JPS63248186A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPS63248186A
JPS63248186A JP62080923A JP8092387A JPS63248186A JP S63248186 A JPS63248186 A JP S63248186A JP 62080923 A JP62080923 A JP 62080923A JP 8092387 A JP8092387 A JP 8092387A JP S63248186 A JPS63248186 A JP S63248186A
Authority
JP
Japan
Prior art keywords
shielding room
superconducting
freezing mixture
room
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080923A
Other languages
Japanese (ja)
Inventor
Junji Shigeta
淳二 重田
Juichi Nishino
西野 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62080923A priority Critical patent/JPS63248186A/en
Publication of JPS63248186A publication Critical patent/JPS63248186A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To realize various devices easily by disposing at least one part of a superconductor cooled by a heat sink cooled by a freezing mixture outside a freezing mixture vessel. CONSTITUTION:A high TC superconductive material 5 is formed onto the surface of a copper plate 6, copper pipes 7 are welded to the rear of the copper plate 6, and both surfaces are held by heat-insulating materials 8 made of styrol. Liquid nitrogen is passed into the pipes 7, thus generating superconductivity. Since the superconductive material 5 is not surrounded by a freezing mixture vessel, it can be used for a structural material, etc. for an electric wave reflected-wave shielding room, Since there is no freezing mixture in the shielding room manufactured by the material, a magnetic field cannot intrude and the shielding room is formed in a cavity, the shielding room is ideal for an electric- wave dark room, a shielding room for measuring a weak magnetic field, a shielding room for medical application and a magnetic recording material storage area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導材を用いた装置の構造に関し従来の超電
導装置の性能を向上せしむるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a device using a superconducting material, and is intended to improve the performance of conventional superconducting devices.

〔従来の技術〕[Conventional technology]

従来の超電導現象を利用した装着は例えば「アイ・イー
・イー・イー・スペクトラム(IEEB  spect
rum)、1979年5月号第27頁」に示された図の
ように液体ヘリウム等の容器に浸漬して使用するのが通
常であったO〔発明が解決しようとする問題点〕 上記従来技術では第1図のように超電導袋#1は液体ヘ
リウムもしくは充分冷却されたヘリウムガスのような寒
剤2を充填した容器3中におさめられていたため、例え
ば超電導コンピータでは、不良個所の診断が困難となり
、才た高感度磁束計である超電導量子干渉計においては
磁束感知コイルを充分対象物に近づけることが困難であ
る等の問題があった〇 〔問題点を解決するための手段〕 上記の問題は、超電導材として臨界温度の高い非金駕系
超電導材を用い第2図のように、寒剤容器の外に置かれ
た@電導材1′を、寒剤によって冷却されたヒートシン
ク4によって冷却する構造を採用するこきによって解決
する。
Conventional mounting methods using superconducting phenomena include, for example, the ``IEEB spectrum'' technology.
[Problems to be Solved by the Invention] The above-mentioned conventional methods were usually used by being immersed in a container of liquid helium, etc., as shown in the figure shown in "Rum), May 1979 Issue, Page 27". In terms of technology, as shown in Figure 1, superconducting bag #1 is placed in a container 3 filled with a cryogen 2 such as liquid helium or sufficiently cooled helium gas, which makes it difficult to diagnose defective parts in, for example, a superconducting computer. Therefore, in the superconducting quantum interferometer, which is a highly sensitive magnetic flux meter, there were problems such as difficulty in bringing the magnetic flux sensing coil close enough to the target object〇 [Means to solve the problem] The above problem As shown in Fig. 2, a non-metallic superconducting material with a high critical temperature is used as the superconducting material, and a conductive material 1' placed outside a cryogen container is cooled by a heat sink 4 cooled by the cryogen. The solution is to employ Koki.

〔作用〕[Effect]

第2図においてはヒートシンク4は寒剤2によって冷却
されているため、これに密着した超電導材1′も冷却さ
れる。この様な構造では金属系超電導材の使用温度であ
る10°に以下に冷却することは困難であるが、非金属
系類′心導材の中には充分臨界温度の高いものがあり、
上記構造を実現で ′きる。
In FIG. 2, since the heat sink 4 is cooled by the cryogen 2, the superconducting material 1' in close contact with the heat sink 4 is also cooled. With such a structure, it is difficult to cool the superconducting material below 10 degrees, which is the operating temperature of metallic superconducting materials, but some non-metallic superconducting materials have sufficiently high critical temperatures.
The above structure can be realized.

