続させ
たポンプと、前記ポンプの吐出側に接続された圧力タン
クと、前記ポンプの吐出側に設けられた圧力検出手段と
、前記圧力検出手段からの信号を受けて前記ポンプの運
転を制御する制御部とを備えた自動給水装置において、
前記モータの運転状態を検知するモータ検出手段を設け
、前記ポンプの単独運転開始直後の前記モータ検出手段
からの信号により演算して給水量が一定の並列運転制御
値を作る演算部と、前記モータ検出手段からの信号を前
記並列運転制御値と比較して前記ポンプの並列運転を制
御する比較部とを前記制御部に備えたことを特徴とする
自動給水装置としたものである。
A fourth means of the present invention includes a pump having a motor connected in parallel, a pressure tank connected to a discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and a pressure detection means provided on the discharge side of the pump. An automatic water supply device comprising: a control unit that controls operation of the pump in response to a signal from the means;
a calculation unit that provides a motor detection means for detecting the operating state of the motor, and calculates a parallel operation control value with a constant water supply amount by calculating based on a signal from the motor detection means immediately after the start of independent operation of the pump; The automatic water supply device is characterized in that the control section includes a comparison section that controls parallel operation of the pumps by comparing a signal from the detection means with the parallel operation control value.

〔作用〕[Effect]

かかる自動給水装置によれば、ポンプ(1)の単独運転
開始直後のモータ検出手段(10)からの信号(WS 
)により演算して並列運転制御値(won) 、 (W
att)を作る演算部(lla)とモータ検出手段(1
0)からの信号(WS )をこの並列運転制御値と比較
してポンプ1の並列運転の制御をする比較部(10b)
とを制御部(9)に備えたので、圧力に比較して給水量
(Q)に精度よく対応するモータ検出手段(10)から
の信号(WS )が基準信号となり、しかもこの信号(
WS)から演算された並列運転制御値はポンプ(1)の
吐出側の圧力とは直接的には関係がなく給水量(Q)に
対応させて設定させることができる。これによって給水
量(Q)に対応して精度よく確実に並列運転の制御をす
ることができる。圧力タンク(8)を小形化して給水量
に対応しない圧力低下が一時的に生じても、ポンプ(1
)の並列運転が開始することがない。
According to this automatic water supply device, the signal (WS
) to calculate the parallel operation control value (won), (W
att) and a motor detection means (1).
a comparison unit (10b) that controls the parallel operation of the pump 1 by comparing the signal (WS) from 0) with this parallel operation control value;
Since the control unit (9) is equipped with the signal (WS) from the motor detection means (10), which corresponds more accurately to the water supply amount (Q) than the pressure, the signal (WS) from the motor detection means (10) becomes the reference signal.
The parallel operation control value calculated from WS) is not directly related to the pressure on the discharge side of the pump (1) and can be set in accordance with the water supply amount (Q). As a result, parallel operation can be accurately and reliably controlled in accordance with the water supply amount (Q). Even if the pressure tank (8) is downsized and a pressure drop that does not correspond to the amount of water supplied temporarily occurs, the pump (1)
) parallel operation never starts.

又、かかる自動給水装置によれば、ポンプ(1)の並列
運転と単独運転との繰返しの際に各単独運転におけるポ
ンプ(1)が交互に運転されるので、各ポンプ(1)の
運転時間および運転回数を均一化することができる。
Moreover, according to this automatic water supply device, when the pumps (1) are repeatedly operated in parallel and individually, the pumps (1) in each individual operation are operated alternately, so that the operating time of each pump (1) is reduced. And the number of operations can be equalized.

更には、かかる自動給水装置によれば、ポンプ(1)の
モータ(1a)へ加わる電圧が変動して回転数等が変化
しても、ポンプ(1)の給水量を同一とすることができ
るので、安定した給水量を得ることができる。
Furthermore, according to this automatic water supply device, even if the voltage applied to the motor (1a) of the pump (1) fluctuates and the rotation speed etc. changes, the amount of water supplied by the pump (1) can be kept the same. Therefore, a stable amount of water can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第10図に基づいて
説明する。第1図において、ポンプ1はモータ1aの回
転軸にポンプ部1bの羽根車(図示せず)が直結されて
構成されている。ポンプ1の吸込側には吸込管4が接続
されている。この吸込管4の下端はタンク水3内に至っ
ている。タンク水3は上水道から切離されてタンク内に
貯水されている。ポンプ1吐出側には吐出管5が接続さ
れている。吐出管5には弁5aが設けられている。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 10. In FIG. 1, a pump 1 is configured such that an impeller (not shown) of a pump portion 1b is directly connected to a rotating shaft of a motor 1a. A suction pipe 4 is connected to the suction side of the pump 1. The lower end of this suction pipe 4 reaches into the tank water 3. Tank water 3 is separated from the water supply and stored in a tank. A discharge pipe 5 is connected to the discharge side of the pump 1 . The discharge pipe 5 is provided with a valve 5a.

吐出管5は共通管6に接続されている。共通管6の末端
には蛇口6aが分岐されて多数設けられている(第1図
では2個のみ示されている)。タンク水3と共通管6と
の間にポンプ1が吸込管4および吐出管5を介して2台
並列に接続されている。
The discharge pipe 5 is connected to a common pipe 6. A large number of branched faucets 6a are provided at the end of the common pipe 6 (only two are shown in FIG. 1). Two pumps 1 are connected in parallel between a tank water 3 and a common pipe 6 via a suction pipe 4 and a discharge pipe 5.

