JPS63247914A - Flexible disk - Google Patents

Flexible disk

Info

Publication number
JPS63247914A
JPS63247914A JP7969187A JP7969187A JPS63247914A JP S63247914 A JPS63247914 A JP S63247914A JP 7969187 A JP7969187 A JP 7969187A JP 7969187 A JP7969187 A JP 7969187A JP S63247914 A JPS63247914 A JP S63247914A
Authority
JP
Japan
Prior art keywords
film
magnetic
layer
soft magnetic
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7969187A
Other languages
Japanese (ja)
Inventor
Takashi Tomie
崇 冨江
Masato Sugiyama
杉山 征人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7969187A priority Critical patent/JPS63247914A/en
Publication of JPS63247914A publication Critical patent/JPS63247914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a soft magnetic layer having small intra-surface magnetic anisotropy by forming the low-coercive force soft magnetic layer on a flexible substrate in such a manner that the torque curve measured within the film plane can be approximated by the specific equation. CONSTITUTION:The flexible disk is formed with the soft magnetic layer S having the low coercive force of <=10 oersted and and a perpendicular magnetic recording layer R on the flexible substrate F. The layer S of this disk is so formed that the torque curve measured within the film plane by a torque magnetometer can be approximated by the equation I and that the absolute value of Ku in this equation is <=1.5X10<3>erg/cc. In the equation, L is the torque acting on the layer S per unit volume thereof; Ku is a magnetic anisotropic constant; thetais the angle between the axis of easy magnetization within the film plane of the layer S and the measuring magnetic field of the torque magnetometer. The easy mass production of the film S having the small intra-surface magnetic anisotropy with good controllability is thereby permitted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポリエチレンテレフタレート(PET)フィル
ム等の非磁性の可撓性基板にNiFe合金膜等の軟磁性
層とCo Cr合金膜等の垂直磁気記録層を順次積層し
た二層M4造を有する垂直磁気記録用のフレキシブルデ
ィスクに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is based on a nonmagnetic flexible substrate such as a polyethylene terephthalate (PET) film, a soft magnetic layer such as a NiFe alloy film, and a perpendicular magnetic layer such as a CoCr alloy film. The present invention relates to a flexible disk for perpendicular magnetic recording having a two-layer M4 structure in which recording layers are sequentially laminated.

[従来技術] 従来の強磁性微粉末をバインダー樹脂中に分散せしめた
記録層を有する塗布型磁気記録媒体にかわり、近年、高
密度記録への要望にともない、垂1′I磁気記録方式の
媒体がさかんに研究されており、特にフロッピーディス
クへの応用が期待され、中でも上述の2層構造の垂直磁
気記録媒体が注目されている。(特公昭58−91号1
日経エレクトロニクス 1982年10月25日号p、
141等参照)上述の垂直磁気記録媒体の基本構成は、
特公昭58−91号公報等で公知の通り、支持基板上に
スパッタ等の手段で作成される磁束集中層として作用す
る0、2〜1.0μm程度の厚さのNi Fe合金膜等
からなる軟磁性層と記録層として作用する0、1〜0.
7μm程度の厚さのC0Cr合金膜等からなる垂直磁気
記録層を順次積層したもので、高感度。
[Prior Art] In place of the conventional coating-type magnetic recording medium having a recording layer in which fine ferromagnetic powder is dispersed in a binder resin, in recent years, with the demand for high-density recording, media of the perpendicular 1'I magnetic recording system have been developed. It is being actively researched, and is expected to be applied particularly to floppy disks, with the above-mentioned two-layer perpendicular magnetic recording medium attracting attention. (Special Publication No. 58-91 No. 1
Nikkei Electronics October 25, 1982 issue p.
141 etc.) The basic configuration of the above-mentioned perpendicular magnetic recording medium is as follows:
As is known from Japanese Patent Publication No. 58-91, etc., it is made of a Ni-Fe alloy film or the like with a thickness of about 0.2 to 1.0 μm, which acts as a magnetic flux concentration layer and is created by sputtering or other means on a supporting substrate. 0, 1 to 0, which acts as a soft magnetic layer and a recording layer.
High sensitivity due to the sequential lamination of perpendicular magnetic recording layers made of C0Cr alloy films with a thickness of approximately 7 μm.

高密度記録が可能である。High-density recording is possible.

ところで前述の2層構造の垂直磁気記録媒体は、支持基
板を回転させながら作成したフロッピーディスクでは問
題とならなかったが、工業生産を目的としたフィルムを
連続的に走行させながら作成ドーナツ状に打抜いたフロ
ッピーディスクでは再生出力が同一トラック内の一周期
で変化することがあり、それが軟磁性層の面内磁気異方
性に塁づくものであることがわかっており、その解決が
望まれている。
By the way, with the above-mentioned two-layer perpendicular magnetic recording medium, there was no problem with floppy disks made by rotating the support substrate, but it was not a problem when the film was made for industrial production and was made in a donut shape while being continuously run. On removed floppy disks, the playback output may change within one cycle within the same track, and it is known that this is based on the in-plane magnetic anisotropy of the soft magnetic layer, and a solution to this problem is desired. ing.

これに対して「I E E E  T ransact
ion  onMaaneticsJ vol、Mao
−20,k5 (1984) 、  782〜784頁
には、かかる磁気異方性により生じる再生出力の変化(
モジュレーション)と、磁気異方性を解消するためにス
パッタ粒子の斜め入射効果と磁場誘導異方性効果をバラ
ンスさせて等方化する手法が述べられている。
In contrast, “I E E E T transact
ion on MaaneticsJ vol, Mao
-20, k5 (1984), pp. 782-784, describes changes in reproduction output caused by such magnetic anisotropy (
Modulation) and a method of isotropy by balancing the oblique incidence effect of sputtered particles and the magnetic field-induced anisotropy effect to eliminate magnetic anisotropy are described.

しかしながら上記従来方法は、インラインバッチスパッ
タリングシステムを用いた実験結果に基づき得られたも
のであり、量産を目的とした連続製膜には適用し難いも
のである。
However, the above conventional method was obtained based on experimental results using an in-line batch sputtering system, and is difficult to apply to continuous film formation for mass production.

すなわち、量産時の軟磁性膜の磁気異方性は未解決であ
り、その確実な解消方法が待望されている。
That is, the magnetic anisotropy of soft magnetic films during mass production remains unresolved, and a reliable method for resolving this problem has been awaited.

[本発明の目的] 本発明は軟磁性層と記録層とを有する二#!膜構造の垂
直磁気記録用のフレキシブルディスクにおいて、再生出
力の周期変動(モジュレーション:JIS  C629
0参照)の小さいフレキシブルディスクを提案するもの
である。
[Object of the present invention] The present invention is directed to a two-layer film having a soft magnetic layer and a recording layer. Periodic fluctuations in playback output (modulation: JIS C629
We propose a small flexible disk (see 0).

