JP3577498B2 - Pulse tube refrigerator and magnetically shielded refrigeration system - Google Patents

Pulse tube refrigerator and magnetically shielded refrigeration system Download PDF

Info

Publication number
JP3577498B2
JP3577498B2 JP17641398A JP17641398A JP3577498B2 JP 3577498 B2 JP3577498 B2 JP 3577498B2 JP 17641398 A JP17641398 A JP 17641398A JP 17641398 A JP17641398 A JP 17641398A JP 3577498 B2 JP3577498 B2 JP 3577498B2
Authority
JP
Japan
Prior art keywords
tube
pulse tube
regenerator
pulse
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17641398A
Other languages
Japanese (ja)
Other versions
JP2000018744A (en
Inventor
久直 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP17641398A priority Critical patent/JP3577498B2/en
Publication of JP2000018744A publication Critical patent/JP2000018744A/en
Application granted granted Critical
Publication of JP3577498B2 publication Critical patent/JP3577498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス管式冷凍器および磁気遮蔽型冷凍システムに関する。さらに詳しくは、各部の材料差や温度差により発生した熱起電力に起因する電流ループの形成を抑制できるように改良したパルス管式冷凍器、および冷却剤の蒸発量を低減できるように改良した磁気遮蔽型冷凍システムに関する。特に、SQUID(Superconducting QUantum Interference Devices;超伝導量子干渉計)素子などのセンサー類を冷却するのに有用である。
【0002】
【従来の技術】
図9は、従来のパルス管式冷凍器の一例を示す構成図である。
このパルス管式冷凍器900は、内部に蓄冷材10を充填された蓄冷器管11と,内部に空洞Vを有するパルス管12と,前記蓄冷器管10の上端と前記パルス管12の上端とを連結する連結孔Cが形成された連結ブロック13と,前記蓄冷器管11の下端の管壁内側にガス配管14の一端を位置付けると共に前記パルス管12の下端の管壁内側にオリフィス15の一端を位置付けるフランジ16と,前記オリフィス15の他端に連なるバッファーBを有する放熱ケース17とを具備して構成されている。
【0003】
前記蓄冷材10は、例えば銅網(網状に編まれた銅線)である。
前記蓄冷器管11および前記パルス管12の材料は、機械的に丈夫で,しかも断熱性能の高い金属材料であり、例えばステンレスである。
前記連結ブロック13および前記放熱ケース17の材料は、熱伝導率の高い金属材料であり、例えば銅である。
【0004】
前記連結ブロック13は、前記蓄冷器管11および前記パルス管12内へ冷媒ガスGrをパルス的に出し入れすることで、極低温(例えば−200℃程度)に冷却される。前記冷媒ガスGrは、例えばヘリウムガスである。
前記連結ブロック13の上面には、被冷却体Mが載置されている。前記被冷却体Mは、例えば、微弱な磁場を検出するためのSQUID素子を内蔵するセンサーユニットである。
【0005】
前記蓄冷器管11や前記パルス管12の端部からの冷媒ガスGrの漏出を防止する見地から、前記蓄冷器管11と前記連結ブロック13との間は高気密性のシール部α1によりシールされ、前記蓄冷器管11と前記フランジ16との間は高気密性のシール部α2によりシールされ、前記パルス管12と前記連結ブロック13との間は高気密性のシール部α3によりシールされ、前記パルス管12と前記フランジ16との間は高気密性のシール部α4によりシールされている。
【0006】
図10は、図9のパルス管式冷凍器900を含む冷凍システムの構成図である。
この冷凍システム910は、前記パルス管式冷凍器900のフランジ16および放熱ケース17を外部に出し且つ他の部分(蓄冷材10,蓄冷器管11,パルス管12,連結ブロック13,被冷却体M)を真空中に収容する真空容器91と,冷媒ガスGrを高圧で送り出す高圧端子Hと前記冷媒ガスGrを回収する低圧端子Lとを有する圧縮機92と、前記高圧端子Hおよび低圧端子Lから導出された高圧ガス配管93および低圧ガス配管94と、前記パルス管式冷凍器900のガス配管14に連結したガス配管95と、電気配線96を介して前記圧縮機92と接続し且つ前記高圧ガス配管93および低圧ガス配管94を例えば1〜20Hzの一定周期で交互に前記ガス配管95と結合する内部弁を有するモータ駆動切り換え弁97とを具備して構成されている。
【0007】
前記モータ駆動切り換え弁97が内部弁を前記高圧ガス配管93すなわち前記高圧端子Hに切り換えている期間は、前記蓄冷器管11および連結ブロック13の連結孔C(図9)を介して、冷媒ガスGrが前記パルス管12内にパルス的に流入する。このとき、前記パルス管12の下端(バッファーB側)で冷媒ガスGrが圧縮されて発熱するが、当該熱は、放熱ケース17から放熱される。
一方、前記モータ切り換え弁65が内部弁を前記低圧ガス配管94すなわち前記低圧端子Lに切り換えている期間は、前記連結ブロック13の連結孔Cおよび蓄冷器管11を介して、前記パルス管12内の冷媒ガスGrがパルス的に流出する。このとき、冷媒ガスGrは、前記パルス管12の上端(蓄冷器管11側)で断熱的に膨張しながら流出するので、前記上端付近が冷たくなり、その冷気が蓄冷材10に吸収され、前記連結ブロック14の温度が低下する。
したがって、前記モータ駆動切り換え弁97の内部弁の切り換えを継続して行うことで、前記連結ブロック13の温度を極低温にまで低下させ、被冷却体Mを冷却することが出来る。
【0008】
図11は、従来の磁気遮蔽型冷凍システムの一例を示す構成図である。
この磁気遮蔽型冷凍システム920は、外界から磁気的に遮蔽された内部空間を有する磁気遮蔽装置51と,容器状の外壁Woと内壁Wiとを有し前記内壁Wiで囲まれた空間内に冷却剤52が保持された断熱装置53と,前記外壁Woと前記内壁Wiの間の真空層内に設けられた熱遮蔽板54と,前記内壁Wiの底部に配設されたセンサー55と、前記内壁Wiの上部に設けられた断熱体56とを具備して構成して構成されている。前記冷却剤52は、例えば液体ヘリウムである。前記センサー55は、例えばSQUID素子などの磁気検出素子である。
前記冷却剤52が気化した低温のガスgは、前記断熱装置53の内壁Wiと前記断熱体56との隙間を通って放出される。このとき、前記内壁Wiおよび前記熱遮蔽板54は、前記ガスgによって熱が奪取され、冷却される。
【0009】
【発明が解決しようとする課題】
上記従来のパルス管式冷凍器900では、図12に示すように、蓄冷材10と蓄冷器管11との材料差および温度差により熱起電力が発生し、その熱起電力により前記蓄冷材10と前記蓄冷器管11を伝わる電流ループi−1が形成されやすい。同様に、蓄冷器管11と連結ブロック13とパルス管12の間に、熱起電力に起因する電流ループi−2が形成されやすい。
ところが、このような電流ループi−1,i−2は、磁気雑音Nを発生する要因となるため、微弱な磁場を測定する際の誤差が大きくなる問題点がある。
【0010】
また、上記従来の磁気遮蔽型冷凍システム920では、外界からの熱の侵入により冷却剤52が蒸発しやすいため、当該冷却剤52を頻繁に補充する必要があり、運転コストが増大する問題点がある。
【0011】
そこで、本発明の第1の目的は、各部の材料差や温度差により発生した熱起電力に起因する電流ループの形成を抑制できるパルス管式冷凍器を提供することにある。
また、本発明の第2の目的は、冷却剤の蒸発量を低減できる磁気遮蔽型冷凍システムを提供することにある。
【0012】
【課題を解決するための手段】
第1の観点では、本発明は、内部に導電材料で作成された蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有するパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を連結ブロックにより連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却するタイプのパルス管式冷凍器であって、前記蓄冷器管の内周に、前記蓄冷材を取り囲むように絶縁筒を設け、前記蓄冷器管と前記蓄冷材とを含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器を提供する。
上記第1の観点によるパルス管式冷凍器では、蓄冷器管の内周に蓄冷材を取り囲むように絶縁筒を設けるので、蓄冷材と蓄冷器管とを電気的に絶縁することができ、両者の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。この結果、雑音磁場の発生を抑制でき、微弱な磁場を測定する際の誤差を低減することが出来る。
【0013】
第2の観点では、本発明は、内部に蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有し且つ導電材料で作成されたパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を導電材料で作製された連結管により連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結管の一部または全部を覆う低温発生部を冷却するタイプのパルス管式冷凍器であって、前記連結管の中間に、当該連結管を伝わる電流を遮断する絶縁部材を介設し、前記蓄冷器管と前記パルス管とを含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器を提供する。
上記第2の観点によるパルス管式冷凍器では、連結管の中間に絶縁部材を介設したので、蓄冷器管とパルス管とを電気的に絶縁することができ、蓄冷器管とパルス管の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。この結果、雑音磁場の発生を抑制して、微弱な磁場を測定する際の誤差を低減することが出来る。
【0014】
第3の観点では、本発明は、蓄冷器管として機能させるための金属管と、その金属管の内周に同軸状に設けられたパルス管と、前記金属管を外壁とし前記パルス管を内壁とする筒状空間に充填され且つ導電材料で作成された蓄冷材と、前記金属管の内周に前記蓄冷材を取り囲むように設けられ前記金属管と前記蓄冷材とを含む電流ループが形成されることを抑制する絶縁筒と、前記金属管の一端側および前記パルス管の一端側に取り付けられたフランジと、前記金属管の他端側と前記パルス管の他端側とを連結する連結ブロックとを具備し、前記筒状空間および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却することを特徴とするパルス管式冷凍器を提供する。
上記第3の観点によるパルス管式冷凍器では、金属管の内周に、蓄冷材を取り囲むように絶縁筒を設けたので、蓄冷材と金属管とを電気的に絶縁することができ、両者の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。この結果、雑音磁場の発生を抑制でき、微弱な磁場を測定する際の誤差を低減することが出来る。
また、蓄冷器管として機能させるための金属管の内周に、パルス管を同軸状に設けるので、当該同軸構造の両端に相当する2ヶ所をシールするだけで冷媒ガスの漏出を防止でき、構造を簡単化できる。
さらに、金属管とパルス管とを同軸状に設けることで機械的な強度を高めることができ、各管の肉厚を小さくすることが出来る。