ポンプ1は給水量に応じて単独運転および並列運転され
る。一方のポンプ1の吐出管5には圧力検出手段を構成
する圧力スイッチ7および圧力タンク8が設けられてい
る。尚、圧力検出手段は、圧力スイッチ7の代りに圧力
センサでもよい。蛇口6aから給水が始まり、圧力タン
ク8内の水が供給されると、圧力タンク8内の圧力が低
下して圧力スイッチ7が閉じる。圧力スイッチ7からの
信号は制御部9の指示制御部11に入力される。制御部
9にはモータ1aの運転状態を検知するモータ検出手段
を構成する電力検出部10を有している。この電力検出
部10はモータ1aの電力夫々検出し、その検出信号は
指示制御部11に出力される。指示制御部11には、ポ
ンプ1の単独運転開始直後の電力検出部10からの信号
により演算して並列運転制御値を作る演算部11aと、
電力検出部10からの信号を前記並列運転制御値と比較
してポンプ1の並列運転を制御する比較部10bと、前
記ポンプ1の単独運転と並列運転との繰返しの際の単独
運転のポンプ1を交互になるように制御する位置付は部
11cとを備えている。指示制御部11からの信号はモ
ータ1aに夫々出力される。尚、モータ検出手段として
は、電力検出部10の代りに、電流検出部或いは回転数
検出部であってもよい。
The pump 1 is operated independently or in parallel depending on the amount of water supplied. The discharge pipe 5 of one pump 1 is provided with a pressure switch 7 and a pressure tank 8, which constitute pressure detection means. Note that the pressure detection means may be a pressure sensor instead of the pressure switch 7. When water starts to be supplied from the faucet 6a and the water in the pressure tank 8 is supplied, the pressure in the pressure tank 8 decreases and the pressure switch 7 is closed. The signal from the pressure switch 7 is input to the instruction control section 11 of the control section 9 . The control section 9 has a power detection section 10 that constitutes a motor detection means for detecting the operating state of the motor 1a. This power detection section 10 detects the electric power of each motor 1a, and the detection signal is outputted to an instruction control section 11. The instruction control unit 11 includes a calculation unit 11a that calculates a parallel operation control value by calculating based on the signal from the power detection unit 10 immediately after the pump 1 starts to operate independently;
a comparison unit 10b that compares the signal from the power detection unit 10 with the parallel operation control value to control the parallel operation of the pumps 1; and a pump 1 that operates independently when the individual operation and parallel operation of the pump 1 are repeated. A positioning section 11c is provided for controlling the positions alternately. Signals from the instruction control unit 11 are output to the motors 1a, respectively. Note that the motor detecting means may be a current detecting section or a rotation speed detecting section instead of the power detecting section 10.

第2図において、夫々のモータ1aは1つの電源12に
並列に接続されている。この電源回路には電磁接触器1
3・14が夫々接続されている。
In FIG. 2, each motor 1a is connected to one power source 12 in parallel. This power supply circuit has an electromagnetic contactor 1
3 and 14 are connected respectively.

電磁接触器13・14より電源12側の電源回路には電
源検出部10が夫々接続されている。電力検出部10は
電源回路に直列に接続されたコイル15と並列に接続さ
れたホール素子16とその出力側に接続された整流・平
滑回路17とから構成され、ホール素子16の乗算作用
を用いて電力に対応する関係として直流電圧値によって
任、音電力が検知される。整流・平滑回路17の出力側
は第2図■および■で表示しであるが、この■および■
は第3図の■および■に至ることを示す。モータ1aに
は進相用コンデンサ18が接続されている。尚、電力検
出部10は電流検出部であってもよい。
Power supply detection units 10 are connected to the power supply circuits on the side of the power supply 12 from the electromagnetic contactors 13 and 14, respectively. The power detection unit 10 is composed of a coil 15 connected in series to a power supply circuit, a Hall element 16 connected in parallel, and a rectification/smoothing circuit 17 connected to its output side. As a relationship corresponding to the electric power, the electric power and sound power are detected based on the DC voltage value. The output side of the rectifier/smoothing circuit 17 is shown in Figure 2 by ■ and ■.
indicates that the process reaches ■ and ■ in FIG. A phase advance capacitor 18 is connected to the motor 1a. Note that the power detection section 10 may be a current detection section.

第3図において、指示制御部11のマイクロコンピュー
タなどの指示制御素子19を中心に構成されている。電
源12から電源トランス20− II流・平滑回路21
および定′工圧回路22を通して指示制御素子19のv
DD−vssポートに接続されている。指示制御素子1
9の基準タイマーを作るクロック回路23が接続されて
いる。
In FIG. 3, the instruction control unit 11 is mainly configured with an instruction control element 19 such as a microcomputer. From the power supply 12 to the power transformer 20 - II current/smoothing circuit 21
and v of the instruction control element 19 through the constant pressure circuit 22.
Connected to the DD-vss port. Instruction control element 1
A clock circuit 23 that creates a reference timer of 9 is connected.

前述の電磁接触器13・14(第2図)を開閉するため
のコイル24・25は、1回路3接点スイッチ26およ
び圧力スイッチ7の一方の極7aを介して電源12に接
続されている。
Coils 24 and 25 for opening and closing the aforementioned electromagnetic contactors 13 and 14 (FIG. 2) are connected to power source 12 via one circuit three-contact switch 26 and one pole 7a of pressure switch 7.

指示制御素子19への入力は、ポー1〜PIO。Inputs to the instruction control element 19 are PIO1 to PIO.

P2O,P41から行なわれる。ボー1〜P10には圧
力スイッチ7の他方の極7bの回路が接続されている。
It is performed from P2O and P41. The circuit of the other pole 7b of the pressure switch 7 is connected to Baud 1 to P10.