[本発明の構成および作用効果] 本発明者らは、前記現状に鑑み連続スパッタ法により5
0μm程度の厚さの有機高分子フィルム支持体上に形成
されるパーマロイ(Ni Fe系合金)膜等の軟磁性膜
の磁気異方性の発現要因に着目し、鋭意検討した結果、
軟磁性膜が支持体フィルムや垂直磁気記録層(Co C
r合金膜、等)より受ける応力により発生する逆磁歪効
果を定m的に把握することに成功し、もって本発明を完
成するに至った。
[Structure and effects of the present invention] In view of the above-mentioned current situation, the present inventors have developed a method using a continuous sputtering method.
As a result of intensive studies focusing on the factors that cause magnetic anisotropy in soft magnetic films such as permalloy (Ni-Fe alloy) films formed on organic polymer film supports with a thickness of about 0 μm, we found that
A soft magnetic film is used as a support film or a perpendicular magnetic recording layer (CoC
We succeeded in determining the inverse magnetostrictive effect caused by the stress exerted by the r-alloy film, etc.), thereby completing the present invention.

すなわち、本発明は可撓性基板上に1000(エルステ
ッド)以下の低保磁力の軟磁性層と垂直磁気記録層を形
成したフレキシブルディスクにおいて、該軟磁性層は、
トルク磁力計により膜面内で測定されたトルク曲線がL
 −−Ku ・sin 2θ(ここで、Lは該軟磁性膜
の単位体積当りに働くトルク、KUは磁気異方性定数、
θは該軟磁性膜の膜面内の磁化容易軸とトルク磁力計の
測定磁界とのなす角度)の式で近似でき、該式中のKu
の絶対値が1.5x103erg /cc以下であるこ
とを特徴とするものである。
That is, the present invention provides a flexible disk in which a soft magnetic layer with a low coercive force of 1000 (oersteds) or less and a perpendicular magnetic recording layer are formed on a flexible substrate, the soft magnetic layer comprising:
The torque curve measured in the film plane by a torque magnetometer is L
--Ku ・sin 2θ (where, L is the torque acting per unit volume of the soft magnetic film, KU is the magnetic anisotropy constant,
θ can be approximated by the equation (the angle between the axis of easy magnetization in the film plane of the soft magnetic film and the measurement magnetic field of the torque magnetometer), and Ku in this equation
It is characterized in that the absolute value of is 1.5x103erg/cc or less.

上記本発明において該軟磁性層は該軟磁性層が他の層よ
り受ける応力による逆磁歪効果に基づく磁気異方性によ
り、その他の磁気異方性原因により発生する磁気異方性
を打消して略等方性とするものが好ましい。
In the present invention, the soft magnetic layer has magnetic anisotropy based on the reverse magnetostriction effect due to the stress that the soft magnetic layer receives from other layers, thereby canceling out the magnetic anisotropy caused by other causes of magnetic anisotropy. Preferably, it is approximately isotropic.

さらに好ましくは前記軟磁性層が前記逆磁歪効果で発生
ずる磁気異方性が概ね一軸磁気異方性であり、その磁気
異方性定数の絶対値が2X102ero /ccより大
きく 3 x 103 era /ccより小さいらの
であるフレキシブルディスクである。中でも、前記軟磁
性膜が対向ターゲットカソード又はマグネトロンスパッ
タカソードを有する連続スパッタ装置により回転キャン
に沿って連続走行する前記可撓性基板上に、スパッタ粒
子が堆積する部分の磁界強度の膜面に平行な成分が少な
くとも一度は5ガウス以上となる条件で形成されたパー
マロイ膜であるフレキシブルディスクが好ましい。
More preferably, the magnetic anisotropy generated by the inverse magnetostriction effect in the soft magnetic layer is approximately uniaxial magnetic anisotropy, and the absolute value of the magnetic anisotropy constant is greater than 2 x 102 ero/cc 3 x 103 era/cc. It is a flexible disk with a smaller size. In particular, the soft magnetic film is parallel to the film surface of the magnetic field strength of the part where the sputtered particles are deposited on the flexible substrate, which is continuously moved along a rotating can by a continuous sputtering device having a facing target cathode or a magnetron sputtering cathode. It is preferable to use a flexible disk that is a permalloy film formed under conditions such that the component is at least 5 Gauss at least once.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図に本発明の好ましい垂直磁気記録用フレキシブル
ディスクの構成を示した。図においてFは支持材であり
、フロッピーディスク、スチル電子カメラ、画像ファイ
ル等の用途には、ポリエチレンテレフタレート、ポリエ
チレン−2,6−ナフタレンジカルポキシレート、ポリ
イミド等の30μm〜120μm程度の厚さの有機高分
子フィルムが好ましく用いられる。
FIG. 1 shows the configuration of a preferred flexible disk for perpendicular magnetic recording of the present invention. In the figure, F is a support material, and for applications such as floppy disks, still electronic cameras, and image files, organic materials with a thickness of about 30 μm to 120 μm such as polyethylene terephthalate, polyethylene-2,6-naphthalene dicarpoxylate, and polyimide are used. A polymer film is preferably used.

図のSは本発明の特徴をなす軟磁性層であり、′10エ
ルステッド(Oe)程度以下の保磁力(Hc )を有す
る厚さ0.2μTrL〜0.7μm程度のものが通常は
用いられる。材質は種々のものが適用可能であり、C0
Zr系のアモルファス合金膜やNi1”e系合金(パー
マロイ)膜等を例示できる。特に原材料コストが易く、
材料入手が容易で、かつ適当な磁気特性を有することよ
りパーマロイが好ましい。パーマロイにはNi Fe合
金のみでなくMOパーマロイ、Cut MOパーマロイ
、耐食性パーマロイ、高硬度パーマロイ等の種々のもの
があり、いずれも適用可能である。
S in the figure is a soft magnetic layer which is a feature of the present invention, and a layer having a coercive force (Hc) of about '10 Oe or less and a thickness of about 0.2 .mu.TrL to 0.7 .mu.m is usually used. Various materials can be used, and C0
Examples include a Zr-based amorphous alloy film and a Ni1''e-based alloy (permalloy) film.Especially, raw material costs are low;
Permalloy is preferred because the material is easily available and has appropriate magnetic properties. There are various types of permalloy such as not only Ni Fe alloy but also MO permalloy, cut MO permalloy, corrosion resistant permalloy, high hardness permalloy, and any of them can be applied.

図のRは垂直磁気記録層であり、飽和磁化(MS )が
200〜900en+u/ cc程度のCOとCr合金
膜が好ましく使用される。他にCOとCrにざらに数w
t%のRe、W、MO,Ta等の第3元素を添加したも
のや、CoV合金膜、FeCr合金膜や、さらにはco
 −co o蒸着膜であってもよい。要は適度のMsと
数百oeのHcと垂直磁気異方性を有する厚さ061μ
m〜0.5μ扉程度の膜が使用される。
R in the figure is a perpendicular magnetic recording layer, and a CO and Cr alloy film having a saturation magnetization (MS) of about 200 to 900 en+u/cc is preferably used. In addition, there are roughly a few in CO and Cr.
t% of a third element such as Re, W, MO, Ta, etc., CoV alloy film, FeCr alloy film, and even co
-coO vapor deposited film may be used. The key is a thickness of 061μ with moderate Ms, Hc of several hundred oe, and perpendicular magnetic anisotropy.
A membrane of about 0.5 μm to 0.5 μm is used.