〔実施例〕〔Example〕

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

(実施例1) 第3図に本発明の実施例1を示す。(Bao6Y64)
Cu O4結晶を主成分とする超電導材5を銅板6の表
面に形成し、銅板6の裏面に液体窒素を貫流するための
銅パイプ7を溶接し、両面をスチロール製断熱材8では
さんだ。パイプ7の中に液体窒素をWRさせるこ吉によ
り、本構造の板は超電導の性質を示すようになった。こ
のような構造では超′宅導材5は寒剤容器に罪まれでい
ないため、を波反射板、シールドルーム用構造材等に用
いるこ吉ができる。この板を用いてシールドルームおよ
びパラボラアンテナの反射板を製作した。@界は完全反
磁性のためにシールドルーム内に浸入で〜ず、シールド
ルーム内の磁界は測定限界以下となった。
(Example 1) FIG. 3 shows Example 1 of the present invention. (Bao6Y64)
A superconducting material 5 mainly composed of CuO4 crystals is formed on the surface of a copper plate 6, a copper pipe 7 for flowing liquid nitrogen is welded to the back surface of the copper plate 6, and both sides are sandwiched between styrene heat insulating materials 8. By WRing liquid nitrogen into the pipe 7, the plate of this structure began to exhibit superconducting properties. In such a structure, the super conductive material 5 is not used as a refrigerant container, so it can be used as a wave reflecting plate, a structural material for a shield room, etc. This board was used to fabricate a shield room and a reflector for a parabolic antenna. Because the @ field is completely diamagnetic, it does not penetrate into the shield room, and the magnetic field inside the shield room is below the measurement limit.

またシールドルーム内には寒剤は存在せず空洞であるた
め、電波暗室、微弱磁場測定用シールドルーム、医療用
シールドルーム、磁気記録材保管箱等に理想的空間を提
供できる。またパラボラアンテナの反射板に使用した場
合は従来の常伝導金属を使用した場合に比し、電波の反
射効充を改善することができた。以上のように本発明の
構造を採用することにより、従来の寒剤容器中に置いた
場合には実現困難な州電導装置〃を実現で永る。
Furthermore, since there is no cryogen inside the shield room and it is hollow, it can provide an ideal space for an anechoic chamber, a shield room for weak magnetic field measurement, a medical shield room, a magnetic recording material storage box, etc. Furthermore, when used in the reflector of a parabolic antenna, the effectiveness of reflecting radio waves could be improved compared to the case of using conventional normal metals. By employing the structure of the present invention as described above, it is possible to realize a state conductive device which is difficult to realize when placed in a conventional cryogen container.

(実施例2) 第4図に本発明の実施例2を示す。液体窒素などの寒剤
2によって冷却された鋼ヒートシンク4に(Bao6Y
o4)Cu04を主成分とし、た材料の磁場検出コイル
9を密着させ断熱材8で被覆した。
(Example 2) FIG. 4 shows Example 2 of the present invention. A steel heat sink 4 cooled by a cryogen 2 such as liquid nitrogen (Bao6Y
o4) A magnetic field detection coil 9 made of a material containing Cu04 as a main component was closely attached and covered with a heat insulating material 8.

このコイル9と寒剤容器3内におかれたジョセフソン接
合素子10および外部駆動装置11を電気的に接続し、
超電導量子干渉計を形成した。本実施例によれば超電導
磁場検出コイル9を寒剤容器3の外に設置しているため
、コイル9を被測定物の近傍まで近づけろことが可能と
なるため、測定感度、位置分解能を向上させるこさがで
きた。
The coil 9 is electrically connected to the Josephson junction element 10 placed in the cryogen container 3 and the external drive device 11,
A superconducting quantum interferometer was created. According to this embodiment, since the superconducting magnetic field detection coil 9 is installed outside the cryogen container 3, it is possible to bring the coil 9 close to the object to be measured, thereby improving measurement sensitivity and positional resolution. The Kosa was made.

〔発明の効果〕〔Effect of the invention〕

本発明によれば超電導材の一部もしくは全体を寒剤容器
の外に設置することが可能となるため、超電導シールド
ルーム、電波反射板、軸受は等従来実現困難であった装
置が実現できる他、超電導量子干渉計の性能を向上でき
る等の利点がある。
According to the present invention, it is possible to install part or all of the superconducting material outside the cryogen container, so it is possible to realize devices that were previously difficult to realize, such as superconducting shield rooms, radio wave reflectors, and bearings. It has advantages such as being able to improve the performance of superconducting quantum interferometers.

(実施例3) 第5図に本発明の実施例3として超電導軸受けを試作し
た例を示す。本発明の実施例2に示した(第3図参照)
、銅パイプ7、銅板6、非金属系@電導材5、断熱熱8
(テフロンを用いた)からなる超電導板を軸受けの形状
に形成し、これに永久磁石からなるシャフト12をはめ
た。このような構造においては超電導材6は寒剤容器外
におかれているためシャフト12は寒剤に接触すること
なく回転でき、また超電導材の反磁性のため、譬に接触
することがなく滑らかに回転する0
(Example 3) FIG. 5 shows an example in which a superconducting bearing was prototyped as Example 3 of the present invention. As shown in Example 2 of the present invention (see Figure 3)
, copper pipe 7, copper plate 6, non-metallic @ conductive material 5, heat insulation 8
A superconducting plate made of Teflon (using Teflon) was formed into the shape of a bearing, and a shaft 12 made of a permanent magnet was fitted onto it. In such a structure, since the superconducting material 6 is placed outside the cryogen container, the shaft 12 can rotate without coming into contact with the cryogen, and due to the diamagnetic nature of the superconducting material, it can rotate smoothly without coming into contact with the cryogen. 0 to do