ボートP40およびP41にはモータ1の電力検出部1
0の出力側(■および■)がコンパレータ27・28を
介して接続されている。D/Aコンバータ29は、ボー
トP30゜P31.P32.P33のデジタル値をアナ
ログ値に変換し、判断する電力値に対応する電圧を発生
させてコンパレータ27・28に入力する。コンパレー
タ27・28はモータ1aの電力検出部10の出力が所
定値に達したかどうかを比較してその結果をボートP4
0に入力する。
The boats P40 and P41 have a power detection unit 1 for the motor 1.
The output sides (■ and ■) of 0 are connected via comparators 27 and 28. The D/A converter 29 is connected to the boat P30°P31. P32. The digital value of P33 is converted into an analog value, and a voltage corresponding to the power value to be determined is generated and input to the comparators 27 and 28. Comparators 27 and 28 compare whether the output of the power detection unit 10 of the motor 1a has reached a predetermined value and send the result to the boat P4.
Enter 0.

電源トランス2oの2次側にゼロクロスタイミング入力
回路30の一側が接続され、他側が指示制御素子19の
ボートINTに接続されている。
One side of the zero-cross timing input circuit 30 is connected to the secondary side of the power transformer 2o, and the other side is connected to the boat INT of the instruction control element 19.

指示制御素子19のボートP20− P21からゼロク
ロスのタイミングにより信号が出力され、フォトトライ
アック31・32を介してスイッチング素子のトライア
ック33・34を駆動するように接続されている。トラ
イアック33・34は1回路3接点スイッチ26のコイ
ル24・25が接続されている極と並列に接続されてい
る。1回路3接点スイッチ26を切換えることにより、
指示制御素子19からの指示制御信号にかかわらず。
A signal is outputted from the ports P20-P21 of the instruction control element 19 at zero-cross timing, and is connected to drive triacs 33 and 34 of switching elements via phototriacs 31 and 32. The triacs 33 and 34 are connected in parallel with the poles to which the coils 24 and 25 of the one-circuit three-contact switch 26 are connected. By switching the 1 circuit 3 contact switch 26,
Regardless of the instruction control signal from instruction control element 19.

或いは故障などで指示制御信号が無い場合でも、圧力ス
イッチ7の一方の極7aの開閉によってコイル24・2
5の通電・停止が行なわれ、これによりポンプ1の運転
・停止が行なわれる。
Alternatively, even if there is no instruction control signal due to a malfunction, the coils 24 and 2 can be turned on or off by opening and closing one pole 7a of the pressure switch 7.
5 is energized/stopped, and the pump 1 is thereby started/stopped.

かかる自動給水装置の概略動作を第4図で説明する。第
4図はポンプ特性図を示し、横軸に給水量Qを、縦軸に
圧力Hおよび電力Wを示す。Hlはポンプ1の単独運転
の給水量−圧力曲線を示す。
The general operation of such an automatic water supply device will be explained with reference to FIG. FIG. 4 shows a pump characteristic diagram, in which the horizontal axis shows the water supply amount Q, and the vertical axis shows the pressure H and the electric power W. Hl indicates a water supply amount-pressure curve when pump 1 is operated independently.

H1′  はポンプ1の並列運転の給水量−圧力曲線を
示す。Wlはポンプ1の給水量−電力曲線を示す。R工
およびrlはポンプ1の負荷曲線を示す。
H1' indicates a water supply amount-pressure curve when pump 1 is operated in parallel. Wl indicates the water supply amount-power curve of pump 1. R and rl indicate the load curve of pump 1.

両方のポンプ1が停止状態で、蛇口6aから給水が始ま
り、圧力タンク8内の圧力が低下して単独運転開始圧力
Pon(Hlのa点)になると、圧力スイッチ7が閉じ
て1号ポンプ1が単独運転する。
When both pumps 1 are stopped, water starts to be supplied from the faucet 6a, and the pressure in the pressure tank 8 decreases to the independent operation start pressure Pon (point a of Hl), the pressure switch 7 closes and the No. 1 pump 1 drives alone.

運転後に給水量が減少し、圧力H1が上昇して単独運転
停止圧力Pozz  (Htのb点)になると、1号ポ
ンプ1は停止する。前述した1号ポンプ1の運転後に給
水量が増加し、圧力H1が下降して1号ポンプ1のモー
タ1aが並列運転開始電力Won(HlのC点)になる
と、2号ポンプ1も追従して運転する。ポンプ1の並列
運転は、その負荷曲線R1と給水量−圧力曲線H1’ 
 との交点dで運転されることになる。この状態で、蛇
口6aからの給水量Qが減少してポンプ1のモータ1a
が並列運転解除電力Wotz  (Hlのf点)になる
と、先行した1号ポンプ1の運転が停止し、追従した2
号ポンプ1の単独運転となる。
After operation, when the water supply amount decreases and the pressure H1 rises to the individual operation stop pressure Pozz (point b of Ht), the No. 1 pump 1 stops. After the above-mentioned operation of the No. 1 pump 1, the water supply amount increases, the pressure H1 decreases, and the motor 1a of the No. 1 pump 1 reaches the parallel operation start power Won (point C of Hl), and the No. 2 pump 1 also follows. drive. Parallel operation of pump 1 is based on its load curve R1 and water supply amount-pressure curve H1'
The vehicle will be operated at the intersection d. In this state, the amount of water supplied from the faucet 6a decreases, causing the motor 1a of the pump 1 to
When the parallel operation cancellation power Wotz (point f of Hl) is reached, the preceding No. 1 pump 1 stops operating, and the following No. 2 pump stops operating.
No. 1 pump will operate independently.