図のPは必要に応じて設けられる耐久性等を目的とした
保護層である。例えば耐久性を保証するために3i 0
2 、硬質カーボン、Si N等の厚さ0.01μm〜
0.03μm程度の薄膜が設けられる−0さらに、各層
F、S、R,P間に他の中間層。
P in the figure is a protective layer provided as necessary for the purpose of durability and the like. For example 3i 0 to ensure durability
2. Thickness of hard carbon, SiN, etc. 0.01 μm ~
A thin film of about 0.03 μm is provided between each layer F, S, R, P, and other intermediate layers.

下地層、接着層等を有してもよい。またフレキシブルデ
ィスクでは支持体Fの両面に第1図の如く同じ構成の各
層が形成されるのが普通であるが、片側のみに形成した
もので良いことは云うまでもない。
It may have a base layer, an adhesive layer, etc. Furthermore, in a flexible disk, each layer having the same structure as shown in FIG. 1 is normally formed on both sides of the support F, but it goes without saying that it is sufficient to form each layer on only one side.

上記の各層の作製法は真空蒸着、スパッタリング、イオ
ンブレーティング、メッキ等が検討されているが磁気特
性と膿強度、膜付着強度が良好であり、合金の組成のコ
ントロールが容易なスパッタリング法が好ましく本発明
に適用される。
Vacuum evaporation, sputtering, ion blating, plating, etc. have been considered for the production of each of the above layers, but sputtering is preferred because it has good magnetic properties, pus strength, and film adhesion strength, and it is easy to control the alloy composition. Applies to the present invention.

とりわけ、量産性にすぐれた長尺フィルムの走行系を有
するマグネトロンスパッタ法に又は対向ターゲットスパ
ッタ法が好ましく適用される。ざらに、パーマ【コイの
ように飽和磁化(Ms )が大ぎく、透磁率の高い合金
ターゲットをスパッタするには対向ターゲットスパッタ
法が最も好ましい。
In particular, the magnetron sputtering method, which has a long film running system that is excellent in mass production, or the facing target sputtering method are preferably applied. In general, the facing target sputtering method is most preferable for sputtering an alloy target with a large saturation magnetization (Ms) and high magnetic permeability, such as a permanent carp.

以下に本発明の実施例に用いた巻取式の対向ターゲット
スパッタ装置を第2図により説明する。第2図は特開昭
57−158380号公報等で公知の対向ターゲットス
パッタ法を基本としたスパッタ装置である。図において
、I:は基板となるフィルムで、1は供給ロール、2.
3はガイドロール、4は巻取ロール、5は温度コントロ
ール可能なキャン、6はマスク、13は差動排気の仕切
り板、Pは2枚のターゲット11を対向させた対向ター
ゲット陰極、12はターゲット背面に設けた永久磁石、
Bはターゲット間の磁界、Sは粒子飛散を遮蔽するカバ
ー、20は真空槽、21はアルゴン等のガス導入系、2
2は排気系である。なお、真空ポンプ、ターゲットの冷
却水系統、ターゲットへの電力供給電源は公知のものと
同様で図示省略した。
A winding-type opposed target sputtering apparatus used in an embodiment of the present invention will be explained below with reference to FIG. FIG. 2 shows a sputtering apparatus based on the facing target sputtering method known from Japanese Patent Application Laid-Open No. 57-158380. In the figure, I: is a film serving as a substrate, 1 is a supply roll, 2.
3 is a guide roll, 4 is a winding roll, 5 is a can whose temperature can be controlled, 6 is a mask, 13 is a partition plate for differential exhaust, P is a facing target cathode with two targets 11 facing each other, 12 is a target Permanent magnet on the back
B is a magnetic field between targets, S is a cover that shields particle scattering, 20 is a vacuum chamber, 21 is a gas introduction system such as argon, 2
2 is an exhaust system. Note that the vacuum pump, the target cooling water system, and the power source for supplying power to the target are the same as those known in the art and are not shown.

上記構成から明らかな通り、その基本構成は前述の特開
昭57−158380号公報で公知の対向ターゲットス
パッタ装置と同じであり、その作用は公知であり説明は
省略する。
As is clear from the above structure, its basic structure is the same as that of the facing target sputtering apparatus disclosed in the above-mentioned Japanese Patent Application Laid-open No. 57-158380, and its operation is well known, so a description thereof will be omitted.

そして、以下のようにして垂直磁気記録媒体が得られる
。すなわち、基板として高分子樹脂フィルム等の長尺な
可撓性基板を用い、そのロール状巻装体を図に示すよう
に供給ロール1に装填し、その巻装体より繰出したフィ
ルムFを、ガイドロール2.3を介して、キャン5に沿
って走行させ、再び巻取りロール4に巻取りながら、キ
ャン5に隣接した対向ターゲラ]・陰極Pのターゲット
11をパーマロイ合金で構成してパーマロイ合金をスパ
ッタさせ、パーマロイ膜を長尺フィルム上に連続して形
成する。次にターゲット11をcoOr合金にかえて、
同様の操作により該パーマロイ股上にCo Cr合金膜
を形成する。さらに必要であれば、支持体である該フィ
ルムFの裏面にも同様にしてパーマロイ膜とCo Cr
合金膜を形成し、さらに必要であれば両表面に保護層を
形成し、第1図に例示した構成の垂直磁気記録媒体が得
られる。
Then, a perpendicular magnetic recording medium is obtained in the following manner. That is, a long flexible substrate such as a polymeric resin film is used as the substrate, and the rolled body is loaded onto the supply roll 1 as shown in the figure, and the film F fed out from the wound body is The target 11 of the cathode P is made of a permalloy alloy, and the target 11 of the cathode P is made of a permalloy alloy. is sputtered to continuously form a permalloy film on a long film. Next, change the target 11 to coOr alloy,
A CoCr alloy film is formed on the permalloy crotch by a similar operation. Furthermore, if necessary, a permalloy film and a CoCr
By forming an alloy film and further forming protective layers on both surfaces if necessary, a perpendicular magnetic recording medium having the structure illustrated in FIG. 1 is obtained.

このようにして作製された長尺の媒体をディスク状に打
抜けばフレキシブルディスクが得られるが、上述のよう
に長尺のフィルムF上に、連続製膜された軟磁性膜はそ
の保磁力が約10  Qe以下と小さい時には磁気異方
性を持ち易く、かがる軟磁性膜を有するフレキシブルデ
ィスクでは磁気へラドがディスク上を一周する間の出力
変動が大きい、という欠点を有することが判った。
A flexible disk can be obtained by punching the long medium produced in this way into a disk shape, but as mentioned above, the soft magnetic film continuously formed on the long film F has a high coercive force. It has been found that when the magnetic field is small (approximately 10 Qe or less), it tends to have magnetic anisotropy, and that flexible disks with bendable soft magnetic films have the disadvantage of large output fluctuations while the magnetic herad goes around the disk. .

以下に、本発明の特徴である軟磁性膜を説明する。The soft magnetic film, which is a feature of the present invention, will be explained below.