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の@電導装置の断面図、第2図は本発明に
よる超電導装置の断面図、第3図は本発明を応用した超
電導板の断面図、第4図は超電導量子干渉計の構造を示
す図、第5図は本発明を応用した超電導軸受けの断面図
である。 1・・・超電導材を用いた装置、 1′・・・寒剤容器外に設置された超電導材を用いた装
置、 2・・・寒剤、3・・・寒剤容器、4・・・ヒートシン
ク、5・・・非金属系超電導材、 6・・・銅ブロック、  7・・・桐パイプ、8・・・
断熱材、  9・・・超電導磁場検出コイル、10・・
・ジョセフソン接合素子、 11・・・外部駆動装置、 12・・シャフト。
Fig. 1 is a sectional view of a conventional @conducting device, Fig. 2 is a sectional view of a superconducting device according to the present invention, Fig. 3 is a sectional view of a superconducting plate to which the present invention is applied, and Fig. 4 is a sectional view of a superconducting quantum interferometer. FIG. 5, which shows the structure, is a sectional view of a superconducting bearing to which the present invention is applied. 1... Device using superconducting material, 1'... Device using superconducting material installed outside the cryogen container, 2... Cryogen, 3... Cryogen container, 4... Heat sink, 5 ...Nonmetallic superconducting material, 6...Copper block, 7...Paulownia pipe, 8...
Heat insulating material, 9... Superconducting magnetic field detection coil, 10...
- Josephson junction element, 11... external drive device, 12... shaft.

Claims (1)

【特許請求の範囲】[Claims] 寒剤によって冷却されたヒートシンクと、該ヒートシン
クによって冷却された超電導材を有し、該超電導材の少
くとも一部が、寒剤容器の外部に置かれていることを特
徴とする超電導装置。
A superconducting device comprising a heat sink cooled by a cryogen and a superconducting material cooled by the heat sink, at least a part of the superconducting material being placed outside a cryogen container.
JP62080923A 1987-04-03 1987-04-03 Superconducting device Pending JPS63248186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080923A JPS63248186A (en) 1987-04-03 1987-04-03 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080923A JPS63248186A (en) 1987-04-03 1987-04-03 Superconducting device

Publications (1)

Publication Number Publication Date
JPS63248186A true JPS63248186A (en) 1988-10-14

Family

ID=13731946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080923A Pending JPS63248186A (en) 1987-04-03 1987-04-03 Superconducting device

Country Status (1)

Country Link
JP (1) JPS63248186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163513A (en) * 1988-12-15 1990-06-22 Koyo Seiko Co Ltd Magnetic thrust bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163513A (en) * 1988-12-15 1990-06-22 Koyo Seiko Co Ltd Magnetic thrust bearing

Similar Documents

Publication Publication Date Title
JP2662639B2 (en) Magnetometer
Thorp et al. Search for superconductivity in lithium and magnesium
Hohmann et al. HTS SQUID system with Joule-Thomson cryocooler for eddy current nondestructive evaluation of aircraft structures
JPS63248186A (en) Superconducting device
Symko Nuclear cooling using copper and indium
JP2004356573A (en) Beam current meter
CN114188136B (en) Separated low-temperature magnetic shielding device
JPH06188466A (en) Superconductor magnet cooling system
Serlemitsos et al. Plenum Press, New York, 1990 Adiabatic Demagnetization Refrigerator for Space Use
JP3577498B2 (en) Pulse tube refrigerator and magnetically shielded refrigeration system
CN110993143A (en) Compact superconductive neutron polarization turner
Schmidt et al. A SQUID system for geophysical measurements cooled by a pulse tube cryocooler
Anderson Instrumentation at temperatures below 1 K
Krause et al. Mobile HTS SQUID system for eddy current testing of aircraft
Sakurai et al. Development of a cryogenic remote sensing thermometer for CMB polarization experiment
Hildebrandt Shielding with superconductors in small magnetic fields
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
EP2068109A2 (en) Fused porous material heat exchanger
JP2000081472A (en) Heat insulating structure of nmr probe
Goto et al. Dilution refrigerator for measurement of the acoustic de Haas-van Alphen effect
Hong et al. Temperature distribution of cryogenic conduction cooling system for a HTS SMES
Knapp Experimental study of strongly correlated fermion systems under extreme conditions: heavy fermion YbRh₂Si₂ and ³He impurities in a two dimensional ⁴He film
JPS6229113A (en) Superconducting device
Sakatsume et al. Cryomagnetic system for the acoustic de Haas-van Alphen measurement
Wu et al. A unique ka-band measurement system based on quasi-optical dielectric resonator technology for studying small superconducting samples