次にかかる自動給水装置の制御方法を第5図〜第7図で
説明する。第5図はメインルーチンを示す。電′g12
を閉じることにより処理がスタートし、まず初期設定が
行なわれる(500)。この初期設定は、指示制御素子
19上のランダム・アクセスメモリにF、S、Jのパラ
メータエリアを確保し、F=O,S=O,J=Oを’F
J定する。Fは1号ポンプ制御用、Sは2号ポンプ制御
用、Jは並列運転判定用のパラメータである。次いで、
圧力スイッチ7の圧力Ponを待ち、POn圧力になれ
ばポンプ1を稼動させるサブルーチンに至る(510)
Next, a method of controlling such an automatic water supply device will be explained with reference to FIGS. 5 to 7. FIG. 5 shows the main routine. Den'g12
The process starts by closing the , and initial settings are first performed (500). This initial setting secures parameter areas for F, S, and J in the random access memory on the instruction control element 19, and sets F=O, S=O, and J=O to 'F'.
Determine J. F is a parameter for controlling the No. 1 pump, S is a parameter for controlling the No. 2 pump, and J is a parameter for determining parallel operation. Then,
Waits for the pressure Pon of the pressure switch 7, and when the pressure reaches POn, a subroutine is reached in which the pump 1 is operated (510).
.

第6図は稼動サブルーチンを示す。稼動サブルーチンで
は、まずFパラメータが1かどうかを判定しく600)
、F=1の場合には1号ポンプ1が先行運転され(61
0)、F≠1の場合には2号ポンプ1が先行運転され(
620)、その直後に運転されたポンプ1のモータ1a
の電力Ws を検知しく630)、この検知電力Ws 
工を基準にして並列運転開始電力W o nおよび並列
運転解除電力W o t i を演算して求め(640
)、メインルーチンに戻る。メインルーチンに戻った後
は、並列制御のサブルーチンに飛ぶ(530)。
FIG. 6 shows the operating subroutine. In the operation subroutine, first determine whether the F parameter is 1 (600).
, in the case of F=1, No. 1 pump 1 is operated in advance (61
0), if F≠1, No. 2 pump 1 is operated in advance (
620), the motor 1a of the pump 1 operated immediately after that
630), this detected power Ws
The parallel operation starting power W o n and the parallel operation canceling power W o t i are calculated and determined based on the
), return to the main routine. After returning to the main routine, the program jumps to the parallel control subroutine (530).

第7図は並列制御サブルーチンを示す。並列制御サブル
ーチンでは、運転中のポンプ1のモータ1aの電力Ws
 を検知しく710)、この電力Wsと並列運転開始電
力Wonとを比較しく720)、Ws≧W o nなら
ば先行して単独運転しているポンプ1をFパラメータで
判定する(730)。FパラメータがF=1ならば運転
されていない方の2号ポンプ1を追従して稼動しく74
0) 、F≠1ならば運転されていない方の1号ポンプ
1を追従して稼動する(750)、Lかる後、並列運転
中であることを示すためにJパラメータを「1」にしく
760)、メインルーチンに戻る。前述したモータ1a
の検知電力W5と設定電力Wonとを比較して(720
) 、Ws <WonならばFパラメータがJ=1であ
るかを比較しく770)、J≠1(単独運転中)ならば
メインルーチンに戻り、J=1(並列運転中)ならば検
知電力Wsと並列運転解除電力W o t工とを比較す
る(771)。Ws> W o z xならばメインル
ーチンに戻り、Ws≦W o t nならばFパラメー
タを判定する(772)。
FIG. 7 shows the parallel control subroutine. In the parallel control subroutine, the electric power Ws of the motor 1a of the pump 1 in operation is
is detected (710), this electric power Ws is compared with the parallel operation starting electric power Won (720), and if Ws≧W o n, the pump 1 that is operating independently is determined using the F parameter (730). If the F parameter is F=1, it will follow the No. 2 pump 1 that is not in operation and start operating 74
0), if F≠1, the pump No. 1 that is not in operation will follow and operate (750), and after obtaining L, set the J parameter to "1" to indicate that parallel operation is in progress. 760), returning to the main routine. The aforementioned motor 1a
The detected power W5 and the set power Won are compared (720
), if Ws < Won, compare whether the F parameter is J=1 (770), if J≠1 (during independent operation), return to the main routine, and if J=1 (during parallel operation), check the detected power Ws and the parallel operation cancellation power W o t (771). If Ws>W o z x, the process returns to the main routine, and if Ws≦W o t n, the F parameter is determined (772).

FパラメータがF=1ならば先行稼動されている1号ポ
ンプ1を停止しく773)、F≠1ならば先行稼動され
ている2号ポンプ1を停止する(774)。次いで、F
パラメータの状態とSパラメータの状態を入れ換え(「
1」とrOJを反転)、先行と追従の位置付けを変える
(775)。
If the F parameter is F=1, the No. 1 pump 1 which is being operated in advance is stopped (773), and if F≠1, the No. 2 pump 1 which is being operated in advance is stopped (774). Then F
Swap the state of the parameter and the state of the S parameter ("
1'' and reverse rOJ), and change the leading and trailing positions (775).

しかる後、JパラメータをrOJとして並列運転解除を
示しく776)、メインルーチンに戻る。
Thereafter, the J parameter is set to rOJ to indicate cancellation of the parallel operation (776), and the process returns to the main routine.

この後、メインルーチンでは、圧力スイッチ7の圧力P
oti を待ち(540)、圧力PO11になるまで並
列制御サブルーチを周回する。圧力P。□。
After this, in the main routine, the pressure P of the pressure switch 7 is
It waits for oti (540) and cycles through the parallel control subroutine until the pressure reaches PO11. Pressure P. □.

になれば、稼動中のポンプ1を停止する(550)。If so, the pump 1 in operation is stopped (550).