上記の例のようにして製膜された軟磁性膜(パーマロイ
膜)は、多少の異方性分散等を有する場合もあるが、お
おむね実質的に一軸磁気異方性を示すことがわかった。
Although the soft magnetic film (permalloy film) formed as in the above example may have some anisotropic dispersion, it was found that it generally substantially exhibits uniaxial magnetic anisotropy.

第3図にトルク磁力計を用いて、磁化を飽和させるに十
分な磁界で測定したパーマロイ膜のトルク曲線の一例を
示した。第3図の例ではトルクの最大値より求めたパー
マロイ膜の磁気異方性定数(Ku )は1,9x103
 erg/CCであり、このような大きな異方性を有す
るパーマロイ股上にC0Cr膜を形成したフレキシブル
ディスクでは再生出力のモジュレーションがJIS −
C−6290規定の10%より大きくなった。
FIG. 3 shows an example of a torque curve of a permalloy film measured using a torque magnetometer in a magnetic field sufficient to saturate magnetization. In the example shown in Figure 3, the magnetic anisotropy constant (Ku) of the permalloy film determined from the maximum torque is 1,9x103
erg/CC, and in a flexible disk with a C0Cr film formed on the permalloy crotch, which has such a large anisotropy, the modulation of the playback output is JIS -
This is greater than the 10% stipulated in C-6290.

そして、種々検討の結果モジュレーション10%以下を
得るためには、概略−軸磁気異方性を示す軟磁性膜では
、トルク曲線がL−−Ku ・sin 2θで近似され
、この式中のKllの絶対値が1.5X103erg 
/cc以下である必要があることが判った。
As a result of various studies, in order to obtain a modulation of 10% or less, for a soft magnetic film exhibiting approximately -axial magnetic anisotropy, the torque curve is approximated by L--Ku ・sin 2θ, and Kll in this equation is Absolute value is 1.5X103erg
It was found that it is necessary to be less than /cc.

ところで、上記のような、キャン(第2図の5)に沿っ
て走行する可撓性フィルム上に連続にスパッタ製膜され
た軟磁性膜の磁気異方性の発現理由は、従来、明確では
なく、理由が不明であることにより磁気異方性の小さい
軟磁性膜は得難い状況であった。軟磁性膜の磁気異方性
を小さくするには、考え得る異方性原因をすべて排除す
るとの考え方で、例えば膜堆積領域の基板(フィルム)
上の基板面に平行な磁界(第2図のB)をゼロにすべく
、キャンの背面く内側)にキャンセル用の永久磁石を配
する等の手段が提案されているが実用的には成功してい
ないようである。特に対向ターゲットスパッタ方式では
、両ヌーゲット聞の磁界分布がそのスパッタ放電特性に
深く関与していることにより、該磁界分布を乱すような
永久磁石を対向ターゲット空間近傍に配することは不可
能であり、上記従来手段は適用できない。
By the way, the reason for the development of magnetic anisotropy in a soft magnetic film continuously sputtered on a flexible film running along the can (5 in Figure 2) as described above has not been clearly explained. For reasons unknown, it has been difficult to obtain soft magnetic films with small magnetic anisotropy. In order to reduce the magnetic anisotropy of a soft magnetic film, the idea is to eliminate all possible causes of anisotropy.
In order to make the magnetic field parallel to the upper board surface (B in Figure 2) zero, measures such as placing a permanent canceling magnet on the inside of the back of the can have been proposed, but this has not been successful in practice. Apparently not. In particular, in the facing target sputtering method, the magnetic field distribution between both nuggets is deeply involved in the sputter discharge characteristics, so it is impossible to place a permanent magnet near the facing target space that would disturb the magnetic field distribution. , the above conventional means cannot be applied.

かかる背景を踏まえ、種々検討の結果本発明者らは、連
続にスパッタ製膜された軟磁性膜の磁気異方性を該軟磁
性膜が基板フィルムより受けている応力により誘起され
る逆磁歪効果によりコントロールすることにより、目標
値以下の一軸磁気異方性定数(Ku )を有するパーマ
ロイ膜を再現性良く得ることができることを見出した。
Based on this background, as a result of various studies, the present inventors determined that the magnetic anisotropy of a soft magnetic film continuously deposited by sputtering can be determined by the inverse magnetostrictive effect induced by the stress that the soft magnetic film receives from the substrate film. It has been found that by controlling the following, a permalloy film having a uniaxial magnetic anisotropy constant (Ku) less than the target value can be obtained with good reproducibility.

以下に逆磁歪効果を実験例(比較例)に基き説明する。The inverse magnetostriction effect will be explained below based on an experimental example (comparative example).

第4図(ωは第2図の装置を用い50μm厚さのポリエ
チレンテレフタレート(PET)フィルム上に製膜した
0、30m厚さのMOバーvoイ膜(Ni81wt%、
 Fe 14wt%、 MO5wt%)の元の長尺フィ
ルムの長手方向く走行方法:MD:第4図中の実線)と
巾方向(MDに直角な方向:TD:第4図中の点線)の
50HzM−Hループトレーサーで測定した磁化曲線(
横軸は測定磁場Hであり、フルスケールは±20 0e
である)であり、第4回出〉はPETフィルムを有機溶
剤で除去して単体として取り出したMOパーマロイ股の
磁化曲線(±2゜Oeフルスケール)である。
Figure 4 (ω is 0, 30 m thick MO bar voi film (Ni 81 wt%, Ni 81 wt%,
The running method of the original long film (Fe 14 wt%, MO 5 wt%) in the longitudinal direction: MD: solid line in Figure 4) and width direction (direction perpendicular to MD: TD: dotted line in Figure 4) is 50 HzM. -Magnetization curve measured with H-loop tracer (
The horizontal axis is the measured magnetic field H, and the full scale is ±20 0e
), and the fourth presentation is the magnetization curve (±2° Oe full scale) of the MO permalloy crotch obtained by removing the PET film with an organic solvent and taking it out as a single piece.

一方、該MOパーマロイ膜の磁歪定数(λ)は本発明者
らが先に出願した特願昭60−259857号の明II
Iに記載した方法により測定した。すなわち、該Moパ
ーマロイ膜に所定の張力tをその所定方向例えばMD方
向加えた状態でM−8曲線を測定し、周知のようにその
原点より増磁曲線に接線を引き、飽和磁化MSのライン
との交点を求め、交点の示す磁場すなわち異方性磁界H
kを測定する。
On the other hand, the magnetostriction constant (λ) of the MO permalloy film is determined by
It was measured by the method described in Section I. That is, the M-8 curve is measured with a predetermined tension t applied to the Mo permalloy film in a predetermined direction, for example in the MD direction, and as is well known, a tangent line is drawn from the origin to the magnetization curve to find the line of saturation magnetization MS. Find the intersection point with the magnetic field indicated by the intersection point, that is, the anisotropic magnetic field H
Measure k.