さらにまた、蓄冷器管やパルス管を別個独立に設ける場合よりも、小型化することが出来る。
【0015】
第4の観点では、本発明は、上記第1の観点から第3の観点のいずれかのパルス管式冷凍器において、前記蓄冷器管と前記パルス管のうちの一方または両方の少なくとも一端側に、絶縁材料で作製され且つ前記冷媒ガスの通過孔が穿設されたスペーサを設け、前記蓄冷器管や前記パルス管を含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器を提供する。
上記第4の観点によるパルス管式冷凍器では、蓄冷器管やパルス管の少なくとも一端側に、絶縁材料製のスペーサを設けるので、蓄冷器管やパルス管の壁面と管内物との絶縁性をいっそう高めることができ、電流ループの形成による雑音磁場の発生をいっそう抑制することが出来る。
【0016】
第5の観点では、本発明は、外界から磁気的に遮蔽された磁気遮蔽空間を内部に有する磁気遮蔽装置と,前記磁気遮蔽空間に設置され且つ容器状の外壁および内壁を有し当該内壁で囲まれた断熱空間内に磁気検出素子を冷却する冷却剤を保持し得る断熱装置と,前記外壁と前記内壁の間の層内に介設された少なくとも1枚の熱遮蔽板とを備えた磁気遮蔽型冷凍システムであって、前記内部空間にパルス管式冷凍器を設置し、前記熱遮蔽板に前記パルス管式冷凍器の低温発生部を熱的に結合させて前記熱遮蔽板を冷却すると共に、前記パルス管式冷凍器に冷媒ガスを送り出すための圧縮機と,前記パルス管式冷凍器と前記圧縮機の間で冷媒ガスをパルス的に往復させるように弁を切り換える切り換え弁とを前記磁気遮蔽装置の外部に設置したことを特徴とする磁気遮蔽型冷凍システムを提供する。
上記第5の観点による磁気遮蔽型冷凍システムでは、磁気遮蔽装置の内部に設置された断熱装置の熱遮蔽板をパルス管式冷凍器で冷やすので、断熱装置の断熱性能を向上して冷却剤の消費量を低減し、運転コストを節減することが出来る。また、ノイズ発生源となりやすい圧縮機や,切り換え弁を磁気遮蔽装置の外部に設置するので、磁気遮蔽装置内へのノイズの侵入を抑制でき、微弱な測定対象(磁気など)の精密測定に適した測定環境を得ることが出来る。
【0017】
第6の観点では、本発明は、外界から磁気的に遮蔽された磁気遮蔽空間を内部に有する磁気遮蔽装置と,前記磁気遮蔽空間に設置され且つ容器状の外壁および内壁を有し当該内壁で囲まれた断熱空間内に磁気検出素子を冷却する冷却剤を保持し得る断熱装置とを備えた磁気遮蔽型冷凍システムであって、前記内壁の上部に断熱体を設け、前記断熱体に伝熱板を埋設または固設し、前記伝熱板にパルス管式冷凍器の低温発生部を熱的に結合させ且つ前記伝熱板の一部を前記冷却剤の気化ガスに接触させて冷却すると共に、前記パルス管式冷凍器に冷媒ガスを送り出す圧縮機と,前記パルス管式冷凍器と前記圧縮機の間で冷媒ガスをパルス的に往復させるように弁を切り換える切り換え弁を前記磁気遮蔽装置の外部に設置したことを特徴とする磁気遮蔽型冷凍システムを提供する。
上記第6の観点による磁気遮蔽型冷凍システムでは、磁気遮蔽装置の内部に設置された断熱装置の上部に断熱体を設けて、当該断熱体に伝熱板を埋設し(または固設し)、当該伝熱板をパルス管式冷凍器で冷やすので、冷却剤が気化したガス層の温度を下げることが出来る。これにより、断熱装置の断熱性能を向上して冷却剤の消費量を低減し、運転コストを節減することが出来る。また、ノイズ発生源となりやすい圧縮機や,切り換え弁を磁気遮蔽装置の外部に設置するので、磁気遮蔽装置内へのノイズの侵入を抑制でき、微弱な測定対象(磁気など)の精密測定に適した測定環境を得ることが出来る。
【0018】
第7の観点では、本発明は、内部に導電材料で作成された蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有し且つ導電材料で作成されたパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を連結ブロックにより連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却するタイプのパルス管式冷凍器であって、前記蓄冷器管と前記パルス管の間に、両者を電気的に接続するシャントを介設し、両者の電位をほぼ等しくすることを特徴とするパルス管式冷凍器を提供する。
上記第7の観点によるパルス管式冷凍器では、蓄冷器管とパルス管との間にシャントを介設したから、両者の電位を常にほぼ等しくでき、蓄冷器管と連結ブロックとパルス管とに大電流の電流ループが形成されなくなる。この結果、雑音磁場の発生を抑制でき、微弱な磁場を測定する際の誤差を低減することが出来る。
【0019】
【発明の実施の形態】
以下、図に示す実施形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0020】
−第1の実施形態−
図1は、本発明の第1の実施形態にかかるパルス管式冷凍器を示す構成図である。
このパルス管式冷凍器100は、内部に蓄冷材10を充填された蓄冷器管11と,内部に空洞Vを有するパルス管12と,前記蓄冷器管11の内周に前記蓄冷材10を取り囲むように設けられた絶縁筒1と,前記蓄冷器管11の上端と前記パルス管12の上端とを連結する連結孔Cが形成された連結ブロック13と,前記蓄冷器管11の下端の管壁内側に冷媒ガスGrが供給されるガス配管14の一端を位置付けると共に前記パルス管12の下端の管壁内側にオリフィス15の一端を位置付けるフランジ16と,前記オリフィス15の他端に連なるバッファーBを有する放熱ケース17とを具備して構成されている。前記冷媒ガスGrは、例えばヘリウムガスである。
前記蓄冷器管11の下端には、前記冷媒ガスGrの通過孔が穿設され且つ絶縁材料で作製されたスペーサ2aが設けられている。また、前記蓄冷器管11の上端には、冷媒ガスGrの通過孔が穿設され且つ絶縁材料で作製されたスペーサ2bが設けられている。前記スペーサ2a,2bの材料は、例えばガラス繊維強化プラスチック(FRP;Fiber glass Reinforced Plastic)である。
前記蓄冷器管11と前記パルス管12との間には、導電材料で作製されたシャント3−1,3−2,…が介設されている。前記シャント3−1,3−2,…の材料は、例えば銅である。
【0021】
前記蓄冷材10は、例えば銅網(網状に編まれた銅線)である。
前記蓄冷器管11および前記パルス管12の材料は、機械的に丈夫で,しかも断熱性能の高い非磁性金属材料であり、例えばステンレス鋼や、望ましくはチタン,チタン合金である。
前記絶縁筒1の材料は、例えばポリエステルやポリイミドなどの絶縁性プラスチックフィルムである。
前記連結ブロック13および前記放熱ケース17の材料は、熱伝導率の高い金属材料であり、例えば銅である。
【0022】
前記連結ブロック13は、前記蓄冷器管11および前記パルス管12内へ冷媒ガスGrをパルス的に出し入れすることで、極低温(例えば−200℃程度)に冷却される。前記冷媒ガスGrは、例えばヘリウムガスである。
前記連結ブロック13の上面には、被冷却体Mが載置されている。前記被冷却体Mは、例えば、微弱な磁場を検出するためのSQUID素子を内蔵するセンサーユニットである。
【0023】
前記蓄冷器管11や前記パルス管12の端部からの冷媒ガスGrの漏出を防止する見地から、前記蓄冷器管11と前記連結ブロック13との間は高気密性のシール部α1によりシールされ、前記蓄冷器管11と前記フランジ16との間は高気密性のシール部α2によりシールされ、前記パルス管12と前記連結ブロック13との間は高気密性のシール部α3によりシールされ、前記パルス管12と前記フランジ16との間は高気密性のシール部α4によりシールされている。これらのシール方法は、溶接もしくは鑞付けである。
【0024】
図2は、図1のパルス管式冷凍器100を含む冷凍システムの構成図である。この冷凍システム110は、前記パルス管式冷凍器100のフランジ16および放熱ケース17を外部に出し且つ他の部分(蓄冷材10,蓄冷器管11,絶縁筒1,パルス管12,連結ブロック13,被冷却体M)を真空中に収容する真空容器91と,冷媒ガスGrを高圧で送り出す高圧端子Hと前記冷媒ガスGrを回収する低圧端子Lとを有する圧縮機92と、前記高圧端子Hおよび低圧端子Lから導出された高圧ガス配管93および低圧ガス配管94と、前記パルス管式冷凍器100のガス配管14に連結したガス配管95と、電気配線96を介して前記圧縮機92と接続し且つ前記高圧ガス配管93および低圧ガス配管94を一定周期で交互に前記ガス配管95と結合する内部弁を有するモータ駆動切り換え弁97とを具備して構成されている。
【0025】
以上のパルス管式冷凍器100によれば、蓄冷器管11の内周に蓄冷材10を取り囲むように絶縁筒1を設けると共に、蓄冷器管11の両端に絶縁材料製のスペーサ2a,2bを設けたので、蓄冷材10と蓄冷器管11とを電気的に絶縁することができ、両者の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。また、蓄冷器管11とパルス管12との間に、多数のシャント3−1,3−2,…を介設したから、両者の電位を常にほぼ等しくでき、蓄冷器管11と連結ブロック13とパルス管12とに大電流の電流ループが形成されなくなる。
この結果、雑音磁場の発生を抑制でき、微弱な磁場を測定する際の誤差を低減することが出来る。
【0026】
−第2の実施形態−
図3は、本発明の第2の実施形態にかかるパルス管式冷凍器を示す構成図である。
このパルス管式冷凍器200は、内部に蓄冷材10を充填された蓄冷器管11と,内部に空洞Vを有するパルス管12と,前記蓄冷器管11の上端と前記パルス管12の上端とを連結する連結管21と,その連結管21の中間に介設され且つ絶縁材料で作製された絶縁継ぎ手22と,前記連結管21を覆う低温発生部23と,前記蓄冷器管11の下端の管壁内側に冷媒ガスGrが供給されるガス配管14の一端を位置付けると共に前記パルス管12の下端の管壁内側にオリフィス15の一端を位置付けるフランジ16と,前記オリフィス15の他端に連なるバッファーBを有する放熱ケース17とを具備して構成されている。
前記絶縁継ぎ手22の材料は、例えばポリエステルやポリイミドなどの絶縁性プラスチックあるいはセラミック体である。
以上のパルス管式冷凍器200によれば、連結管21の中間に絶縁継ぎ手22を介設したので、蓄冷器管11とパルス管12とを電気的に絶縁することができ、両者の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。
この結果、雑音磁場の発生を抑制して、微弱な磁場を測定する際の誤差を低減することが出来る。
【0027】
−第3の実施形態−
図4は、本発明の第3の実施形態にかかるパルス管式冷凍器を示す構成図である。
このパルス管式冷凍器300は、蓄冷器管として機能させるための金属管31と,その金属管31の内周に同軸状に設けられたパルス管32と,前記金属管31を外壁とし前記パルス管32を内壁とする筒状空間に充填された蓄冷材33と,前記金属管31の内周に前記蓄冷材33を取り囲むように設けられた絶縁筒41と,前記金属管31の上端と前記パルス管32の上端とを連結する凹部が形成された連結ブロック34と,前記筒状空間の下端の管壁内側にガス配管14の一端を位置付けると共に前記パルス管32の下端の管壁内側にオリフィス15の一端を位置付けるフランジ16と,前記オリフィス15の他端に連なるバッファーBを有する放熱ケース17とを具備して構成されている。前記絶縁筒41の材料は、例えばガラス繊維強化エポキシ樹脂である。前記金属管31の材料は、例えばりん青銅やチタン合金である。前記パルス管32の材料は、ガラス繊維強化樹脂やセラミック体である。
前記筒状空間の下端には、冷媒ガスGrの通過孔が穿設され且つ絶縁材料で作製されたスペーサ45aが設けられている。また、前記パルス管32の上端には、冷媒ガスGrの通過孔が穿設され且つ絶縁材料で作製されたスペーサ45bが設けられている。
前記金属管31や前記パルス管32の端部からの冷媒ガスGrの漏出を防止する見地から、前記金属管31および前記パルス管32と前記連結ブロック34との間は高気密性のシール部α11によりシールされ、前記金属管31および前記パルス管32と前記フランジ16との間は高気密性のシール部α12によりシールされている。