次いで、Fパラメータの状態とSパラメータの場態を入
れ換え「「1」と「0」を反転)、先行と追従の位置付
けを変えた後(560)、圧力スイッチ7oの圧力Po
nを待つ(510)。
Next, after changing the state of the F parameter and the state of the S parameter (inverting "1" and "0") and changing the leading and following positions (560), the pressure Po of the pressure switch 7o is changed.
Wait for n (510).

第8図はかかる自動給水装置の運転状態の一例を示すタ
イムチャート図を示す。この図から明らかなように1号
ポンプおよび2号ポンプの運転時間が平均していること
がわかる。
FIG. 8 shows a time chart showing an example of the operating state of such an automatic water supply device. As is clear from this figure, it can be seen that the operating times of the No. 1 pump and the No. 2 pump are average.

かかる制御方法において、ポンプ1のモータ1aの回転
数が変化した場合でも制御可能である点を第9図および
第10図で説明する。第9図はポンプ1のモータ1aの
回転数が変化した場合のポンプ特性図を示し、横軸に給
水量Qを、縦軸に圧力Hおよび電力Wを示しである。H
1〜H3はポンプ1の単独運転の給水量−圧力特性曲線
で、回転数の変化比がrlJ、ro、95」、ro、9
」の場合を示す。H工r〜Ha’はポンプ1の並列運転
の給水量−圧力特性曲線で、回転数の変化比がrlJ 
、ro、95J 、ro、9Jの場合を示す。
In this control method, the point that control is possible even when the rotational speed of the motor 1a of the pump 1 changes will be explained with reference to FIGS. 9 and 10. FIG. 9 shows a pump characteristic diagram when the rotational speed of the motor 1a of the pump 1 changes, with the horizontal axis showing the water supply amount Q, and the vertical axis showing the pressure H and the electric power W. H
1 to H3 are water supply amount-pressure characteristic curves for independent operation of pump 1, where the rotation speed change ratio is rlJ, ro, 95'', ro, 9
” is shown below. H engineering r~Ha' is the water supply amount-pressure characteristic curve of parallel operation of pump 1, and the change ratio of rotation speed is rlJ
, ro, 95J and ro, 9J are shown.

W□〜W3はポンプ1の給水量−電力特性曲線で。W□ to W3 are water supply amount-power characteristic curves of pump 1.

回転数の変化比がrlJ 、ro、95J、ro、9J
の場合を示す。R1−R3は負荷曲線で、回転数の変化
比がrlJ 、ro、95J 、ro、9Jの場合を示
す。rlは負荷曲線を示す。圧力が低下し、単独運転開
始圧力Ponになって圧力スイッチ7が閉じ、ポンプ1
が単独運転した直後のポンプ1のモータ1aの電力をW
s 1とし、この検知電力Wsを基準にして求められる
。並列運転開始電力をWont 、並列運転解除電力を
W。ttlとする。これらの各点の給水量をQ s 1
* Q o n 、 Q o z t とする。
The change ratio of rotation speed is rlJ, ro, 95J, ro, 9J
The case is shown below. R1-R3 is a load curve, showing cases where the rotational speed change ratio is rlJ, ro, 95J, ro, 9J. rl indicates a load curve. The pressure decreases to the independent operation start pressure Pon, the pressure switch 7 closes, and the pump 1
The electric power of the motor 1a of the pump 1 immediately after being operated independently is W.
s 1 and is determined based on this detected power Ws. Wont is the power to start parallel operation, and W is power to cancel parallel operation. Let it be ttl. The amount of water supplied at each of these points is Q s 1
* Let Q o n and Q o z t be.

並列運転開始給水量Q o nにおけるW2 + Wa
の並列運転開始電力をWonzHWonaとし、並列運
転解除給水量Qo□、におけるW2 、Waの並列運転
解除電力をWoix2. Wontsとすると共に、H
2゜H3におけるポンプ1の単独運転開始電力をWS2
゜Wsa とする。
W2 + Wa at parallel operation start water supply amount Q o n
Let the parallel operation start power of WonzHWona be WonzHWona, and let the parallel operation release power of W2 and Wa at the parallel operation release water supply amount Qo□ be Woix2. Wants and H
The power to start independent operation of pump 1 at 2°H3 is WS2
゜Wsa.

而して、単独運転した直後のポンプ1のモータ1aの検
知電力Wsll WS2.Wsaと並列運転開始電力W
 Onl y WOnZ + Wona或いは並列運転
解除電力Woazt、 Wo、、z、 Wontsとの
関係は第8図のように線型となり、次の式で表わされる
Therefore, the detected electric power Wsll WS2 of the motor 1a of the pump 1 immediately after the independent operation is determined. Wsa and parallel operation start power W
The relationship with Only WOnZ + Wona or the parallel operation cancellation power Woazt, Wo,, z, Wonts is linear as shown in FIG. 8, and is expressed by the following equation.

Won=KtWs+に2        −(1)Wa
it = K sWs + K4         −
 (2)(K 1〜に4は定数) 従って、検知電力Wsによって並列運転開始電力W。n
および並列運転解除電力W o x i を容易に演算
することができる。
Won=KtWs+2-(1)Wa
it = KsWs + K4 −
(2) (K 1 to 4 are constants) Therefore, the parallel operation start power W is determined by the detected power Ws. n
and the parallel operation cancellation power W ox i can be easily calculated.