そして、張力tを変えて種々な張力に対する異方性磁界
1−1 kを測定し、その勾配より単位張力当たりのH
kの変化中Δ1−1kを求める。又フィルム及びMOパ
ーマロイ層のヤング率を用い材料力学の公式に従って単
位張力の作用時のMOパーマロイ層に働く応力σ′を算
出する。そして下記により磁歪定数λを求める。
Then, the anisotropic magnetic field 1-1 k for various tensions was measured by changing the tension t, and from the gradient, H per unit tension was calculated.
Find Δ1-1k while k changes. Also, using the Young's modulus of the film and the MO permalloy layer, the stress σ' acting on the MO permalloy layer when unit tension is applied is calculated according to the formula of mechanics of materials. Then, obtain the magnetostriction constant λ using the following method.

λ−(Ms /3 ) X (ΔHk /a’ )ここ
で、単位は飽和磁化MSは[Wb #] 。
λ-(Ms/3)X(ΔHk/a') Here, the unit is saturation magnetization MS is [Wb#].

応力σ′は[N/m・*gf]、買方性磁界の変化分Δ
l) kは[A/m−Kgf]である。
The stress σ' is [N/m・*gf], and the change in the magnetic field Δ
l) k is [A/m-Kgf].

以上の測定法により前記Moパーマロイ膜の磁歪定数λ
は−1,5X 10″6であることがわかった。
The magnetostriction constant λ of the Mo permalloy film was determined by the above measurement method.
was found to be −1,5×10″6.

第4図(ωと+toとの比較より該Moパーマロイ膜は
MD力方向基板フィルムより圧縮される応力を受けてい
ることが判り、その応力の大きさは第4図(碍と(b)
の磁化困難軸の傾きより求めた異方性磁界(Hk )の
変化中(ΔHk)を式:σ−−ΔHk・MS / (3
・λ) (ただし、σは軟磁性膜が基板フィルムより受
けている応力、及び1ylsは該軟磁性膜の飽和磁化で
ある。)に代入して得られ、9.7x 1G” dyn
 /cdであった。すなわち、逆磁歪効果で誘起される
異方性定数(Ka)は式にσ=−(3/2 )・λ・σ
により求めることができ、この実験例ではKa−2,2
x103 era /cc(MD力方向磁化容易軸とす
る作用方向)であった。上記の式より理解されるように
、異方性定数にσの値と容易軸の方向は磁歪定数λと応
力σのそれぞれの値と符号により変えることができ、概
略−軸磁気異方性を有する軟磁性膜の磁気異方性は、種
々の原因による磁気異方性定数の総和として発現するこ
とにより、Kaをコントロールして該軟磁性膜の磁気異
方性をコントロールできることになる。
From the comparison between Figure 4 (ω and +to), it is clear that the Mo permalloy film is under compressive stress from the MD force direction substrate film, and the magnitude of that stress is shown in Figure 4 (Figure 4 and (b)).
The change (ΔHk) of the anisotropic magnetic field (Hk) obtained from the inclination of the hard magnetization axis is expressed by the formula: σ−−ΔHk・MS / (3
・λ) (However, σ is the stress that the soft magnetic film receives from the substrate film, and 1yls is the saturation magnetization of the soft magnetic film.), and is obtained by substituting 9.7x 1G" dyn
/cd. In other words, the anisotropy constant (Ka) induced by the inverse magnetostriction effect is expressed as σ=-(3/2)・λ・σ
In this experimental example, Ka-2,2
x103 era/cc (direction of action with MD force direction as axis of easy magnetization). As can be understood from the above equation, the value of σ in the anisotropy constant and the direction of the easy axis can be changed by the respective values and signs of the magnetostriction constant λ and stress σ, and the approximately -axial magnetic anisotropy can be changed. The magnetic anisotropy of the soft magnetic film is expressed as the sum of magnetic anisotropy constants due to various causes, so that the magnetic anisotropy of the soft magnetic film can be controlled by controlling Ka.

そして、上記の実験例(比較例)で得られたMOパーマ
ロイg!(組成及び磁歪定数は前記した。)の磁気異方
性は、対向ターゲット空間磁界(第2図の8)によるM
D力方向容易軸とする磁気異方性作用と、同じ<MD力
方向容易軸とする逆磁歪効果との和であると考えられる
。すなわち、両者の磁気異方性効果が同じ方向に作用し
ていることにより大きな磁気異方性を示している。
And MO permalloy g! obtained in the above experimental example (comparative example)! (The composition and magnetostriction constant are described above.) The magnetic anisotropy of M
It is considered that this is the sum of the magnetic anisotropy effect, which makes the D easy axis in the force direction, and the inverse magnetostrictive effect, which makes the same <MD easy axis in the force direction. In other words, both magnetic anisotropy effects act in the same direction, resulting in large magnetic anisotropy.

以上より、軟磁性膜の磁気異方性を低減させるには、逆
磁歪効果とその他の磁気異方性原因による効果とを互い
に打消す方向にすべきことが判った。対向ターゲットス
パッタ法では、第2図のキャン5と対向ターゲットカソ
ードPとの相対配置を90°回転すれば基板フィルム上
の磁界はTD方向になり、TD方向を容易軸とする作用
を生起せしめることはモデル的に可能であるが、このよ
うな配置ではフィルムの有効中が両ターゲット間隔で規
制されることにより量産には適さない。よって対向ター
ゲットスパッタ法においても、磁界方向に従い発生する
磁場誘導異方性効果よりも、逆磁歪効果を積極的に活用
するのが好ましい。
From the above, it has been found that in order to reduce the magnetic anisotropy of a soft magnetic film, the inverse magnetostriction effect and the effects due to other causes of magnetic anisotropy should be made to cancel each other out. In the facing target sputtering method, if the relative arrangement between the can 5 and the facing target cathode P in Fig. 2 is rotated by 90 degrees, the magnetic field on the substrate film will be in the TD direction, causing an action with the TD direction as the easy axis. Although this is possible as a model, such an arrangement is not suitable for mass production because the effective period of the film is regulated by the distance between both targets. Therefore, even in the facing target sputtering method, it is preferable to actively utilize the inverse magnetostriction effect rather than the magnetic field-induced anisotropy effect that occurs according to the magnetic field direction.

本発明は、Ni Fe合金等でみられる原子対の方向性
配列により磁気異方性が発現する場合、すなわちスパッ
タ粒子が磁界中で基板フィルム表面に堆積することによ
り誘導されるIl場中磁気異方性効果が避は得ない状況
下で好ましく適用される。
The present invention deals with the case where magnetic anisotropy is expressed due to the directional arrangement of atomic pairs found in NiFe alloys, etc. It is preferably applied in situations where directional effects are unavoidable.

この場合の磁界強度は5ガウス以上であれば磁場中誘導
異方性効果が無視し得ないが、5ガウス以下ではその効
果は小さく本発明の効果も小さい。
In this case, if the magnetic field strength is 5 Gauss or more, the induced anisotropy effect in the magnetic field cannot be ignored, but if it is 5 Gauss or less, the effect is small and the effect of the present invention is also small.

従って、基板を移送しつつ膜形成する場合は、膜形成時
その基板面に平行な磁界が少なくとも一度は5ガウス以
上となる条件下で膜形成することが好ましい。
Therefore, when forming a film while transporting the substrate, it is preferable to form the film under conditions in which the magnetic field parallel to the substrate surface is 5 Gauss or more at least once during film formation.