以上のパルス管式冷凍器300によれば、金属管31の内周に蓄冷材33を取り囲むように絶縁筒41を設けると共に、蓄冷材33の両端に絶縁材料製のスペーサ45a,45bを設けたので、蓄冷材33と金属管31とを電気的に絶縁することができ、両者の間に熱起電力が発生して電流ループが形成されることを抑制することが出来る。この結果、雑音磁場の発生を抑制して、微弱な磁場を測定する際の誤差を低減することが出来る。
また、2ヶ所のシール部α11,α12を設けるだけで、蓄冷管として機能する金属管31や,パルス管32の両端からの冷媒ガスGrの漏出を防止できるので、構造を簡単にでき、製造コストを低減することが出来る。
さらに、金属管31と,パルス管32とを同軸状に設けることで機械的な強度を高めることができ、各管の肉厚を小さくすることが出来る。
さらにまた、蓄冷器管やパルス管を別個独立に設ける場合よりも、小型化することが出来る。
【0028】
−第4の実施形態−
図5は、本発明の第4の実施形態にかかる磁気遮蔽型冷凍システムを示す構成図である。
この磁気遮蔽型冷凍システム400は、外界から磁気的に遮蔽された内部空間を有する磁気遮蔽装置51と,容器状の外壁Woと内壁Wiとを有し前記内壁Wiで囲まれた空間内に冷却剤52が保持された断熱装置53と,前記外壁Woと前記内壁Wiの間の真空層内に設けられた熱遮蔽板54と,前記内壁Wiの底部に配設されたSQUID素子などのセンサー55と,前記熱遮蔽板54に低温発生部すなわち連結ブロック13を接触させ且つ放熱ケース17を断熱装置53の外部へ出したパルス管式冷凍器900(図9参照)と,前記内壁Wiの上部に設けられた断熱体56と、前記パルス管式冷凍器900にヘリウムガスなどの冷媒ガスGrを送り出す圧縮機92と,前記パルス管式冷凍器900と前記圧縮機92の間で前記冷媒ガスGrをパルス的に往復させるように弁を切り換えるモータ駆動切り換え弁97とを具備して構成されている。前記冷却剤52は、例えば液体ヘリウムである。前記断熱装置53の壁面の材料は、例えばガラス繊維強化プラスチック(FRP)である。前記断熱体56の材料は、例えば多孔質のポリスチレンである。前記熱遮蔽板54の材料は、例えば銅やアルミニウム,あるいは絶縁した銅線や銅網,またはそれらを樹脂シートと一体化したものである。
前記圧縮機92と,前記モータ駆動切り換え弁97は、前記磁気遮蔽装置51の外部に設置されている。
前記冷却剤52が気化した低温のガスgは、前記断熱装置53の内壁Wiと前記断熱体56との隙間を通って放出される。このとき、前記内壁Wiおよび前記熱遮蔽板54は、前記ガスgによって熱が奪取され、冷却される。
なお、前記パルス管式冷凍器900と前記モータ駆動切り換え弁97とを接続するガス配管95は、前記磁気遮蔽装置51内へのノイズの侵入を防止する見地から、できる限り短くし且つ磁気遮蔽装置51の内側と外側とで電気的に絶縁することが好ましい。また、ガス配管95が導電性の材料で作製されている場合には、当該ガス配管95を前記磁気遮蔽装置51の壁面と同電位にすることが好ましい。
以上の磁気遮蔽型冷凍システム400によれば、熱遮蔽板54にパルス管式冷凍器900の連結ブロック13を接触させて当該熱遮蔽板54を冷やすので、断熱性能を向上して冷却剤52の消費量を低減し、運転コストを節減することが出来る。
また、ノイズ発生源となりやすい圧縮機92と,モータ駆動切り換え弁97を、磁気遮蔽装置51の外部に設置するので、磁気遮蔽装置51内へのノイズの侵入を抑制し、微弱な磁気などを正確に測定することが出来る。
【0029】
−第5の実施形態−
図6は、本発明の第5の実施形態にかかる磁気遮蔽型冷凍システムを示す構成図である。
この磁気遮蔽型冷凍システム500は、外界から磁気的に遮蔽された内部空間を有する磁気遮蔽装置51と,容器状の外壁Woと内壁Wiとを有し前記内壁Wiで囲まれた空間内に冷却剤52が保持された断熱装置53と,前記外壁Woと前記内壁Wiの間の真空層内に設けられた熱遮蔽板54と,前記内壁Wiの底部に配設されたSQUID素子などのセンサー55と、前記内壁Wiの上部に設けられ且つ両端面が前記熱遮蔽板54と対面した伝熱板61を埋設された(または固設された)断熱体56と,前記伝熱板61に低温発生部すなわち連結ブロック13を接触させたパルス管式冷凍器900(図9参照)と,そのパルス管式冷凍器900にヘリウムガスなどの冷媒ガスGrを送り出す圧縮機92と、前記パルス管式冷凍器900と前記圧縮機92の間で前記冷媒ガスGrをパルス的に往復させるように弁を切り換えるモータ駆動切り換え弁97とを具備して構成されている。前記伝熱板61の材料は、例えば銅である。
前記圧縮機92と,モータ駆動切り換え弁97は、前記磁気遮蔽装置51の外部に設置されている。
前記伝熱板61の両端面は、冷却剤52が気化したガスgの層を介して、前記熱遮蔽板54と熱的に接続されるので、前記ガスgが、前記伝熱板61と前記熱遮蔽板54との間隙で冷却される。
以上の磁気遮蔽型冷凍システム500によれば、冷却剤52が気化したガスgの温度をいっそう下げて断熱性能を向上できるので、冷却剤52の消費量を低減し、運転コストを節減することが出来る。
また、ノイズ発生源となりやすい圧縮機92と,モータ駆動切り換え弁97を、磁気遮蔽装置51の外部に設置するので、磁気遮蔽装置51内へのノイズの侵入を抑制し、微弱な磁気などを正確に測定することが出来る。
【0030】
−第6の実施形態−
図7は、本発明の第6の実施形態にかかる磁気遮蔽型冷凍システムを示す構成図である。
この磁気遮蔽型冷凍システム600は、上記第1の実施形態にかかるパルス管式冷凍器100(図1参照)の連結ブロック13を、熱遮蔽板54に接触させて、当該熱遮蔽板54を冷却する構成である。
以上の磁気遮蔽型冷凍システム600によれば、熱遮蔽板54にパルス管式冷凍器100の連結ブロック13を接触させて当該熱遮蔽板54を冷やすので、冷却剤52の消費量を低減して、運転コストを節減することが出来る。
また、上記第1の実施形態にかかるパルス管式冷凍器100を用いるので、蓄冷器管(図1の11)と,その内部に充填された蓄冷材(図1の10)とを電気的に絶縁でき、電流ループの形成による磁気雑音の発生を低減することが出来る。
【0031】
−第7の実施形態−
図8は、本発明の第7の実施形態にかかる磁気遮蔽型冷凍システムを示す構成図である。
この磁気遮蔽型冷凍システム700は、上記第1の実施形態にかかるパルス管式冷凍器100(図1参照)の連結ブロック13を、断熱体56に埋設された伝熱板61に接触させて、当該伝熱板61を冷却する構成である。
以上の磁気遮蔽型冷凍システム700によれば、冷却剤52が気化したガスgの温度をいっそう下げて断熱性能を向上できるので、冷却剤52の消費量を低減し、運転コストを節減することが出来る。
また、上記第1の実施形態にかかるパルス管式冷凍器100を用いるので、蓄冷器管(図1の11)と,その内部に充填された蓄冷材(図1の10)とを電気的に絶縁でき、電流ループの形成による磁気雑音の発生を低減することが出来る。
【0032】
【発明の効果】
本発明のパルス管式冷凍器によれば、蓄冷器管と蓄冷材とを蓄冷器管の内周に設けた絶縁筒により絶縁したり,蓄冷器管とパルス管とを連結管に介設した絶縁部材で絶縁するので、電流ループの形成に起因する雑音を低減でき、微弱な物理量(磁気など)を正確に測定することが出来る。
また、本発明の磁気遮蔽型冷凍システムによれば、磁気遮蔽装置内の断熱装置の熱遮蔽板をパルス管式冷凍器で冷やすか、または、断熱体に埋設されるか固設された伝熱板をパルス管式冷凍器で冷やして当該伝熱板と熱遮蔽板との間のガス層の温度を下げるので、断熱性能を向上でき、冷却剤の消費量を低減できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかるパルス管式冷凍器を示す構成図である。
【図2】図1のパルス管式冷凍器を含む冷凍システムの構成図である。
【図3】本発明の第2の実施形態にかかるパルス管式冷凍器を示す構成図である。
【図4】本発明の第3の実施形態にかかるパルス管式冷凍器を示す構成図である。
【図5】本発明の第4の実施形態にかかる磁気遮蔽型冷凍システムの構成図である。
【図6】本発明の第5の実施形態にかかる磁気遮蔽型冷凍システムの構成図である。
【図7】本発明の第6の実施形態にかかる磁気遮蔽型冷凍システムの構成図である。
【図8】本発明の第7の実施形態にかかる磁気遮蔽型冷凍システムの構成図である。
【図9】従来のパルス管式冷凍器の一例を示す構成図である。
【図10】図9のパルス管式冷凍器を含む冷凍システムを示す構成図である。
【図11】従来の磁気遮蔽型冷凍システムを示す構成図である。
【図12】図9のパルス管式冷凍器の各部に形成された電流ループの説明図である。
【符号の説明】
100,200,300 パルス管式冷凍器
400,500,600,700 磁気遮蔽型冷凍システム
1,41 絶縁筒
2a,2b,45a,45b スペーサ
3−1,3−2,3−3,3−4 シャント
10,33 蓄冷材
11 蓄冷器管
12,32 パルス管
13 連結ブロック
22 絶縁継ぎ手
31 金属管
51 磁気遮蔽装置
52 冷却剤
53 断熱装置
54 熱遮蔽板
55 センサー
56 断熱体
61 伝熱板
92 圧縮機
97 モータ駆動切り換え弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulse tube refrigerator and a magnetically shielded refrigeration system. More specifically, a pulse tube refrigerator that has been improved to suppress the formation of a current loop caused by a thermoelectromotive force generated due to a material difference and a temperature difference in each part, and has been improved so as to reduce the amount of evaporation of a coolant. The present invention relates to a magnetic shield type refrigeration system. In particular, it is useful for cooling sensors such as SQUIDs (Superconducting Quantum Interference Devices).
[0002]
[Prior art]
FIG. 9 is a configuration diagram showing an example of a conventional pulse tube refrigerator.
The pulse tube refrigerator 900 includes a regenerator tube 11 filled with a regenerator material 10, a pulse tube 12 having a cavity V therein, an upper end of the regenerator tube 10 and an upper end of the pulse tube 12. A connecting block 13 formed with a connecting hole C for connecting a gas pipe 14 and one end of a gas pipe 14 inside a pipe wall at a lower end of the regenerator tube 11 and an end of an orifice 15 inside a pipe wall at a lower end of the pulse pipe 12. And a heat radiating case 17 having a buffer B connected to the other end of the orifice 15.
[0003]
The cold storage material 10 is, for example, a copper net (copper wire woven in a net shape).
The material of the regenerator tube 11 and the pulse tube 12 is a metal material that is mechanically strong and has high heat insulation performance, for example, stainless steel.