かかる自動給水装置によれば、ポンプ1の単独運転開始
直後の電力検出部10からの信号Wsにより演算して並
列運転開始電力W。n或いは並列運転解除電力wait
 を作る演算部11aと、電力検出部10からの信号W
s をこの並列運転開始電力W o n或いは並列運転
解除電力W o t t と比較してポンプ1の並列運
転の開始或いは停止を制御する比較部10bとを指示制
御部11に備えたので、圧力に比較して給水量Qに精度
よく対応する検知電力Wsが基準信号となり、しかもこ
の検知電力Wsから演算された並列運転開始電力W o
 n或いは並列運転解除電力W o x tはポンプ1
の吐出側圧力とは直接的には関係がなく給水量Qに対応
させて設定させることができる。これによって、給水f
Qに対応して精度良く確実に並列運転の開始或いは停止
を制御することができる。圧力タンク8を小形化して給
水量に対応しない圧力低下が一時的に生じても、ポンプ
1の並列運転が開始することがない。
According to this automatic water supply device, the parallel operation start electric power W is calculated based on the signal Ws from the electric power detection unit 10 immediately after the pump 1 starts its individual operation. n or parallel operation cancellation power wait
The signal W from the arithmetic unit 11a and the power detection unit 10 that generates
Since the instruction control unit 11 is equipped with a comparison unit 10b that controls the start or stop of the parallel operation of the pump 1 by comparing the parallel operation start power W o n or the parallel operation cancellation power W o t t , the pressure The detected power Ws that corresponds to the water supply amount Q with high precision compared to the reference signal is the reference signal, and the parallel operation starting power W o calculated from this detected power Ws
n or parallel operation cancellation power W o x t is pump 1
It is not directly related to the discharge side pressure, and can be set in accordance with the water supply amount Q. As a result, the water supply f
It is possible to accurately and reliably control the start or stop of parallel operation in accordance with Q. Even if the pressure tank 8 is downsized and a pressure drop that does not correspond to the amount of water supply occurs temporarily, the pumps 1 will not start running in parallel.

又、かかる自動給水装置によれば、ポンプ1の並列運転
と単独運転との繰返しの際に各単独運転におけるポンプ
1が交互に運転されるので、各ポンプ1の運転時間およ
び運転回数を均一化することができる。
Further, according to this automatic water supply device, when the parallel operation and individual operation of the pumps 1 are repeated, the pumps 1 in each individual operation are operated alternately, so that the operation time and number of operations of each pump 1 are equalized. can do.