前記の逆磁歪効果で発現される異方性定数(Ka)の絶
対値は2 X 1102er / cc以上で3×10
3 er(1/cc以下が望ましい。2 X 1102
er / cc以下の時は、他の異方性効果を打消すに
不十分であり、3 X 10’ erQ /cc以上の
時は、逆に該逆磁歪効果により異方性が優勢となり、軟
磁性膜の磁気異方性が大きくなることが多い。
The absolute value of the anisotropy constant (Ka) expressed by the above-mentioned inverse magnetostriction effect is 3 × 10 at 2 × 1102er/cc or more.
3 er (1/cc or less is desirable. 2 X 1102
When it is less than er/cc, it is insufficient to cancel other anisotropic effects, and when it is more than 3 x 10' erQ/cc, anisotropy becomes dominant due to the inverse magnetostriction effect, resulting in soft The magnetic anisotropy of the magnetic film often becomes large.

なお、前記の実験例(比較例)ではMoパーマロイ膜が
基板フィルムより受ける応力σは9.7×108dyn
 / crAであった。逆磁歪効果を有効に活用づるに
は該応力は一軸性の適度な値を有する必要があり、おお
よそ5 X 10’ dyn / cri以上が好まし
い。ただし、大きすぎる応力は媒体のカールや膜のひび
訓れの原因となるので不都合であり、概略l x 10
” dyn / cd以下が好ましい。かかる応力は第
2図に例示し巻取式の連続スパッタ装置においC,基板
フィルt、Fとしで、50uTrL程度の厚さで、Vジ
グ率が400〜1500Kg/−程度のP1三Tフィル
ム又はポリエチレンナフ、タレートフイルム等を用い、
キャンの温度を20℃〜110℃程度として条件下で1
qることができる。なお、この場合のパーマロイ膜が基
板フィルムより受ける一軸性の応力はM D方向に圧縮
される方向が支配的であり、これは−フィルム搬送のた
めに該フィルムに加えられる張力によりフィルムが引き
伸ばされた状態で該パーマロイ膜が形成され、真空槽よ
り取り出した時に該張力が解放されることによりフィル
ムが元の寸法にもどろうとする力が該パーマロイ膜に作
用することにより発生すると理解できる。なお、−軸性
の応力とは、膜面内の均一な圧縮応力又は引張応ツノで
ない場合を意味し、例えばMD力方向応力とTD力方向
応力の値に面内磁気異方性を生起Uしめるに十分な相違
がある状態を云う。
In addition, in the above experimental example (comparative example), the stress σ that the Mo permalloy film receives from the substrate film is 9.7 × 108 dyn.
/crA. In order to effectively utilize the inverse magnetostrictive effect, the stress must be uniaxial and have an appropriate value, preferably approximately 5 x 10' dyn/cri or more. However, too large a stress is inconvenient because it causes curling of the medium and cracking of the film.
"dyn/cd or less is preferable. Such stress is shown in FIG. 2 as an example in a winding type continuous sputtering device, with C, substrate filter T, and F having a thickness of about 50 uTrL and a V jig rate of 400 to 1500 kg/c. - using P13T film or polyethylene naph, tallate film, etc.
1 under the condition that the temperature of the can is about 20℃~110℃
I can do it. In this case, the uniaxial stress that the permalloy film receives from the substrate film is predominantly in the direction of compression in the MD direction, and this is because - the film is stretched due to the tension applied to the film for film transport. It can be understood that the permalloy film is formed in such a state that when the film is removed from the vacuum chamber, the tension is released and a force acting on the permalloy film causes the film to return to its original dimensions. Note that -axial stress means a case where the compressive stress or tensile stress is not uniform in the film plane, for example, when the stress in the MD force direction and the stress in the TD force direction cause in-plane magnetic anisotropy. A state in which there are enough differences to make a difference.

以上、Moパーマロイ膜が基板フィルムより受ける応力
を例にして本発明の詳細な説明したが、第1図のように
、該Moパーマロイ膜上に垂直磁気記録層としてCo 
Cr合金膜を形成した時は、該Moパーマロイ膜が基板
フィルムとC0Cr合金膜との両者より受ける応ノコに
より発生する逆磁歪効果を考慮すれば良いことは、本発
明の主旨より明白である。なお、Co Cr膜が約0.
1μmと薄い場合は、約0.3μ風以上のMoパーマロ
イ膜がCo Cr p:4より受ける応力は比較的小さ
く無視できる。
The present invention has been described in detail by taking as an example the stress that a Mo permalloy film receives from a substrate film, but as shown in FIG.
It is clear from the gist of the present invention that when forming a Cr alloy film, it is sufficient to take into account the inverse magnetostrictive effect caused by the stress that the Mo permalloy film receives from both the substrate film and the C0Cr alloy film. Note that the CoCr film has a thickness of about 0.
When the film is as thin as 1 μm, the stress exerted on the Mo permalloy film of approximately 0.3 μm or more by CoCr p:4 is relatively small and can be ignored.

以上に述べた本発明により、面内の磁気異方性の小さい
軟磁性膜を容易に、コントロール良く量産が可能となっ
た。
According to the present invention described above, it has become possible to mass-produce soft magnetic films with small in-plane magnetic anisotropy easily and with good control.

[実施例コ 第2図に示した巻取式対向ターゲットスパッタ装置によ
り、50μm厚さのPETフィルムの片面にMoパーマ
ロイ膜(N i 79.6wt%、 Fe 15.4w
t%、 MO5,Owt%)を0.4μmの厚さに形成
し、次にその上に0.12μm厚さの0001合金膜(
Cr20wt%)を形成した。すなわら、160mm幅
の該PETフィルムを供給ロール1に仕込み、5cm 
/分の走行スピードで繰り出しながら、90℃に保った
キャン5のマスク6の開口部で、最大30ガウスのMD
h向に平行な基板フィルム表面磁界の存在下、MOペパ
ーロイターゲット11をIPaのAr雰囲気中でスパッ
タすることによりMoパーマロイ膜を連続に100mの
長さに形成した。次ターゲット11をCoCr合金にか
えて、20cm1分の走行スピードで繰り出しながら、
キャン5の温度を110℃として、0.5paのAr雰
囲気中でC0Cr合金11Qを、該Moパーマロイ膜の
70vtの部分に形成した。
[Example 2] A Mo permalloy film (N i 79.6 wt%, Fe 15.4 w
t%, MO5, Owt%) to a thickness of 0.4 μm, and then a 0.12 μm thick 0001 alloy film (
Cr20wt%) was formed. In other words, the PET film with a width of 160 mm is loaded into the supply roll 1, and the PET film with a width of 5 cm
The opening of the mask 6 of the can 5 maintained at 90 degrees Celsius while being fed out at a running speed of /min. MD of up to 30 Gauss.
A Mo permalloy film was continuously formed in a length of 100 m by sputtering the MO pepperloy target 11 in an IPa Ar atmosphere in the presence of a substrate film surface magnetic field parallel to the h direction. Next, change the target 11 to a CoCr alloy, and while feeding it at a running speed of 20 cm/minute,
The temperature of the can 5 was set to 110° C., and C0Cr alloy 11Q was formed on a 70vt portion of the Mo permalloy film in an Ar atmosphere of 0.5pa.