The material of the connection block 13 and the heat radiation case 17 is a metal material having a high thermal conductivity, for example, copper.
[0004]
The connection block 13 is cooled to an extremely low temperature (for example, about -200 ° C.) by putting the refrigerant gas Gr into and out of the regenerator tube 11 and the pulse tube 12 in a pulsed manner. The refrigerant gas Gr is, for example, helium gas.
A cooling target M is placed on the upper surface of the connection block 13. The cooled object M is, for example, a sensor unit having a built-in SQUID element for detecting a weak magnetic field.
[0005]
From the viewpoint of preventing the refrigerant gas Gr from leaking from the ends of the regenerator tube 11 and the pulse tube 12, the space between the regenerator tube 11 and the connection block 13 is sealed by a highly airtight seal portion α1. The space between the regenerator tube 11 and the flange 16 is sealed by a highly airtight seal portion α2, and the space between the pulse tube 12 and the connection block 13 is sealed by a highly airtight seal portion α3. The space between the pulse tube 12 and the flange 16 is sealed by a highly airtight seal portion α4.
[0006]
FIG. 10 is a configuration diagram of a refrigeration system including the pulse tube refrigerator 900 of FIG.
In this refrigeration system 910, the flange 16 and the radiating case 17 of the pulse tube refrigerator 900 are exposed to the outside and the other parts (the cold storage material 10, the cold storage tube 11, the pulse tube 12, the connection block 13, the cooling target M ) In a vacuum, a compressor 92 having a high-pressure terminal H for sending the refrigerant gas Gr at high pressure and a low-pressure terminal L for collecting the refrigerant gas Gr, and a high-pressure terminal H and a low-pressure terminal L. The high-pressure gas pipe 93 and the low-pressure gas pipe 94, the gas pipe 95 connected to the gas pipe 14 of the pulse tube refrigerator 900, and the high-pressure gas connected to the compressor 92 via an electric wiring 96. A motor drive switching valve 97 having an internal valve for alternately connecting the pipe 93 and the low-pressure gas pipe 94 to the gas pipe 95 at a constant period of, for example, 1 to 20 Hz is provided. It is configured Te.
[0007]
During the period when the motor drive switching valve 97 switches the internal valve to the high-pressure gas pipe 93, that is, the high-pressure terminal H, the refrigerant gas is supplied through the regenerator tube 11 and the connection hole C of the connection block 13 (FIG. 9). Gr flows into the pulse tube 12 in a pulsed manner. At this time, the refrigerant gas Gr is compressed at the lower end (buffer B side) of the pulse tube 12 to generate heat, and the heat is radiated from the heat radiation case 17.
On the other hand, during the period when the motor switching valve 65 is switching the internal valve to the low-pressure gas pipe 94, that is, the low-pressure terminal L, the pulse pipe 12 is connected to the inside of the pulse tube 12 through the connection hole C of the connection block 13 and the regenerator tube 11. Refrigerant gas Gr flows out in a pulsed manner. At this time, since the refrigerant gas Gr flows out while adiabatically expanding at the upper end (the regenerator tube 11 side) of the pulse tube 12, the vicinity of the upper end becomes cold, and the cool air is absorbed by the cold storage material 10, and The temperature of the connection block 14 decreases.
Therefore, by continuously switching the internal valve of the motor drive switching valve 97, the temperature of the connection block 13 can be reduced to an extremely low temperature, and the object to be cooled M can be cooled.
[0008]
FIG. 11 is a configuration diagram showing an example of a conventional magnetically shielded refrigeration system.
The magnetically shielded refrigeration system 920 includes a magnetically shielded device 51 having an inner space magnetically shielded from the outside, a container-shaped outer wall Wo and an inner wall Wi, and cooling in a space surrounded by the inner wall Wi. A heat insulating device 53 holding an agent 52, a heat shield plate 54 provided in a vacuum layer between the outer wall Wo and the inner wall Wi, a sensor 55 disposed at the bottom of the inner wall Wi, And a heat insulator 56 provided above Wi. The coolant 52 is, for example, liquid helium. The sensor 55 is a magnetic detection element such as a SQUID element.
The low-temperature gas g vaporized by the coolant 52 is discharged through a gap between the inner wall Wi of the heat insulating device 53 and the heat insulator 56. At this time, the inner wall Wi and the heat shielding plate 54 receive heat from the gas g and are cooled.
[0009]
[Problems to be solved by the invention]
In the above-described conventional pulse tube refrigerator 900, as shown in FIG. 12, a thermoelectromotive force is generated due to a material difference and a temperature difference between the regenerator material 10 and the regenerator tube 11, and the thermoelectromotive force generates the thermoelectromotive force. And a current loop i-1 transmitted through the regenerator tube 11 is easily formed. Similarly, a current loop i-2 due to the thermoelectromotive force is easily formed between the regenerator tube 11, the connection block 13, and the pulse tube 12.