更には、かかる自動給水装置によれば、ポンプ1のモー
タ1aへ加わる電圧が変動して回転数等が変化しても、
ポンプ1の給水量を同一とすることができるので、安定
した給水量を得ることができる。
Furthermore, according to such an automatic water supply device, even if the voltage applied to the motor 1a of the pump 1 fluctuates and the rotation speed etc. changes,
Since the water supply amount of the pump 1 can be made the same, a stable water supply amount can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1に給水量に対応して精度よく確実
に並列運転を制御できる自動給水装置およびその制御方
法を提供できる。第2にポンプの運転時間および運転回
数を一層均一化できる自動給水装置を提供できる。第3
に一磨安定した給水量を得ることのできる自動給水装置
を提供できる。
According to the present invention, firstly, it is possible to provide an automatic water supply device and a control method thereof that can accurately and reliably control parallel operation in accordance with the amount of water supply. Second, it is possible to provide an automatic water supply device that can further equalize the operating time and number of pump operations. Third
It is possible to provide an automatic water supply device that can obtain a stable amount of water supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の自動給水装置の構成図、第2図は同自
動給水装置のモータ検出手段を示す電気回路図、第3図
は同自動給水装置の指示制御を示す電気回路図、第4図
は同自動給水装置のポンプ特性図、第5図は同自動給水
装置の制御方法のメインルーチンを示すフローチャー1
・図、第6図は同メインルーチンの中の稼動サブルーチ
ンを示すフローチャート図、第7図は同メインルーチン
の中の並列制御サブルーチンを示すフローチャー1〜図
、第8図は同自動給水装置の運転状態を示すタイムチャ
ート図、第9図は同自動給水装置のポンプ回転数変化を
説明するポンプ特性図、第1o図は同ポンプ特性の並列
運転制御電力の特性図、第11図は従来の自動給水装置
の構成図、第12図は同自動給水装置のポンプ特性図で
ある。 1・・・ポンプ、1a・・・モータ、6a・・・蛇口、
7・・・圧力スイッチ(圧力検出手段)、8・・・圧力
タンク、9・・・制御部、10・・・電力検出部(モー
タ検出手段)、11・・・指示制御部、lla・・・演
算部、llbF$、+ 口 第3 口 26−カムス、イッテ     31.32   フ不
トトラ4了ツク第籾の     めbの めg囚 Zち小°ンフ0                  
                     −−一σ
FF第10 第(0区 第[(閏 1″     1み 手続補正書(自発)
FIG. 1 is a block diagram of the automatic water supply device of the present invention, FIG. 2 is an electric circuit diagram showing the motor detection means of the automatic water supply device, FIG. 3 is an electric circuit diagram showing instruction control of the automatic water supply device, and FIG. Figure 4 is a pump characteristic diagram of the automatic water supply system, and Figure 5 is a flowchart 1 showing the main routine of the control method of the automatic water supply system.
- Figure 6 is a flowchart showing the operating subroutine in the main routine, Figure 7 is a flowchart 1 to 1 to Figure 7 showing the parallel control subroutine in the main routine, and Figure 8 is a flowchart showing the operation subroutine in the main routine. Fig. 9 is a pump characteristic diagram explaining changes in the pump rotation speed of the automatic water supply device, Fig. 1o is a characteristic diagram of parallel operation control power of the same pump characteristics, and Fig. 11 is a conventional A configuration diagram of the automatic water supply device, and FIG. 12 is a pump characteristic diagram of the automatic water supply device. 1... Pump, 1a... Motor, 6a... Faucet,
7... Pressure switch (pressure detection means), 8... Pressure tank, 9... Control section, 10... Power detection section (motor detection means), 11... Instruction control section, lla...・Arithmetic part, llbF$, + mouth 3rd mouth 26-cums, itte 31.32 Futotora 4 finished paddy rice b no meg prisoner Zchi small ° nf 0
---one σ
FF No. 10 (0 Ward No. [(Leap 1″ 1 procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】 1、モータを有するポンプを並列に接続し、前記ポンプ
の吐出側に圧力タンクを接続し、前記ポンプの吐出側に
圧力検出手段を設け、この圧力検出手段からの信号を受
けて前記ポンプの運転を制御する制御部を備えた自動給
水装置において、前記モータの運転状態を検知するモー
タ検出手段を設け、前記ポンプの単独運転開始直後の前
記モータ検出手段からの信号により演算して並列運転制
御値を作る演算部と、前記モータ検出手段からの信号を
前記並列運転制御値と比較して前記ポンプの並列運転を
制御する比較部とを前記制御部に備えたことを特徴とす
る自動給水装置。 2、特許請求の範囲第1項において、圧力検出手段を圧
力スイッチとしてなる自動給水装置。 3、特許請求の範囲第1項において、モータ検出手段を
モータの電力を検出する電力検出部としてなる自動給水
装置。 4、特許請求の範囲第1項において、マイクロコンピュ
ータを含む制御部としてなる自動給水装置。 5、特許請求の範囲第1項において、並列運転制御値を
並列運転開始値としてなる自動給水装置。 6、特許請求の範囲第1項において、並列運転制御値を
並列運転開始値および並列運転解除値としてなる自動給
水装置。 7、特許請求の範囲第5項又は第6項において、並列運
転開始値をポンプの単独運転開始より大なる給水量に対
応する値としてなる自動給水装置。 8、モータを有する並列に接続させたポンプと、前記ポ
ンプの吐出側に接続された圧力タンクと、前記ポンプの
吐出側に設けられた圧力検出手段と、前記モータの運転
状態を検知するモータ検出手段と、前記圧力検出手段か
らの信号を受けて前記ポンプの運転を制御する制御部と
を備え、前記ポンプの単独運転の開始を前記圧力検出手
段からの信号にて行つた後、その直後の前記モータ検出
手段からの信号により並列運転制御値を演算し、しかる
後前記モータ検出手段からの信号を常時前記並列運転制
御値と比較して所定の信号になつた時に前記ポンプを並
列運転を開始させることを特徴とする自動給水装置の制
御方法。 9、モータを有する並列に接続させたポンプと、前記ポ
ンプの吐出側に接続された圧力タンクと、前記ポンプの
吐出側に設けられた圧力検出手段と、前記圧力検出手段
からの信号を受けて前記ポンプの運転を制御する制御部
とを備えた自動給水装置において、前記モータの運転状
態を検知するモータ検出手段を設け、前記ポンプの単独
運転開始直後の前記モータ検出手段からの信号により演
算して並列運転制御値を作る演算部と、前記モータ検出
手段からの信号を前記並列運転制御値と比較して前記ポ
ンプの並列運転を制御する比較部と、前記ポンプの単独
運転と並列運転との繰返しの際の単独運転のポンプを交
互になるように制御する位置付け部とを前記制御部に備
えたことを特徴とする自動給水装置。 10、モータを有する並列に接続させたポンプと、前記
ポンプの吐出側に接続された圧力タンクと、前記ポンプ
の吐出側に設けられた圧力検出手段と、前記圧力検出手
段からの信号を受けて前記ポンプの運転を制御する制御
部とを備えた自動給水装置において、前記モータの運転
状態を検知するモータ検出手段を設け、前記ポンプの単
独運転開始直後の前記モータ検出手段からの信号により
演算して給水量が一定の並列運転制御値を作る演算部と
、前記モータ検出手段からの信号を前記並列運転制御値
と比較して前記ポンプの並列運転を制御する比較部とを
前記制御部に備えたことを特徴とする自動給水装置。
[Claims] 1. Pumps having motors are connected in parallel, a pressure tank is connected to the discharge side of the pump, a pressure detection means is provided on the discharge side of the pump, and a signal from the pressure detection means is In the automatic water supply device, the automatic water supply device is equipped with a control unit that controls the operation of the pump based on the operation of the pump. and a comparison unit that compares the signal from the motor detection means with the parallel operation control value to control parallel operation of the pumps. Automatic water supply device. 2. The automatic water supply device according to claim 1, in which the pressure detection means is a pressure switch. 3. The automatic water supply device according to claim 1, wherein the motor detection means is a power detection section that detects the power of the motor. 4. The automatic water supply device according to claim 1, which serves as a control unit including a microcomputer. 5. The automatic water supply device according to claim 1, in which the parallel operation control value is used as the parallel operation start value. 6. The automatic water supply device according to claim 1, wherein the parallel operation control value is a parallel operation start value and a parallel operation release value. 7. The automatic water supply device according to claim 5 or 6, wherein the parallel operation start value is a value corresponding to a larger water supply amount than when the individual pump starts operating. 8. A pump having a motor connected in parallel, a pressure tank connected to the discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and a motor detection device for detecting the operating state of the motor. and a control section for controlling the operation of the pump in response to a signal from the pressure detection means, and immediately after starting the independent operation of the pump in response to the signal from the pressure detection means. A parallel operation control value is calculated based on the signal from the motor detection means, and then the signal from the motor detection means is constantly compared with the parallel operation control value, and when the signal reaches a predetermined value, the parallel operation of the pump is started. A method for controlling an automatic water supply device, characterized in that: 9. A pump having a motor connected in parallel, a pressure tank connected to the discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and a signal received from the pressure detection means; In an automatic water supply device comprising a control unit for controlling operation of the pump, a motor detection means for detecting the operating state of the motor is provided, and the automatic water supply device is configured to perform calculation based on a signal from the motor detection means immediately after the start of independent operation of the pump. a computation unit that generates a parallel operation control value based on the motor detection means; a comparison unit that compares the signal from the motor detection means with the parallel operation control value to control parallel operation of the pump; and a comparison unit that controls the parallel operation of the pump. An automatic water supply device characterized in that the control section includes a positioning section that alternately controls a pump in single operation during repetition. 10. A pump having a motor connected in parallel, a pressure tank connected to the discharge side of the pump, a pressure detection means provided on the discharge side of the pump, and receiving a signal from the pressure detection means In an automatic water supply device comprising a control unit for controlling operation of the pump, a motor detection means for detecting the operating state of the motor is provided, and the automatic water supply device is configured to perform calculation based on a signal from the motor detection means immediately after the start of independent operation of the pump. The control unit includes a calculation unit that generates a parallel operation control value with a constant water supply amount, and a comparison unit that compares a signal from the motor detection means with the parallel operation control value to control parallel operation of the pumps. An automatic water supply device characterized by:
JP62082917A 1987-04-06 1987-04-06 Automatic water supplying device and control thereof Pending JPS63248997A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62082917A JPS63248997A (en) 1987-04-06 1987-04-06 Automatic water supplying device and control thereof
KR1019880003679A KR920003111B1 (en) 1987-04-06 1988-04-01 Automatic water suppying device
GB8807901A GB2204153B (en) 1987-04-06 1988-04-05 Automatic water supplying device and method for controlling same
CN88101956A CN1012514B (en) 1987-04-06 1988-04-06 Automatic water supplying device and method for controlling same
HK513/91A HK51391A (en) 1987-04-06 1991-07-04 Automatic water supplying device and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082917A JPS63248997A (en) 1987-04-06 1987-04-06 Automatic water supplying device and control thereof