Co Cr合金膜を形成した部分のMoパーマロイ膜と
比較のためのMoパーマロイ膜の単層部との間に、その
磁気的性質(保磁力、磁気異方性)に差異は認められな
かったので、以下は単層部分のMoパーマロイ膜の特性
を記す。該Moパーマロイ膜の保磁力はMDh向に測定
した時は1.20e、TDh向では1,50eであり、
十分に良好な軟磁気特性を示した。該Moパーマロイ膜
の磁歪定数(λ)は前述の測定方法により+2x10−
7であることがわかった。また2KOeの磁場中でトル
ク磁力計で測定したトルク曲線を第5図に示したが、本
図より該Moパーマロイ膜は式L=−Ku sin 2
θで近似的に表わされる一軸磁気異方性を示し、最大ト
ルクより磁気異方性定数(Ku )は+4.OX 10
20r(1/cc (+の符号はMD力方向磁化容易軸
であることを示す。)であり、十分に良好な小さい異方
性を示した。この)(u =+ 4.OOx102er
/QCは次のように理解された。逆磁歪効果による異方
性定数(Kσ)は、磁歪定数λと該Moパーマロイ膜が
基板フィルムより受ける応力σの値より−2,9x 1
102er /cc (−の符号はTD方向を磁化容易
軸とする方向の異方性を生じさせる効果を示す。)であ
り、一方膜がMD方向の磁場中で堆積されることにより
生じるMDを磁化容易軸とする異方性効果はおおよそ+
6.5×102ero /ccの異方性定数と推定され
る。実測のKuはおおよそこの両者の和として与えられ
たものである。すなわち磁場中誘導異方性効果を主原因
とするMD方向を磁化容易軸とする作用(+6.9X 
102 ero /cc)と、逆磁歪効果(−2,’1
lX102ero /cc)とが互いに打消し合う方向
に作用した結果、小さいKtlのMOパーマロイ膜が得
′られた。また、本実施例のような製膜方法では正の小
さい(10−7台以下の)磁歪が好ましいことが判る。
No difference was observed in the magnetic properties (coercive force, magnetic anisotropy) between the Mo permalloy film on which the CoCr alloy film was formed and the single layer Mo permalloy film for comparison. The following describes the characteristics of the Mo permalloy film in the single layer portion. The coercive force of the Mo permalloy film is 1.20e when measured in the MDh direction and 1.50e in the TDH direction,
It showed sufficiently good soft magnetic properties. The magnetostriction constant (λ) of the Mo permalloy film was determined to be +2x10- by the measurement method described above.
It turned out to be 7. In addition, the torque curve measured with a torque magnetometer in a magnetic field of 2 KOe is shown in FIG.
It shows uniaxial magnetic anisotropy approximately expressed as θ, and the magnetic anisotropy constant (Ku) is +4. OX10
20r(1/cc (+ sign indicates MD force direction easy axis of magnetization), and showed sufficiently good small anisotropy.This)(u = + 4.OOx102er
/QC was understood as follows. The anisotropy constant (Kσ) due to the inverse magnetostriction effect is -2.9x 1 from the value of the magnetostriction constant λ and the stress σ that the Mo permalloy film receives from the substrate film.
102er/cc (The minus sign indicates the effect of producing anisotropy in the direction with the TD direction as the axis of easy magnetization.) On the other hand, the film is deposited in a magnetic field in the MD direction, thereby magnetizing the MD. The anisotropic effect with easy axis is approximately +
The anisotropy constant is estimated to be 6.5×10 2 ero /cc. The actually measured Ku is approximately given as the sum of both. In other words, the effect of making the MD direction the axis of easy magnetization mainly due to the anisotropy effect induced in the magnetic field (+6.9X
102 ero/cc) and the inverse magnetostrictive effect (-2,'1
As a result, an MO permalloy film with a small Ktl was obtained as a result of the mutually canceling effects. Further, it can be seen that in the film forming method of this example, a small positive magnetostriction (on the order of 10<-7> or less) is preferable.

Co Cr合金膜の膜面垂直方向に測定した保磁力は5
50Q eであり、膜面内で測定した保磁力は3800
 eであった。C0Cr合金膜の六方晶(hcp)のC
軸の垂直配向性も十分に良く、良好な垂直磁気異方性膜
であった。
The coercive force of the CoCr alloy film measured in the direction perpendicular to the film surface is 5
50Q e, and the coercive force measured in the film plane is 3800
It was e. C of hexagonal crystal (hcp) of C0Cr alloy film
The perpendicular orientation of the axis was also sufficiently good, and the film had good perpendicular magnetic anisotropy.

Co Cr合金膜とMOパーマロイ膜との積層媒体を5
.25インチのフレキシブルディスクに打抜き、市販の
ジャケットに入れてカールを押え込み、垂直ヘッドを用
い、50K B P Iの記録密度における再生出力の
一周期のモジュレーションを調べたところ、モジュレー
ションは5%であり、目標値以下を達成した。
The lamination medium of CoCr alloy film and MO permalloy film is
.. We punched out a 25-inch flexible disk, placed it in a commercially available jacket, pressed down the curls, and used a vertical head to examine the modulation of one cycle of the playback output at a recording density of 50K B P I, and found that the modulation was 5%. Achieved below target value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の垂直磁気記録フレキシブルディスクの
代表的な構成を示す断面図であり、Fは支持体となる可
撓性基板、Sは軟磁性膜Ff、 Rは垂直磁気記録層、
Pは保護層である。 第2図は本発明の実施例に用いた巻取式の対向ターゲッ
トスパッタ装置の説明図であり、Fは基板フィルム、5
はキャン、6はマスク、Pは対向ターゲット陰極の組立
体、Sは飛散防止カバー。 11はターゲット(2枚)、12は永久磁石、Bは対向
ターゲット空間に形成される磁界(点線)である。 第3図は比較のための実験例の磁気異方性の大ぎいMo
パーマ0イ膜のトルク曲線のグラフであり、横軸は測定
磁界と試料のMD方向とのなす角度θ(単位は度)であ
り、縦軸は単位体積当りのトルクしく単位はera /
cc) r″ある。 第4図は前記MOパーマロイ膜の磁化曲線であり横軸は
測定磁界(H:±2008)、縦軸は磁化(M:任意単
位)であり、実線はMD方方向9線線TD方向に測定し
たものである。(ωはPETフィルム基板上のMOパー
マロイIIQ、ttnはフィルムを除去した後の該MO
パーマロイ躾のM−Hループである。 第5図は実施例で得られたMoパーマロイ膜トルク曲線
のグラフである。 特許出願人 帝 人 株 式 会 礼 式  理  人  弁理士  前  1) 純  博X
103 天3図
FIG. 1 is a sectional view showing a typical configuration of the perpendicular magnetic recording flexible disk of the present invention, where F is a flexible substrate serving as a support, S is a soft magnetic film Ff, R is a perpendicular magnetic recording layer,
P is a protective layer. FIG. 2 is an explanatory diagram of a winding-type facing target sputtering apparatus used in an example of the present invention, where F is a substrate film;
6 is the mask, P is the opposing target cathode assembly, and S is the anti-scattering cover. 11 is a target (two pieces), 12 is a permanent magnet, and B is a magnetic field (dotted line) formed in the opposing target space. Figure 3 shows Mo with large magnetic anisotropy in an experimental example for comparison.
This is a graph of the torque curve of a permanent film, where the horizontal axis is the angle θ (in degrees) between the measured magnetic field and the MD direction of the sample, and the vertical axis is the torque per unit volume, and the unit is era/
cc) r''. Figure 4 shows the magnetization curve of the MO permalloy film, where the horizontal axis is the measured magnetic field (H: ±2008), the vertical axis is the magnetization (M: arbitrary unit), and the solid line is the direction in the MD direction 9. Measured in the line TD direction. (ω is the MO Permalloy IIQ on the PET film substrate, ttn is the MO Permalloy IIQ after removing the film.
This is the M-H loop of Permalloy discipline. FIG. 5 is a graph of the Mo permalloy membrane torque curve obtained in the example. Patent applicant: Teijin Co., Ltd. Patent attorney: 1) Jun Hiroshi
103 Heaven 3