However, since such current loops i-1 and i-2 cause magnetic noise N, there is a problem that an error in measuring a weak magnetic field increases.
[0010]
Further, in the above-described conventional magnetically shielded refrigeration system 920, since the coolant 52 is liable to evaporate due to the intrusion of heat from the outside, the coolant 52 needs to be replenished frequently, and the operating cost increases. is there.
[0011]
Therefore, a first object of the present invention is to provide a pulse tube refrigerator capable of suppressing the formation of a current loop caused by a thermoelectromotive force generated due to a material difference or a temperature difference between components.
A second object of the present invention is to provide a magnetically shielded refrigeration system that can reduce the amount of evaporation of a coolant.
[0012]
[Means for Solving the Problems]
In a first aspect, the present invention providesMade of conductive materialFilled with cold storage materialAnd made of conductive materialA regenerator tube and a pulse tube having a cavity therein are arranged substantially in parallel, flanges are attached to one end of the regenerator tube and one end of the pulse tube, and the other end of the regenerator tube and the pulse A pulse tube refrigerator of a type in which the other end of the tube is connected by a connection block, and the regenerator tube and the pulse tube are cooled to cool the connection block by introducing and removing a refrigerant gas in a pulsed manner. An insulating cylinder is provided on the inner periphery of the regenerator tube so as to surround the regenerator material.Suppressing the formation of a current loop including the regenerator tube and the regenerator material.A pulse tube refrigerator is provided.
In the pulse tube refrigerator according to the first aspect, the insulating tube is provided so as to surround the regenerator material on the inner periphery of the regenerator tube, so that the regenerator material and the regenerator tube can be electrically insulated. The formation of a current loop due to the generation of a thermoelectromotive force during the period can be suppressed. As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
[0013]
In a second aspect, the present invention provides a cold storage material filled therein.And made of conductive materialHas a regenerator tube and a cavity insideAnd made of conductive materialA pulse tube and a pulse tube are arranged substantially in parallel, flanges are attached to one end of the regenerator tube and one end of the pulse tube, and a conductive path is provided between the other end of the regenerator tube and the other end of the pulse tube. A pulse tube type of a type that is connected by a connecting pipe made of a material and cools a low-temperature generating portion that covers a part or the entirety of the connecting pipe by pulsating refrigerant gas into and out of the regenerator tube and the pulse tube. In a refrigerator, an insulating member for interrupting a current transmitted through the connection pipe is provided in the middle of the connection pipe.Suppressing the formation of a current loop including the regenerator tube and the pulse tube.A pulse tube refrigerator is provided.
In the pulse tube refrigerator according to the second aspect, since the insulating member is provided in the middle of the connecting tube, the regenerator tube and the pulse tube can be electrically insulated. It is possible to suppress the formation of a current loop due to generation of a thermoelectromotive force in between. As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
[0014]
In a third aspect, the present invention provides a metal tube for functioning as a regenerator tube, a pulse tube provided coaxially on the inner periphery of the metal tube, an outer wall having the metal tube as an inner wall, And filled into the cylindrical spaceAnd made of conductive materialCold storage material, provided on the inner periphery of the metal tube so as to surround the cold storage materialSuppress formation of a current loop including the metal tube and the cold storage materialAn insulating cylinder, a flange attached to one end of the metal tube and one end of the pulse tube, and a connection block for connecting the other end of the metal tube and the other end of the pulse tube; A pulse tube refrigerator is provided in which the connection block is cooled by pulsating refrigerant gas into and out of the cylindrical space and the pulse tube.
In the pulse tube refrigerator according to the third aspect, since the insulating tube is provided on the inner periphery of the metal tube so as to surround the cold storage material, the cold storage material and the metal tube can be electrically insulated. The formation of a current loop due to the generation of a thermoelectromotive force during the period can be suppressed. As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
In addition, since the pulse tube is provided coaxially on the inner periphery of the metal tube for functioning as a regenerator tube, leakage of the refrigerant gas can be prevented only by sealing two places corresponding to both ends of the coaxial structure. Can be simplified.
Further, by providing the metal tube and the pulse tube coaxially, mechanical strength can be increased, and the wall thickness of each tube can be reduced.
Furthermore, the size can be reduced as compared with a case where a regenerator tube and a pulse tube are separately provided.
[0015]
In a fourth aspect, the present invention provides the pulse tube refrigerator according to any one of the first to third aspects, wherein at least one end of one or both of the regenerator tube and the pulse tube is provided. Providing a spacer made of an insulating material and having a hole through which the refrigerant gas passes.To prevent the current loop including the regenerator tube and the pulse tube from being formed.A pulse tube refrigerator is provided.
In the pulse tube refrigerator according to the fourth aspect, a spacer made of an insulating material is provided on at least one end side of the regenerator tube or the pulse tube. Therefore, it is possible to further increase the noise magnetic field due to the formation of the current loop.
[0016]
In a fifth aspect, the invention is magnetically shielded from the outside worldMagnetic shielding space insideA magnetic shielding device havingMagnetic shieldingIt is installed in a space and has a container-like outer wall and inner wall, and is surrounded by the inner wall.InsulationIn spaceCool the magnetic sensing elementInsulation device that can hold coolantAnd beforeA magnetically shielded refrigeration system comprising at least one heat shield plate interposed in a layer between the outer wall and the inner wall,Install a pulse tube refrigerator in the internal space,To the heat shield plateSaidThe low temperature generating part of the pulse tube refrigerator is thermally coupledTo cool the heat shieldA compressor for sending refrigerant gas to the pulse tube refrigerator; and a switching valve for switching a valve to reciprocate the refrigerant gas between the pulse tube refrigerator and the compressor in a pulsed manner. A magnetic shield type refrigeration system is provided outside the magnetic shield device.
In the magnetically shielded refrigeration system according to the fifth aspect, the heat shield plate of the heat insulating device installed inside the magnetic shield device is cooled by the pulse tube refrigerator, so that the heat insulating performance of the heat insulating device is improved and the coolant is cooled. The consumption can be reduced and the operating cost can be saved. In addition, since a compressor and a switching valve, which are likely to be noise sources, are installed outside the magnetic shielding device, it is possible to suppress the intrusion of noise into the magnetic shielding device, and it is suitable for precise measurement of weak measurement targets (magnetism etc.) Measurement environment can be obtained.
[0017]
In a sixth aspect, the invention is magnetically shielded from the outside worldMagnetic shielding space insideA magnetic shielding device havingMagnetic shieldingIt is installed in a space and has a container-like outer wall and inner wall, and is surrounded by the inner wall.InsulationIn spaceCool the magnetic sensing elementInsulation device that can hold coolantAndA magnetically shielded refrigeration system comprising: a heat insulator provided on an upper portion of the inner wall;BiographyA hot plate is buried or fixed, and the low-temperature generating part of the pulse tube refrigerator is thermally coupled to the heat transfer plate.And cooling a portion of the heat transfer plate by contacting the vaporized gas of the coolant.And a switching valve for switching a valve to reciprocate the refrigerant gas between the pulse tube refrigerator and the compressor in a pulsed manner. Provided is a magnetically shielded refrigeration system, which is installed outside the apparatus.
In the magnetic shield type refrigeration system according to the sixth aspect, a heat insulator is provided above the heat insulator installed inside the magnetic shield device, and the heat insulator is provided.BiographyThe heat plate is buried (or fixed) and the heat transfer plate is cooled by a pulse tube refrigerator, so the temperature of the gas layer where the coolant has vaporizedBelowI can do it. Thereby, the heat insulating performance of the heat insulating device can be improved, the consumption of the coolant can be reduced, and the operating cost can be reduced. In addition, since a compressor and a switching valve, which are likely to be noise sources, are installed outside the magnetic shielding device, it is possible to suppress the intrusion of noise into the magnetic shielding device, and it is suitable for precise measurement of weak measurement targets (magnetism etc.) Measurement environment can be obtained.
[0018]
In a seventh aspect, the present invention provides:A regenerator tube filled with a regenerator material made of a conductive material and made of a conductive material and a pulse tube made of a conductive material and having a cavity therein are arranged substantially parallel to each other. A flange is attached to one end of the instrument tube and one end of the pulse tube, and the other end of the regenerator tube and the other end of the pulse tube are connected by a connection block. A pulse tube refrigerator of a type that cools the connection block by pulsating refrigerant gas into and out of the tube, wherein a shunt is provided between the regenerator tube and the pulse tube to electrically connect the two. And a pulse tube type refrigerator characterized in that both have substantially equal potentials.
In the pulse tube refrigerator according to the seventh aspect, since the shunt is interposed between the regenerator tube and the pulse tube, the potentials of both can always be substantially equal, and the regenerator tube, the connection block, and the pulse tube are connected to each other. A large current loop is not formed. As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited to this.
[0020]
-1st Embodiment-
FIG. 1 is a configuration diagram showing a pulse tube refrigerator according to a first embodiment of the present invention.
The pulse tube refrigerator 100 includes a regenerator tube 11 filled with a regenerator 10, a pulse tube 12 having a cavity V therein, and the regenerator 10 surrounded on the inner periphery of the regenerator tube 11. Block 13 having a connecting hole C connecting the upper end of the regenerator tube 11 and the upper end of the pulse tube 12, and a tube wall at the lower end of the regenerator tube 11. It has a flange 16 for positioning one end of a gas pipe 14 to which the refrigerant gas Gr is supplied and one end of an orifice 15 inside the tube wall at the lower end of the pulse tube 12, and a buffer B connected to the other end of the orifice 15. The heat radiation case 17 is provided. The refrigerant gas Gr is, for example, helium gas.