Publications (1)

Publication Number Publication Date
JPS63248997A true JPS63248997A (en) 1988-10-17

Family

ID=13787599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082917A Pending JPS63248997A (en) 1987-04-06 1987-04-06 Automatic water supplying device and control thereof

Country Status (5)

Country Link
JP (1) JPS63248997A (en)
KR (1) KR920003111B1 (en)
CN (1) CN1012514B (en)
GB (1) GB2204153B (en)
HK (1) HK51391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104690A (en) * 2008-10-31 2010-05-13 Toshiba Corp Vacuum cleaner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4328312A1 (en) * 1993-08-23 1995-03-02 Draegerwerk Ag Fountain pen with variable filling reservoir for pressure compensation between reservoir and environment
DE4330519B4 (en) * 1993-09-09 2004-08-05 Sms Demag Ag descaling
FR2824601B1 (en) * 2001-05-09 2003-08-08 Ksb Sa MOTOR PUMP GROUP WITH TIMING OF THE POWER ON OF THE MOTOR
CN101581401B (en) * 2009-06-23 2011-02-09 云南大红山管道有限公司 Online switching method of high-pressure long-distance slurry pipeline transmission multi-stage pump station
ES2522166T3 (en) * 2011-01-14 2014-11-13 Grundfos Management A/S System and method to control the pressure in a network
JP5416729B2 (en) * 2011-03-22 2014-02-12 株式会社日立製作所 Water central monitoring and control device, water monitoring control system and water monitoring control program
CN102226649B (en) * 2011-04-13 2012-11-28 杨盛林 Industrial high-temperature waste gas conditioning and automatic constant-temperature system
CN108825480B (en) * 2018-06-01 2020-02-21 重庆大学 Water pump management and scheduling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104690A (en) * 2008-10-31 2010-05-13 Toshiba Corp Vacuum cleaner

Also Published As

Publication number Publication date
CN88101956A (en) 1988-10-26
CN1012514B (en) 1991-05-01
GB2204153B (en) 1991-02-06
KR920003111B1 (en) 1992-04-18
HK51391A (en) 1991-07-12
KR880012895A (en) 1988-11-29
GB2204153A (en) 1988-11-02
GB8807901D0 (en) 1988-05-05

Similar Documents

Publication Publication Date Title
EP3247036B1 (en) Sensorless control of ac induction motor method and apparatus
US6670784B2 (en) Motor Apparatus and control method therefor
JPS63248997A (en) Automatic water supplying device and control thereof
JP5952502B2 (en) 3-phase brushless motor drive device
US9035588B2 (en) Brushless motor driving apparatus and brushless motor driving method
US20130342146A1 (en) Method and system for switching between different types of operation of a sensorless permanent magnet brushless motor at low or zero speed to determine rotor position
CN108156835B (en) Control device and control method for brushless motor
US7859211B2 (en) Method for controlling the firing angle of an electric motor
JP6145274B2 (en) Brushless motor drive device
JP2003259679A (en) Vector control inverter apparatus and rotation driving apparatus
JP2014155273A (en) Driving device for brushless motor
JPWO2017119084A1 (en) Air conditioner
JP6150647B2 (en) Brushless motor control device
CN106788032B (en) Alternating current generator rotary speed tracing control method
JP6408403B2 (en) Driving apparatus for vehicle motor
JP2015061349A (en) Driver of brushless motor
JP2019122117A (en) Motor controller
JP4270620B2 (en) Control method for parallel operation start and release of water supply equipment
JP2007244192A (en) Motor controller
Nomura et al. A high response induction motor control system with compensation for secondary resistance variation
JP2001086787A (en) Control device for brushless motor
JP2013183550A (en) Brushless motor drive unit
JP2005278360A (en) Brushless motor sensorless controlling method, sensorless controller thereof, and electric pump
SU1136267A1 (en) Thyratron motor
JP2016167981A (en) Driver of brushless motor