Claims (4)

【特許請求の範囲】[Claims] (1)可撓性基板上に10エルステッド以下の低保磁力
の軟磁性層と垂直磁気記録層を形成したフレキシブルデ
ィスクにおいて、該軟磁性は、トルク磁力計により膜面
内で測定したトルク曲線がL=−Ku・sin2θ(L
は該軟磁性層膜の単位体積当りに働くトルク、Kuは磁
気異方性定数、θは該軟磁性膜の膜面内の磁化容易軸と
トルク磁力計の測定磁界とのなす角度)の式で近似でき
、該式中のKuの絶対値が1.5×10^3erg/c
c以下であることを特徴とするフレキシブルディスク。
(1) In a flexible disk in which a soft magnetic layer with a low coercive force of 10 Oe or less and a perpendicular magnetic recording layer are formed on a flexible substrate, the soft magnetism is determined by the torque curve measured in the film plane using a torque magnetometer. L=-Ku・sin2θ(L
is the torque acting per unit volume of the soft magnetic layer, Ku is the magnetic anisotropy constant, and θ is the angle between the axis of easy magnetization in the plane of the soft magnetic film and the measured magnetic field of the torque magnetometer. It can be approximated by
A flexible disk characterized in that it is less than or equal to c.
(2)前記軟磁性層は該軟磁性層が他の層より受ける応
力による逆磁歪効果に基づく磁気異方性によりその他の
磁気異方性原因により発生する磁気異方性を打消して略
等方性となる膜である特許請求の範囲第1項記載のフレ
キシブルディスク。
(2) The soft magnetic layer has magnetic anisotropy based on the reverse magnetostriction effect due to the stress that the soft magnetic layer receives from other layers, which cancels out the magnetic anisotropy caused by other causes of magnetic anisotropy. The flexible disk according to claim 1, which is a film that is tropic.
(3)前記軟磁性層は前記逆磁歪効果で発生する磁気異
方性が概ね一軸磁気異方性であり、その磁気異方性定数
の絶対値が2×10^2erg/ccより大きく、3×
10^3erg/ccより小さい膜である特許請求の範
囲第2項記載のフレキシブルディスク。
(3) In the soft magnetic layer, the magnetic anisotropy generated by the inverse magnetostriction effect is approximately uniaxial magnetic anisotropy, and the absolute value of the magnetic anisotropy constant is greater than 2×10^2 erg/cc; ×
The flexible disk according to claim 2, which has a film smaller than 10^3 erg/cc.
(4)前記軟磁性層は対向ターゲットカソード、又はマ
グネトロンスパッタカソードを有する連続スパッタ装置
により、回転キャンに沿って連続走行する前記可撓性基
板上に、スパッタ粒子が堆積する部分の磁界強度の膜面
に平行な成分が少なくとも一度は5ガウス以上となる条
件下で形成されたパーマロイ膜である特許請求の範囲第
3項記載のフレキシブルディスク。
(4) The soft magnetic layer is formed by a continuous sputtering device having a facing target cathode or a magnetron sputtering cathode onto the flexible substrate that continuously travels along a rotating can, and has a magnetic field strength of a portion where sputtered particles are deposited. 4. The flexible disk according to claim 3, which is a permalloy film formed under conditions in which the component parallel to the plane is 5 Gauss or more at least once.
JP7969187A 1987-04-02 1987-04-02 Flexible disk Pending JPS63247914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7969187A JPS63247914A (en) 1987-04-02 1987-04-02 Flexible disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7969187A JPS63247914A (en) 1987-04-02 1987-04-02 Flexible disk

Publications (1)

Publication Number Publication Date
JPS63247914A true JPS63247914A (en) 1988-10-14

Family

ID=13697226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7969187A Pending JPS63247914A (en) 1987-04-02 1987-04-02 Flexible disk

Country Status (1)

Country Link
JP (1) JPS63247914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222675A (en) * 2004-01-09 2005-08-18 Tohoku Univ Perpendicular magnetic recording medium
US8323808B2 (en) 2004-01-09 2012-12-04 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222675A (en) * 2004-01-09 2005-08-18 Tohoku Univ Perpendicular magnetic recording medium
JP4678716B2 (en) * 2004-01-09 2011-04-27 国立大学法人東北大学 Perpendicular magnetic recording medium
US8323808B2 (en) 2004-01-09 2012-12-04 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium
US8691402B2 (en) 2004-01-09 2014-04-08 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US3929604A (en) Method for producing magnetic recording medium
Bai et al. Nano-composite FePt–Al2O3 films for high-density magnetic recording
JPS6038718A (en) Vertical magnetic recording medium
GB2175014A (en) Perpendicular magnetic recording medium
JPS63247914A (en) Flexible disk
Maeda Effect of magnetic field in rf sputtering on the crystal orientation and magnetic properties of Co‐Cr perpendicular anisotropy films
Yamamoto et al. High coercivity ferrite thin-film tape media for perpendicular recording
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPS59162622A (en) Vertical magnetic recording material and its production
JP2715783B2 (en) Magnetic recording media
JPH0389502A (en) Magnetic multilayer film
JPS63220411A (en) Perpendicular magnetic recording medium
JPH0754574B2 (en) Perpendicular magnetic recording medium
JPS60170213A (en) Magnetic thin film and manufacture thereof
JP2000163732A (en) Magnetic recording medium and its production
JPS6095721A (en) Vertical magnetic recording medium and its production
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
Chen Microstructural and magnetic properties of barium ferrite thin film recording media
JPS63291212A (en) Magnetic recording medium
JPS61255533A (en) Vertical magnetic recording medium and its production
JPS62162222A (en) Vertical magnetic recording medium and its production
JPS6398827A (en) Perpendicular magnetic recording medium
JPS6350915A (en) Perpendicular magnetic recording medium
Lee Sputtered magnetic tape media fabrication and recording performance
JPS6126131B2 (en)