At the lower end of the regenerator tube 11, a through hole for the refrigerant gas Gr is provided, and a spacer 2a made of an insulating material is provided. At the upper end of the regenerator tube 11, a through hole for the refrigerant gas Gr is provided, and a spacer 2b made of an insulating material is provided. The material of the spacers 2a and 2b is, for example, a fiber glass reinforced plastic (FRP).
Shunts 3-1, 3-2,... Made of a conductive material are interposed between the regenerator tube 11 and the pulse tube 12. The material of the shunts 3-1, 3-2,... Is, for example, copper.
[0021]
The cold storage material 10 is, for example, a copper net (copper wire woven in a net shape).
The material of the regenerator tube 11 and the pulse tube 12 is a non-magnetic metal material that is mechanically strong and has high heat insulation performance, for example, stainless steel, or desirably titanium or a titanium alloy.
The material of the insulating cylinder 1 is, for example, an insulating plastic film such as polyester or polyimide.
The material of the connection block 13 and the heat radiation case 17 is a metal material having a high thermal conductivity, for example, copper.
[0022]
The connection block 13 is cooled to an extremely low temperature (for example, about -200 ° C.) by putting the refrigerant gas Gr into and out of the regenerator tube 11 and the pulse tube 12 in a pulsed manner. The refrigerant gas Gr is, for example, helium gas.
A cooling target M is placed on the upper surface of the connection block 13. The cooled object M is, for example, a sensor unit having a built-in SQUID element for detecting a weak magnetic field.
[0023]
From the viewpoint of preventing the refrigerant gas Gr from leaking from the ends of the regenerator tube 11 and the pulse tube 12, the space between the regenerator tube 11 and the connection block 13 is sealed by a highly airtight seal portion α1. The space between the regenerator tube 11 and the flange 16 is sealed by a highly airtight seal portion α2, and the space between the pulse tube 12 and the connection block 13 is sealed by a highly airtight seal portion α3. The space between the pulse tube 12 and the flange 16 is sealed by a highly airtight seal portion α4. These sealing methods are welding or brazing.
[0024]
FIG. 2 is a configuration diagram of a refrigeration system including the pulse tube refrigerator 100 of FIG. In this refrigeration system 110, the flange 16 and the heat radiating case 17 of the pulse tube refrigerator 100 are taken out and other parts (the cold storage material 10, the cold storage tube 11, the insulating tube 1, the pulse tube 12, the connection block 13, A vacuum vessel 91 for accommodating the object to be cooled M) in a vacuum, a compressor 92 having a high-pressure terminal H for sending the refrigerant gas Gr at a high pressure, and a low-pressure terminal L for collecting the refrigerant gas Gr; A high-pressure gas pipe 93 and a low-pressure gas pipe 94 derived from the low-pressure terminal L, a gas pipe 95 connected to the gas pipe 14 of the pulse tube refrigerator 100, and an electric wiring 96 connected to the compressor 92. And a motor drive switching valve 97 having an internal valve for connecting the high-pressure gas pipe 93 and the low-pressure gas pipe 94 alternately with the gas pipe 95 at regular intervals. To have.
[0025]
According to the pulse tube refrigerator 100 described above, the insulating cylinder 1 is provided so as to surround the regenerator material 10 on the inner periphery of the regenerator tube 11, and spacers 2 a and 2 b made of an insulating material are provided at both ends of the regenerator tube 11. Since it is provided, the regenerator material 10 and the regenerator tube 11 can be electrically insulated, and the formation of a current loop due to generation of a thermoelectromotive force therebetween can be suppressed. Further, since a large number of shunts 3-1, 3-2,... Are interposed between the regenerator tube 11 and the pulse tube 12, the potentials of both can always be substantially equal, and the regenerator tube 11 and the connecting block 13 are connected. And the pulse tube 12 no longer forms a large current loop.
As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
[0026]
-2nd Embodiment-
FIG. 3 is a configuration diagram illustrating a pulse tube refrigerator according to a second embodiment of the present invention.
The pulse tube refrigerator 200 includes a regenerator tube 11 filled with a regenerator material 10, a pulse tube 12 having a cavity V therein, an upper end of the regenerator tube 11, and an upper end of the pulse tube 12. , An insulating joint 22 provided in the middle of the connecting pipe 21 and made of an insulating material, a low-temperature generating part 23 covering the connecting pipe 21, and a lower end of the regenerator tube 11. A flange 16 that positions one end of the gas pipe 14 to which the refrigerant gas Gr is supplied inside the pipe wall and one end of the orifice 15 inside the pipe wall at the lower end of the pulse tube 12, and a buffer B connected to the other end of the orifice 15 And a heat radiating case 17 having the following.
The material of the insulating joint 22 is, for example, an insulating plastic such as polyester or polyimide or a ceramic body.
According to the above-described pulse tube refrigerator 200, since the insulating joint 22 is provided in the middle of the connecting tube 21, the regenerator tube 11 and the pulse tube 12 can be electrically insulated. The formation of a current loop due to the generation of thermoelectromotive force can be suppressed.
As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
[0027]
-Third embodiment-
FIG. 4 is a configuration diagram illustrating a pulse tube refrigerator according to a third embodiment of the present invention.
The pulse tube refrigerator 300 includes a metal tube 31 for functioning as a regenerator tube, a pulse tube 32 coaxially provided on the inner periphery of the metal tube 31, and the pulse tube 32 having the metal tube 31 as an outer wall. A cold storage material 33 filled in a cylindrical space having a tube 32 as an inner wall; an insulating tube 41 provided on the inner periphery of the metal tube 31 so as to surround the cold storage material 33; A connection block formed with a concave portion connecting the upper end of the pulse tube; and an end of the gas pipe positioned inside a tube wall at a lower end of the cylindrical space, and an orifice formed inside a tube wall at a lower end of the pulse tube. The orifice 15 includes a flange 16 for positioning one end of the orifice 15 and a heat dissipation case 17 having a buffer B connected to the other end of the orifice 15. The material of the insulating cylinder 41 is, for example, a glass fiber reinforced epoxy resin. The material of the metal tube 31 is, for example, phosphor bronze or a titanium alloy. The material of the pulse tube 32 is a glass fiber reinforced resin or a ceramic body.
At the lower end of the cylindrical space, there is provided a spacer 45a formed with a passage hole for the refrigerant gas Gr and made of an insulating material. At the upper end of the pulse tube 32, a spacer 45b formed with a through hole for the refrigerant gas Gr and made of an insulating material is provided.
From the viewpoint of preventing leakage of the refrigerant gas Gr from the ends of the metal tube 31 and the pulse tube 32, a highly airtight seal portion α11 is provided between the metal tube 31 and the pulse tube 32 and the connection block 34. The gap between the metal tube 31 and the pulse tube 32 and the flange 16 is sealed by a highly airtight seal portion α12.
According to the pulse tube refrigerator 300 described above, the insulating tube 41 is provided on the inner periphery of the metal tube 31 so as to surround the cold storage material 33, and the spacers 45 a and 45 b made of an insulating material are provided at both ends of the cold storage material 33. Therefore, the cold storage material 33 and the metal tube 31 can be electrically insulated, and the formation of a current loop due to generation of a thermoelectromotive force therebetween can be suppressed. As a result, generation of a noise magnetic field can be suppressed, and errors in measuring a weak magnetic field can be reduced.
In addition, the leakage of the refrigerant gas Gr from both ends of the metal tube 31 functioning as a cold storage tube and the pulse tube 32 can be prevented only by providing the two seal portions α11 and α12, so that the structure can be simplified and the manufacturing cost can be reduced. Can be reduced.
Further, by providing the metal tube 31 and the pulse tube 32 coaxially, mechanical strength can be increased, and the wall thickness of each tube can be reduced.
Furthermore, the size can be reduced as compared with a case where a regenerator tube and a pulse tube are separately provided.
[0028]
-Fourth embodiment-
FIG. 5 is a configuration diagram illustrating a magnetically shielded refrigeration system according to a fourth embodiment of the present invention.
This magnetically shielded refrigeration system 400 has a magnetically shielded device 51 having an inner space magnetically shielded from the outside, a container-shaped outer wall Wo and an inner wall Wi, and cooling in a space surrounded by the inner wall Wi. A heat insulating plate 53 holding the agent 52, a heat shielding plate 54 provided in a vacuum layer between the outer wall Wo and the inner wall Wi, and a sensor 55 such as a SQUID element disposed at the bottom of the inner wall Wi. And a pulse tube refrigerator 900 (see FIG. 9) in which the low-temperature generating portion, that is, the connecting block 13 is brought into contact with the heat shield plate 54 and the heat radiation case 17 is extended outside the heat insulating device 53; A heat insulator 56 provided, a compressor 92 for sending a refrigerant gas Gr such as helium gas to the pulse tube refrigerator 900, and the refrigerant gas between the pulse tube refrigerator 900 and the compressor 92. It is configured by including a motor drive switching valve 97 for switching the valve so as to reciprocate the r in a pulsed manner. The coolant 52 is, for example, liquid helium. The material of the wall surface of the heat insulating device 53 is, for example, glass fiber reinforced plastic (FRP). The material of the heat insulator 56 is, for example, porous polystyrene. The material of the heat shielding plate 54 is, for example, copper or aluminum, an insulated copper wire or a copper net, or a material obtained by integrating them with a resin sheet.
The compressor 92 and the motor drive switching valve 97 are installed outside the magnetic shielding device 51.
The low-temperature gas g vaporized by the coolant 52 is discharged through a gap between the inner wall Wi of the heat insulating device 53 and the heat insulator 56. At this time, the inner wall Wi and the heat shielding plate 54 receive heat from the gas g and are cooled.
In addition, the gas pipe 95 connecting the pulse tube refrigerator 900 and the motor drive switching valve 97 is made as short as possible from the viewpoint of preventing intrusion of noise into the magnetic shield device 51, and is provided with a magnetic shield device. It is preferable that the inside and outside of 51 are electrically insulated. When the gas pipe 95 is made of a conductive material, it is preferable that the gas pipe 95 has the same potential as the wall surface of the magnetic shielding device 51.
According to the magnetic shield type refrigeration system 400 described above, the connection block 13 of the pulse tube refrigerator 900 is brought into contact with the heat shield plate 54 to cool the heat shield plate 54, so that the heat insulation performance is improved and the coolant 52 The consumption can be reduced and the operating cost can be saved.
In addition, since the compressor 92 and the motor drive switching valve 97, which are likely to be noise sources, are installed outside the magnetic shielding device 51, it is possible to suppress noise from entering the magnetic shielding device 51 and accurately detect weak magnetism. Can be measured.
[0029]
-Fifth embodiment-
FIG. 6 is a configuration diagram illustrating a magnetically shielded refrigeration system according to a fifth embodiment of the present invention.
This magnetically shielded refrigeration system 500 includes a magnetically shielded device 51 having an inner space magnetically shielded from the outside, a container-shaped outer wall Wo and an inner wall Wi, and cooling in a space surrounded by the inner wall Wi. A heat insulating plate 53 holding the agent 52, a heat shielding plate 54 provided in a vacuum layer between the outer wall Wo and the inner wall Wi, and a sensor 55 such as a SQUID element disposed at the bottom of the inner wall Wi. A heat insulator 56 buried (or fixed) with a heat transfer plate 61 provided above the inner wall Wi and having both end faces facing the heat shielding plate 54; Unit, that is, the connecting block 13 is brought into contact with the pulse tube refrigerator 900 (see FIG. 9), a compressor 92 for sending a refrigerant gas Gr such as helium gas to the pulse tube refrigerator 900, and the pulse tube refrigerator. 900 and It is configured by including a motor drive switching valve 97 for switching the valve so as to pulsed manner reciprocating the refrigerant gas Gr between the serial compressor 92. The material of the heat transfer plate 61 is, for example, copper.
The compressor 92 and the motor drive switching valve 97 are installed outside the magnetic shielding device 51.
Since both end surfaces of the heat transfer plate 61 are thermally connected to the heat shielding plate 54 through a layer of the gas g in which the coolant 52 is vaporized, the gas g is connected to the heat transfer plate 61 with the heat transfer plate 61. It is cooled in the gap with the heat shielding plate 54.
According to the above magnetically shielded refrigeration system 500, the temperature of the gas g vaporized by the coolant 52 can be further reduced and the heat insulation performance can be improved, so that the consumption of the coolant 52 can be reduced and the operating cost can be reduced. I can do it.
In addition, since the compressor 92 and the motor drive switching valve 97, which are likely to be noise sources, are installed outside the magnetic shielding device 51, the intrusion of noise into the magnetic shielding device 51 is suppressed, and the weak magnetism and the like can be accurately detected. Can be measured.
[0030]
-Sixth embodiment-
FIG. 7 is a configuration diagram illustrating a magnetically shielded refrigeration system according to a sixth embodiment of the present invention.
The magnetic shield refrigeration system 600 cools the heat shield plate 54 by bringing the connection block 13 of the pulse tube refrigerator 100 (see FIG. 1) according to the first embodiment into contact with the heat shield plate 54. Configuration.
According to the above magnetically shielded refrigeration system 600, the connection block 13 of the pulse tube refrigerator 100 is brought into contact with the heat shield plate 54 to cool the heat shield plate 54, so that the consumption of the coolant 52 is reduced. , Operation costs can be reduced.
In addition, since the pulse tube refrigerator 100 according to the first embodiment is used, the regenerator tube (11 in FIG. 1) and the regenerator material (10 in FIG. 1) filled therein are electrically connected. Insulation can be achieved, and generation of magnetic noise due to formation of a current loop can be reduced.
[0031]
-Seventh embodiment-
FIG. 8 is a configuration diagram illustrating a magnetically shielded refrigeration system according to a seventh embodiment of the present invention.
In this magnetically shielded refrigeration system 700, the connection block 13 of the pulse tube refrigerator 100 (see FIG. 1) according to the first embodiment is brought into contact with the heat transfer plate 61 embedded in the heat insulator 56, The configuration is such that the heat transfer plate 61 is cooled.
According to the above magnetically shielded refrigeration system 700, the temperature of the gas g vaporized by the coolant 52 can be further reduced and the heat insulation performance can be improved, so that the consumption of the coolant 52 can be reduced and the operating cost can be reduced. I can do it.
In addition, since the pulse tube refrigerator 100 according to the first embodiment is used, the regenerator tube (11 in FIG. 1) and the regenerator material (10 in FIG. 1) filled therein are electrically connected. Insulation can be achieved, and generation of magnetic noise due to formation of a current loop can be reduced.
[0032]
【The invention's effect】
According to the pulse tube refrigerator of the present invention, the regenerator tube and the regenerator material are insulated by the insulating cylinder provided on the inner periphery of the regenerator tube, or the regenerator tube and the pulse tube are interposed in the connecting tube. Since insulation is performed by the insulating member, noise due to the formation of a current loop can be reduced, and a weak physical quantity (such as magnetism) can be accurately measured.
Further, according to the magnetic shield type refrigeration system of the present invention, the heat shield plate of the heat insulating device in the magnetic shield device is cooled by a pulse tube refrigerator, or heat transfer embedded or fixed in the heat insulator. Since the plate is cooled by a pulse tube refrigerator to lower the temperature of the gas layer between the heat transfer plate and the heat shielding plate, the heat insulation performance can be improved, and the consumption of the coolant can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a pulse tube refrigerator according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a refrigeration system including the pulse tube refrigerator of FIG. 1;
FIG. 3 is a configuration diagram illustrating a pulse tube refrigerator according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram showing a pulse tube refrigerator according to a third embodiment of the present invention.
FIG. 5 is a configuration diagram of a magnetically shielded refrigeration system according to a fourth embodiment of the present invention.
FIG. 6 is a configuration diagram of a magnetically shielded refrigeration system according to a fifth embodiment of the present invention.
FIG. 7 is a configuration diagram of a magnetically shielded refrigeration system according to a sixth embodiment of the present invention.
FIG. 8 is a configuration diagram of a magnetically shielded refrigeration system according to a seventh embodiment of the present invention.
FIG. 9 is a configuration diagram illustrating an example of a conventional pulse tube refrigerator.
FIG. 10 is a configuration diagram showing a refrigeration system including the pulse tube refrigerator of FIG. 9;
FIG. 11 is a configuration diagram showing a conventional magnetically shielded refrigeration system.
12 is an explanatory diagram of a current loop formed in each part of the pulse tube refrigerator of FIG.
[Explanation of symbols]
100, 200, 300 Pulse tube refrigerator
400, 500, 600, 700 Magnetically shielded refrigeration system
1,41 insulating tube
2a, 2b, 45a, 45b Spacer
3-1, 3-2, 3-3, 3-4 shunt
10,33 Cool storage material
11 Regenerator tube
12,32 pulse tube
13 Connecting block
22 Insulation fitting
31 metal tube
51 Magnetic shielding device
52 Coolant
53 Insulation device
54 Heat shield
55 sensors
56 Insulation
61 Heat transfer plate
92 compressor
97 Motor drive switching valve

Claims (7)

内部に導電材料で作成された蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有するパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を連結ブロックにより連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却するタイプのパルス管式冷凍器であって、
前記蓄冷器管の内周に、前記蓄冷材を取り囲むように絶縁筒を設け、前記蓄冷器管と前記蓄冷材とを含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器。
A regenerator tube filled with a regenerator material made of a conductive material and made of a conductive material, and a pulse tube having a cavity therein are arranged substantially in parallel, and one end of the regenerator tube and the pulse A flange is attached to one end of the tube, the other end of the regenerator tube and the other end of the pulse tube are connected by a connection block, and refrigerant gas is pulsed into the regenerator tube and the pulse tube. A pulse tube refrigerator that cools the connection block by taking in and out,
A pulse tube , wherein an insulating cylinder is provided on the inner periphery of the regenerator tube so as to surround the regenerator material, and a current loop including the regenerator tube and the regenerator material is suppressed from being formed. Type refrigerator.
内部に蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有し且つ導電材料で作成されたパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を導電材料で作製された連結管により連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結管の一部または全部を覆う低温発生部を冷却するタイプのパルス管式冷凍器であって、
前記連結管の中間に、当該連結管を伝わる電流を遮断する絶縁部材を介設し、前記蓄冷器管と前記パルス管とを含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器。
And inside is filled with a cold accumulating material and conductive material regenerator tube created by, and arranged substantially parallel to the been the pulse tube created and conductive material have a cavity therein, one end of the regenerator tube and A flange is attached to one end of the pulse tube, and the other end of the regenerator tube and the other end of the pulse tube are connected by a connection tube made of a conductive material. A pulse tube refrigerator of a type that cools a low-temperature generating portion that covers a part or the entirety of the connection pipe by putting refrigerant gas in and out of the pipe in a pulsed manner,
In the middle of the connecting pipe, an insulating member for interrupting a current transmitted through the connecting pipe is provided to suppress formation of a current loop including the regenerator tube and the pulse tube. Pulse tube refrigerator.
蓄冷器管として機能させるための金属管と、その金属管の内周に同軸状に設けられたパルス管と、前記金属管を外壁とし前記パルス管を内壁とする筒状空間に充填され且つ導電材料で作成された蓄冷材と、前記金属管の内周に前記蓄冷材を取り囲むように設けられ前記金属管と前記蓄冷材とを含む電流ループが形成されることを抑制する絶縁筒と、前記金属管の一端側および前記パルス管の一端側に取り付けられたフランジと、前記金属管の他端側と前記パルス管の他端側とを連結する連結ブロックとを具備し、前記筒状空間および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却することを特徴とするパルス管式冷凍器。A metal tube for functioning as a regenerator tube, a pulse tube coaxially provided on the inner periphery of the metal tube, and a cylindrical space filled with the metal tube as an outer wall and the pulse tube as an inner wall, and conductive. a cold accumulating material is made of a material, and suppressing insulating cylinder that current loop is formed including the provided so as to surround the cold accumulating material to the inner periphery of the metal pipe and the metal pipe and the cold accumulating material, the A flange attached to one end of the metal tube and one end of the pulse tube, and a connection block for connecting the other end of the metal tube and the other end of the pulse tube, the cylindrical space and A pulse tube type refrigerator, wherein the connection block is cooled by putting refrigerant gas into and out of the pulse tube in a pulsed manner. 請求項1から請求項3のいずれかに記載のパルス管式冷凍器において、前記蓄冷器管と前記パルス管のうちの一方または両方の少なくとも一端側に、絶縁材料で作製され且つ前記冷媒ガスの通過孔が穿設されたスペーサを設け、前記蓄冷器管や前記パルス管を含む電流ループが形成されることを抑制したことを特徴とするパルス管式冷凍器。The pulse tube refrigerator according to any one of claims 1 to 3, wherein at least one end of one or both of the regenerator tube and the pulse tube is made of an insulating material, and the refrigerant gas is cooled. A pulse tube refrigerator having a spacer provided with a through-hole to suppress formation of a current loop including the regenerator tube and the pulse tube . 外界から磁気的に遮蔽された磁気遮蔽空間を内部に有する磁気遮蔽装置と,前記磁気遮蔽空間に設置され且つ容器状の外壁および内壁を有し当該内壁で囲まれた断熱空間内に磁気検出素子を冷却する冷却剤を保持し得る断熱装置と,前記外壁と前記内壁の間の層内に介設された少なくとも1枚の熱遮蔽板とを備えた磁気遮蔽型冷凍システムであって、
前記内部空間にパルス管式冷凍器を設置し、前記熱遮蔽板に前記パルス管式冷凍器の低温発生部を熱的に結合させて前記熱遮蔽板を冷却すると共に、前記パルス管式冷凍器に冷媒ガスを送り出すための圧縮機と,前記パルス管式冷凍器と前記圧縮機の間で冷媒ガスをパルス的に往復させるように弁を切り換える切り換え弁とを前記磁気遮蔽装置の外部に設置したことを特徴とする磁気遮蔽型冷凍システム。
Magnetic sensor magnetically shielded magnetically shielded space from outside the magnetic shielding apparatus included therein, the magnetic shield is placed in the space and the container outer wall and the inner wall surrounded by a heat insulating space has an inner wall and insulating device capable of retaining a coolant for cooling, a magnetic shield type refrigeration system comprising at least one heat shielding plate that is interposed in a layer between the front Kigaiheki said inner wall a,
The interior space established a pulse tube type refrigerating apparatus to the heat shield plate to the pulse tube type refrigerator cold generating unit The rewritable cooling the heat shield plate is thermally coupled, the pulse tube refrigerating A compressor for sending refrigerant gas to a compressor and a switching valve for switching a valve to reciprocate refrigerant gas between the pulse tube refrigerator and the compressor in a pulsed manner are provided outside the magnetic shielding device. A magnetically shielded refrigeration system, characterized in that:
外界から磁気的に遮蔽された磁気遮蔽空間を内部に有する磁気遮蔽装置と,前記磁気遮蔽空間に設置され且つ容器状の外壁および内壁を有し当該内壁で囲まれた断熱空間内に磁気検出素子を冷却する冷却剤を保持し得る断熱装置とを備えた磁気遮蔽型冷凍システムであって、
前記内壁の上部に断熱体を設け、前記断熱体に伝熱板を埋設または固設し、前記伝熱板にパルス管式冷凍器の低温発生部を熱的に結合させ且つ前記伝熱板の一部を前記冷却剤の気化ガスに接触させて冷却すると共に、前記パルス管式冷凍器に冷媒ガスを送り出す圧縮機と,前記パルス管式冷凍器と前記圧縮機の間で冷媒ガスをパルス的に往復させるように弁を切り換える切り換え弁を前記磁気遮蔽装置の外部に設置したことを特徴とする磁気遮蔽型冷凍システム。
Magnetic sensor magnetically shielded magnetically shielded space from outside the magnetic shielding apparatus included therein, the magnetic shield is placed in the space and the container outer wall and the inner wall surrounded by a heat insulating space has an inner wall a magnetic shield type refrigeration system comprising a heat insulating device capable of retaining a coolant for cooling the,
The thermal insulator is provided in an upper portion of the inner wall, the heat transfer plate embedded or fixed on the heat insulating member, the heat transfer plate to the cold generating portion of the pulse tube type refrigerator of and is thermally coupled the heat transfer plate the rewritable cooling part in contact with the vaporized gas of the coolant, a pulse compressor, the refrigerant gas between the compressor and the pulse tube type refrigerator for feeding the refrigerant gas in the pulse tube type refrigerator A magnetically shielded refrigeration system, characterized in that a switching valve for switching a valve so as to reciprocate is installed outside the magnetically shielded device.
内部に導電材料で作成された蓄冷材を充填され且つ導電材料で作成された蓄冷器管と,内部に空洞を有し且つ導電材料で作成されたパルス管とを略平行に配列し、前記蓄冷器管の一端側および前記パルス管の一端側にフランジを取り付け、前記蓄冷器管の他端側と前記パルス管の他端側との間を連結ブロックにより連結し、前記蓄冷器管および前記パルス管内に冷媒ガスをパルス的に出し入れして前記連結ブロックを冷却するタイプのパルス管式冷凍器であって、A regenerator tube filled with a regenerator made of a conductive material and made of a conductive material, and a pulse tube made of a conductive material and having a cavity therein are arranged substantially parallel to each other. A flange is attached to one end of the vessel tube and one end of the pulse tube, and the other end of the regenerator tube and the other end of the pulse tube are connected by a connection block. A pulse tube refrigerator of a type that cools the connection block by pulsating refrigerant gas into and out of the tube,
前記蓄冷器管と前記パルス管の間に、両者を電気的に接続するシャントを介設し、両者の電位をほぼ等しくすることを特徴とするパルス管式冷凍器。  A pulse tube refrigerator having a shunt between the regenerator tube and the pulse tube for electrically connecting the two and making the potentials substantially equal.
JP17641398A 1998-06-23 1998-06-23 Pulse tube refrigerator and magnetically shielded refrigeration system Expired - Fee Related JP3577498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17641398A JP3577498B2 (en) 1998-06-23 1998-06-23 Pulse tube refrigerator and magnetically shielded refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17641398A JP3577498B2 (en) 1998-06-23 1998-06-23 Pulse tube refrigerator and magnetically shielded refrigeration system

Publications (2)

Publication Number Publication Date
JP2000018744A JP2000018744A (en) 2000-01-18
JP3577498B2 true JP3577498B2 (en) 2004-10-13

Family

ID=16013261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17641398A Expired - Fee Related JP3577498B2 (en) 1998-06-23 1998-06-23 Pulse tube refrigerator and magnetically shielded refrigeration system

Country Status (1)

Country Link
JP (1) JP3577498B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393792B1 (en) * 2001-02-17 2003-08-02 엘지전자 주식회사 Pulstube refrigerator
GB0125188D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator sleeve
GB0125189D0 (en) * 2001-10-19 2001-12-12 Oxford Magnet Tech A pulse tube refrigerator
JP2008241215A (en) * 2007-03-28 2008-10-09 Kyushu Univ Cold storage type cryogenic refrigerating machine
JP2012104781A (en) * 2010-11-15 2012-05-31 Railway Technical Research Institute High-temperature superconductive magnet cooling system with vehicle-mounted pulse tube refrigerator
JP6305285B2 (en) 2014-09-10 2018-04-04 住友重機械工業株式会社 Pulse tube refrigerator

Also Published As

Publication number Publication date
JP2000018744A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP4960539B2 (en) Zero-boil-off refrigerant-cooled recondensing superconducting magnet assembly
JP3867158B2 (en) Cryogenic container and magnetometer using the same
JP3265139B2 (en) Cryogenic equipment
US8072219B2 (en) Regenerative expansion apparatus, pulse tube cryogenic cooler, magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, superconducting quantum interference device flux meter, and magnetic shielding method of the regenerative expansion apparatus
JP2002076453A (en) Weak magnetic field measuring dewar
EP0334382B1 (en) Magnet apparatus for use in magnetic resonance imaging system
JP3577498B2 (en) Pulse tube refrigerator and magnetically shielded refrigeration system
JP5086920B2 (en) Cryogenic containment vessel and cryogenic equipment
US20220330869A1 (en) Dual-helmet magnetoencephalography apparatus
WO1995004287A1 (en) Magnetic sensor and magnetic detector
JP4763656B2 (en) Cryogenic containment cooling system and operation method thereof
JP2002065631A (en) Magnet device and magnetic resonance imaging apparatus using the same
JP4799757B2 (en) Superconducting magnet
JP3358658B2 (en) Magnetic sensor
CN216928214U (en) Superconducting magnet device
US6512368B2 (en) Dewar and biological magnetism measurement apparatus using the dewar
JP6172979B2 (en) Superconducting device
JP2001066354A (en) Cryogenic container for superconducting quantum interference device storage
JP2949003B2 (en) Cryogenic equipment
JP2006078070A (en) Cooling device
JP3767743B2 (en) Cryogenic refrigerator
US7348777B2 (en) Thermal shield to coldhead sleeve thermal contact
JPH11237456A (en) Heat shield body
JP2002232029A (en) Cryogenic storage container
JP2003179277A (en) Cryogenic container for superconducting quantum interference device storage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees