JPS63247654A - Analysis of anion - Google Patents

Analysis of anion

Info

Publication number
JPS63247654A
JPS63247654A JP62080971A JP8097187A JPS63247654A JP S63247654 A JPS63247654 A JP S63247654A JP 62080971 A JP62080971 A JP 62080971A JP 8097187 A JP8097187 A JP 8097187A JP S63247654 A JPS63247654 A JP S63247654A
Authority
JP
Japan
Prior art keywords
column
anion
sample
sepn
separation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62080971A
Other languages
Japanese (ja)
Other versions
JPH0785078B2 (en
Inventor
Yoshitada Takada
高田 芳矩
Hitoshi Iwabuchi
等 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62080971A priority Critical patent/JPH0785078B2/en
Priority to US07/119,479 priority patent/US4849110A/en
Priority to DE19873738467 priority patent/DE3738467A1/en
Publication of JPS63247654A publication Critical patent/JPS63247654A/en
Publication of JPH0785078B2 publication Critical patent/JPH0785078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To pass a sample of a certain concn. range continuously in a sepn. column and to permit quantitative analysis of anion by passing a liquid mixture composed of an eluant and the anion to be detected continuously to the sepn. column, supplying the specified amt. of an alkaline soln. to the sepn. column and measuring the liquid flowing out of the sepn. column with an electrical conductivity detector. CONSTITUTION:The eluant 1 and the sample 2 contg. the anion to be measured are controlled in flow rate by solenoid valves 3, 3' operating at a high speed and are mixed at a specified ratio in a confluent part 20. The mixture is sent through an injector part 5 by a pump 4 to the sepn. column 6. A specified amt. of the alkaline soln. is injected from the injector 5 by a microsyringe 7. A conductivity cell 9 is used for the detector 8 and the data monitored in the cell 9 is recorded as retention time, peak height and peak area by a data processor 11. The quantitative analysis of the anion is permitted while the sample of the certain concn. range is continuously passed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰イオン分析方法に係り、特に液体クロマト
グラフィーを適用する陰イオン分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anion analysis method, and particularly to an anion analysis method applying liquid chromatography.

〔従来の技術〕[Conventional technology]

液体クロマトグラフィーは、分離カラムにイオン交換樹
脂や吸着性充填剤を充填し、そのカラムに溶離液を供給
して注入試料の成分を分離するのが一般的である。液体
クロマトグラフィーの高速化が進むにつれて、溶離液送
液量も少なくなり分離カラムの容量も小さくなってきた
。これにともない導入する試料の容量も減少されるよう
になった。
In liquid chromatography, a separation column is generally filled with an ion exchange resin or an adsorbent packing material, and an eluent is supplied to the column to separate the components of an injected sample. As the speed of liquid chromatography has increased, the amount of eluent fed has decreased, and the capacity of separation columns has also become smaller. Along with this, the volume of sample introduced has also been reduced.

一方、上述のような試料容量の低減とは無関係に、イオ
ンクロマトグラフィーの分野で次の先行技術が発表され
ている。この先行技術は、“アナリテイカル・ケミスト
リ、56巻、第2073〜2078頁(1984)  
(Anal、 Chew、、 vol。
On the other hand, the following prior art has been announced in the field of ion chromatography, regardless of the reduction in sample volume as described above. This prior art is published in "Analytical Chemistry, Vol. 56, pp. 2073-2078 (1984).
(Anal, Chew,, vol.

56、pp2073〜2078 (1984))である
この先行技術は、イオンクロマトグラフィーにおいて、
溶離液だけを分離カラムに連続的に流し、その流れに蒸
留水を注入すると、溶離液中の陰イオンがアブセントピ
ークとしてamできる旨を示唆している。
56, pp. 2073-2078 (1984)) in ion chromatography.
It has been suggested that if only the eluent is allowed to flow continuously through the separation column and distilled water is injected into the flow, anions in the eluent can be detected as absent peaks.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液体クロマトグラフィーでは、溶離液の流れの中
に一定量の少量の試料を注入して分離カラムで成分分離
せしめる。ミクロ液体クロマトグラフイーによる溶離液
流量の低減化が進むと、注入すべき試料量も極微量とな
らざるを得す、そのような極微量試料を計量して注入す
ることが非常に困難となる。例えば、溶離液流量が数μ
Q/minまで削減されれば、試料量はnflオーダに
しなければならなくなるが、このような極微量を正確に
計量することは実用的には困難である。
In conventional liquid chromatography, a small, fixed amount of sample is injected into a stream of eluent and its components are separated by a separation column. As the flow rate of eluent is reduced by micro liquid chromatography, the amount of sample to be injected must become extremely small, and it becomes extremely difficult to measure and inject such a very small amount of sample. . For example, if the eluent flow rate is several μ
If the sample amount were to be reduced to Q/min, the sample amount would have to be on the order of nfl, but it is practically difficult to accurately measure such a minute amount.

一方、上述した先行技術では、アブセントピークが出現
する現象を定量分析に利用するための方法について、何
ら示唆していない。
On the other hand, the above-mentioned prior art does not suggest any method for utilizing the phenomenon in which an absent peak appears for quantitative analysis.

本発明の目的は、容量の小さい分離カラムを用いても、
試料中の陰イオンを液体クロマトグラフィーで定量分析
し得る陰イオン分析方法を提供することにある。
The purpose of the present invention is that even if a small capacity separation column is used,
An object of the present invention is to provide an anion analysis method capable of quantitatively analyzing anions in a sample using liquid chromatography.

C問題点を解決するための手段〕 本発明は、溶離液と被検陰イオンを含む試料との混合液
を分離カラムに連続的に流すこと、上記混合液は酸性又
は中性であること、上記被検陰イオンを実質的に含まな
いアルカリ性溶液の一定量を上記分離カラムに供給する
こと、上記分離カラムから流出する液を電導度検出器で
測定することを特徴とする。
Means for Solving Problem C] The present invention consists of continuously flowing a mixture of an eluent and a sample containing a test anion through a separation column, the mixture being acidic or neutral, The present invention is characterized in that a certain amount of an alkaline solution that does not substantially contain the test anion is supplied to the separation column, and the liquid flowing out from the separation column is measured with a conductivity detector.

上記アルカリ性溶液としては、例えば水酸化カリウム溶
液や水酸化ナトリウム溶液が好適であり、分離カラム又
は混合液流へこの液をパルス的に添加する。
The alkaline solution is preferably, for example, a potassium hydroxide solution or a sodium hydroxide solution, which is added in pulses to the separation column or to the mixed liquid stream.

〔作用〕[Effect]

あらかじめ試料溶液を分離カラムに連続的に流しておく
と、分離カラム内で被検成分はカラム充填剤と溶液との
間の吸脱着平衡に達している。ここで、カラム充填剤は
低交換容量の陰イオン交換樹脂であり、被検成分は陰イ
オンである。従ってカラム内ではイオン交換平衡が達成
されている。
When a sample solution is continuously flowed through a separation column in advance, the analyte component reaches an adsorption/desorption equilibrium between the column filler and the solution within the separation column. Here, the column packing material is an anion exchange resin with a low exchange capacity, and the analyte component is an anion. Ion exchange equilibrium is therefore achieved within the column.

ここで水酸化アルカリ8液が一定量(少量)添加される
と、水酸イオンがすでに吸着している目的の陰イオンを
追い出し、イオン交換樹脂上に水酸イオンが豊富で目的
の陰イオンの欠乏した帯状領域が形成される。これは試
料中の目的の陰イオン及びその他の溶質により展開され
、試料中の各目的の陰イオンの溶出位置に相当する位置
で分離カラムから溶出する。溶出した水酸イオンは水素
イオンと結合して水になるので、結果として各目的陰イ
オンの欠けたクロマトグラムが描かれることになる。
When 8 liquids of alkali hydroxide are added in a certain amount (small amount), the hydroxide ions drive out the target anions that have already been adsorbed, and the hydroxide ions are abundant on the ion exchange resin and the target anions are absorbed. A deficient band is formed. This is developed by the anion of interest and other solutes in the sample and elutes from the separation column at a position corresponding to the elution position of each anion of interest in the sample. The eluted hydroxyl ions combine with hydrogen ions to form water, resulting in a chromatogram that lacks each target anion.

あらかじめ吸着している目的陰イオンの量は、ある濃度
範囲では試料溶液中の濃度に比例しているので、定量性
もあることになる。
Since the amount of the target anion adsorbed in advance is proportional to the concentration in the sample solution within a certain concentration range, it is also quantitative.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図は1本発明を実施するためのクロマトグラフ装置の流
路図である。溶離液1と試料2とは高速で作動する電磁
弁3及び3′により流量を調節され、合流部20におい
て一定割合で混合され、ポンプ4によりインジェクタ部
5を経て分離カラム6に送られる。インジェクタ5から
はマイクロシリンジ7によって一定量のアルカリ性容液
が注入される。検出器8にはセル9を有する電導度モニ
タを用いたが、′R4R4用9は分離カラム6とともに
カラムオーブン10中に入れ、40℃の恒温に保った。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure is a flow path diagram of a chromatographic apparatus for carrying out the present invention. The eluent 1 and the sample 2 are mixed at a constant ratio in the confluence section 20 with their flow rates adjusted by electromagnetic valves 3 and 3' operating at high speed, and are sent to the separation column 6 via the injector section 5 by the pump 4. A fixed amount of alkaline liquid is injected from the injector 5 using the microsyringe 7. A conductivity monitor having a cell 9 was used as the detector 8, and the 'R4R4 cell 9 was placed in a column oven 10 together with the separation column 6 and kept at a constant temperature of 40°C.

電導度モニタ8にはデータ処理袋@11を接続し、保持
時間、ピーク高さ、ピーク面積などを記録した。
A data processing bag @11 was connected to the conductivity monitor 8, and the retention time, peak height, peak area, etc. were recorded.

分離カラムとしては、吸着1分配またはイオン交換など
の容量が小さい充填剤を充填したものを用いる。例えば
交換容量が3μeq/gの充填剤を用いた場合には、溶
離液と試料との混合液の分離カラムへの導入開始から分
離カラム内での平衡化までに関する時間が約20分であ
る。3時間以内に平衡化を達成しようとするなら容量が
30μeq/g以下の充填剤を用いる必要がある。
As the separation column, one filled with a small-capacity packing material such as one for adsorption/one distribution or ion exchange is used. For example, when a packing material with an exchange capacity of 3 μeq/g is used, the time from the start of introduction of the mixture of eluent and sample into the separation column to equilibration within the separation column is about 20 minutes. If equilibration is to be achieved within 3 hours, it is necessary to use a filler with a capacity of 30 μeq/g or less.

吸着・分配またはイオン交換などの容量の小さい分離カ
ラムに、溶離液と試料との混合液を連続的に流し吸着2
分配またはイオン交換などの平衡化を達成する。次いで
、一定量の離脱用溶媒を分離カラムに送ると、先の条件
下で充填剤に吸着等によって平衡状態にあった被検成分
は、離脱用溶媒との間で平衡状態を維持するように挙動
する。
A mixture of eluent and sample is continuously passed through a small-capacity separation column for adsorption/distribution or ion exchange.
Achieve equilibration such as partitioning or ion exchange. Next, when a certain amount of separation solvent is sent to the separation column, the analyte component, which was in equilibrium due to adsorption to the packing material under the previous conditions, will maintain an equilibrium state with the separation solvent. behave.

この結果、分離カラム内に吸着等によって保持されてい
た被検成分は、離脱用溶媒内に抽出されることになり、
離脱用溶媒の分離カラムからの排出に伴って排出される
。分離カラム内では離脱用溶媒が溶離液と試料の混合液
によって挟まれた状態で移行される。
As a result, the analyte components that were retained in the separation column by adsorption etc. will be extracted into the separation solvent.
It is discharged as the separation solvent is discharged from the separation column. Within the separation column, the separation solvent is transferred while being sandwiched between the eluent and sample mixture.

分離カラム内に継続して供給される溶離液と試料との混
合液が分離カラム内を進むにつれて、離脱用溶媒の通過
に伴って被検成分の抜は出た部分を補うように試料中の
被検成分が消耗され、このような被検成分の欠落したバ
ンドが通常の分に動作と同様に分離カラム内で移動展開
される。
As the mixture of eluent and sample that is continuously supplied into the separation column advances through the separation column, the amount of analyte in the sample is removed to compensate for the part of the analyte that was removed as the separation solvent passed through the column. The analyte is depleted, and the band lacking the analyte is moved and developed within the separation column in the same manner as in normal operation.

溶離液と試料との混合液の流れの中への離脱用溶媒の注
入量は正確に計量しなければならない。
The amount of dissociation solvent injected into the eluent-sample mixture stream must be accurately metered.

注入にあたっては通常の場合、計量管を流路切換弁に備
えた自動導入装置が用いられるが、注射針のような注入
器具を用いてもよい。離脱用溶媒の注入量は、充填剤の
種類、溶離液流量、試料中の成分濃度、検出器の検出感
度等に応じて選択される。実用的には、計量管等によっ
て正確に計量できる容量が設定され、通常1μQ〜1m
Qが多用される。
For injection, an automatic introduction device with a metering tube attached to a flow path switching valve is usually used, but an injection device such as a syringe needle may also be used. The injection amount of the separation solvent is selected depending on the type of filler, the flow rate of the eluent, the concentration of components in the sample, the detection sensitivity of the detector, etc. Practically, the capacity that can be accurately measured is set using a measuring tube, etc., and is usually 1 μQ to 1 m.
Q is often used.

溶離液槽1内には試料と混合したときに0.75mMの
濃度となるように調製されたフタル酸水素カリウム(p
H4,3)が収容されている。送液ポンプ4は、往復動
型の2連ビスI・ンボンプであり。
In the eluent tank 1, potassium hydrogen phthalate (p
H4,3) is accommodated. The liquid pump 4 is a reciprocating type double screw I-type pump.

通常は1 m Q /min以下の流量特にμQ/mi
nオーダのミクロ量を送液するようにコントローラによ
って動作制御される。
Usually the flow rate is less than 1 mQ/min, especially μQ/mi.
The operation is controlled by a controller so as to send a microscopic amount of liquid on the order of n.

分離カラム6には、日立バツクドカラムNα2710S
A−I Cを用いたが、この大きさは内径4 +nm、
長さ50nmである。カラム6内には、日立カスタムイ
オン交換樹脂271O8−ICを充填した。
Separation column 6 is a Hitachi backed column Nα2710S.
A-I C was used, but the size was 4 + nm in inner diameter,
The length is 50 nm. Column 6 was filled with Hitachi custom ion exchange resin 271O8-IC.

この充填剤は、低交換容量の陰イオン交換樹脂で、この
交換容量は約20μeρ/gである。充填剤としては、
より一層イオン交換容量の小さなイオン交換樹脂や、μ
m o Q / gオーダの吸着容量を持つ吸着剤を適
用することが可能である。
The filler is an anion exchange resin with a low exchange capacity, approximately 20 μeρ/g. As a filler,
Ion exchange resin with even smaller ion exchange capacity, μ
It is possible to apply adsorbents with adsorption capacities on the order of m o Q / g.

第2図のクロマトグラムは、第1図の装置を用いた実験
例を示すものである。溶離液として1.5mMフタル酸
水素カリウム(pH4,3)を用い、試料2として、濃
度4.0ppmのF−、(12−。
The chromatogram shown in FIG. 2 shows an experimental example using the apparatus shown in FIG. Sample 2 was F-, (12-) at a concentration of 4.0 ppm using 1.5 mM potassium hydrogen phthalate (pH 4.3) as the eluent.

Not−、B r−、N0a−、およびSO4”″をそ
れぞれ含む水溶液を用いた。これらを電磁弁3及び3′
の開閉により50 : 50で混合して送り、インジェ
クタ5からは250μQの純水(点線)または上記イオ
ンを各1100pp含む溶液1μQを注入した時(実線
)の電導度モニタ8の出力をモニターしたものである。
Aqueous solutions containing Not-, Br-, N0a-, and SO4'' were used. These solenoid valves 3 and 3'
The output of the conductivity monitor 8 was monitored when 250 μQ of pure water (dotted line) or 1 μQ of a solution containing 1100 pp of each of the above ions was injected from the injector 5 (solid line). It is.

ここでは上向きに電導度の減少を示している。Here we see a decrease in conductivity upwards.

すなわち、実線は通常のイオンクロマトグラムを示し1
点線が目的イオンの欠けた″ベイカントクロマトグラム
″を示している。
That is, the solid line indicates a normal ion chromatogram.
The dotted line indicates a "vacant chromatogram" lacking the target ion.

第2図において、破線のピークは、F″″21゜CQ−
22,No2−23.B r″″24.No3−25゜
5O42−26のペイカント陰イオンピークである。
In Fig. 2, the peak of the broken line is F″″21°CQ-
22, No2-23. B r″″24. This is the paycant anion peak of No. 3-25°5O42-26.

ベイカントクロマトグラムにおいては、イオンクロマト
グラフィーで溶出すべき位置に成分の欠けたピークが現
われること及び、純水を加えたのでは、N Os−の後
やSO42−のピークの前後の乱れていることがわかる
。なお、16分にはフタル酸イオンのペイカントピーク
が表われている。
In the vacant chromatogram, peaks lacking components appear at positions that should be eluted in ion chromatography, and when pure water is added, the peaks after NOs- and before and after the peaks of SO42- are disturbed. I understand that. Note that a pecant peak of phthalate ions appears at 16 minutes.

第3図〜第6図は、各種の注入液を用いたときのペイカ
ントクロマトグラムの状況を示したものであり、試料中
の各陰イオンの濃度は第2図の場合と同じ4.0ppm
である。第3図〜第6図では、第1図の装置のインジェ
クタ部5から所定量の各種の液を注入した。すなわち、
第3図では1mM水酸化カリウム25μQを、第4図で
は0.75mMフタル酸水素カリウム(pH4,3)2
5μ12を、第5図では純水250μQを、第6図では
純水25μQをそれぞれ注入してペイカントクロマトグ
ラムを得た。第3図のように1mM水酸化カリウムを添
加した場合にベースラインの乱れのない良好なりロマト
グラムが描かれた。また、純水25μQを加えたクロマ
トグラム(第6図)を比較すると約3倍高感度であった
Figures 3 to 6 show the state of paycant chromatograms when various injection solutions were used, and the concentration of each anion in the sample was 4.0 ppm, the same as in Figure 2.
It is. In FIGS. 3 to 6, predetermined amounts of various liquids were injected from the injector section 5 of the apparatus shown in FIG. That is,
In Figure 3, 25 μQ of 1mM potassium hydroxide was added, and in Figure 4, 0.75mM potassium hydrogen phthalate (pH 4,3) 2
A paycant chromatogram was obtained by injecting 5μ12 of pure water, 250μQ of pure water in FIG. 5, and 25μQ of pure water in FIG. As shown in FIG. 3, when 1 mM potassium hydroxide was added, a good chromatogram with no baseline disturbance was drawn. Furthermore, when comparing the chromatogram (Fig. 6) with 25 μQ of pure water added, the sensitivity was about 3 times higher.

第7図は、試料液2の濃度を1〜10ppmまで変え、
1mMの水酸カリウムを25μα注入して得た検量線で
ある。純水250μQ注入して得た検量線は直線性を示
す範囲がほとんどなかったのに比較し、水酸化カリウム
を添加すると、ある濃度範囲で良好な直線性を示すこと
がわかった。
Figure 7 shows that the concentration of sample solution 2 was varied from 1 to 10 ppm.
This is a calibration curve obtained by injecting 25μα of 1mM potassium hydroxide. Although the calibration curve obtained by injecting 250 μQ of pure water had almost no range showing linearity, it was found that adding potassium hydroxide showed good linearity within a certain concentration range.

注入する液体は、解離して水酸イオンを生成するアルカ
リ溶液があれば良く、水酸化リチウム。
The liquid to be injected only needs to be an alkaline solution that dissociates to produce hydroxide ions, such as lithium hydroxide.

ナトリウム、カリウム、アンモニウムなどが実用的であ
る。
Practical examples include sodium, potassium, and ammonium.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ベースラインの乱れのない″ベイカン
ト クロマトグラム”が描けるので。
According to the present invention, a "vacant chromatogram" without baseline disturbance can be drawn.

ある濃度範囲の試料を連続的に流して陰イオンの定量分
析が可能がある。
Quantitative analysis of anions is possible by continuously flowing a sample in a certain concentration range.

また、純水などを注入するより高感度に検出できるとい
う副次的効果もある。
Another side effect is that detection can be performed with higher sensitivity than when injecting pure water or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いたクロマトグラフ
装置の流路図、第2図はイオンクロマトグラムとペイカ
ントクロマトグラムを比較した図、第3図〜第6図は各
種の注入液を用いたときのペイカントクロマトグラムの
比較図、第7図は本発明を適用した各種陰イオンの検量
線例を示す図である。 1・・・溶離液、2・・・試料液、5・・・インジェク
タ、6・・・分離カラム、9・・・電A度セル。 第2図 lI今βJ+(’7Fノー 躬Sロ ー・    二     2    号時間(今ノー
Figure 1 is a flow path diagram of the chromatography device used to carry out the present invention, Figure 2 is a diagram comparing ion chromatograms and paycant chromatograms, and Figures 3 to 6 are various injection solutions. FIG. 7 is a diagram showing examples of calibration curves for various anions to which the present invention is applied. DESCRIPTION OF SYMBOLS 1... Eluent, 2... Sample liquid, 5... Injector, 6... Separation column, 9... Electricity cell. Figure 2 lI now βJ + ('7F no

Claims (1)

【特許請求の範囲】[Claims] 1、溶離液と被検陰イオンを含む試料との混合液を分離
カラムに連続的に流すこと、上記混合液は酸性又は中性
であること、上記被検陰イオンを実質的に含まないアル
カリ性溶液の一定量を上記分離カラムに供給すること、
上記分離カラムから流出する液を電導度検出器で測定す
ること、を含む陰イオン分析方法。
1. Continuously flow a mixture of the eluent and the sample containing the test anions through the separation column; the above mixture must be acidic or neutral; and the mixture must be alkaline, which does not substantially contain the test anions. supplying a certain amount of solution to the separation column;
An anion analysis method comprising measuring the liquid flowing out from the separation column with a conductivity detector.
JP62080971A 1986-11-12 1987-04-03 Anion analysis method Expired - Lifetime JPH0785078B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62080971A JPH0785078B2 (en) 1987-04-03 1987-04-03 Anion analysis method
US07/119,479 US4849110A (en) 1986-11-12 1987-11-12 Method and apparatus for liquid chromatography
DE19873738467 DE3738467A1 (en) 1986-11-12 1987-11-12 METHOD AND DEVICE FOR LIQUID CHROMATOGRAPHY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080971A JPH0785078B2 (en) 1987-04-03 1987-04-03 Anion analysis method

Publications (2)

Publication Number Publication Date
JPS63247654A true JPS63247654A (en) 1988-10-14
JPH0785078B2 JPH0785078B2 (en) 1995-09-13

Family

ID=13733400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080971A Expired - Lifetime JPH0785078B2 (en) 1986-11-12 1987-04-03 Anion analysis method

Country Status (1)

Country Link
JP (1) JPH0785078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174710A (en) * 1992-12-07 1994-06-24 Akihiro Yoshida Simultaneously quantitating method for a plurality of types of specific chemical substances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174710A (en) * 1992-12-07 1994-06-24 Akihiro Yoshida Simultaneously quantitating method for a plurality of types of specific chemical substances

Also Published As

Publication number Publication date
JPH0785078B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
Siriraks et al. Chelation ion chromatography as a method for trace elemental analysis in complex environmental and biological samples
US4699718A (en) Ion chromatography method and apparatus
Smith et al. Liquid chromatographic separation of metal ions on a silica column
JP2750002B2 (en) Ion chromatography using frequent regeneration of batch suppressors.
US4751189A (en) Method for balancing background conductivity for ion chromatography
Tempels et al. Design and applications of coupled SPE‐CE
Shintani et al. Gradient anion chromatography with hydroxide and carbonate eluents using simultaneous conductivity and pH detection
Nesterenko Ion chromatography
Lancaster et al. Trace metal atomic absorption spectrometric analysis utilizing sorbent extraction on polymeric-based supports and renewable reagents
JPS63247654A (en) Analysis of anion
Liu et al. Determination of trace-level anions in high-purity water samples by ion chromatography with an automated on-line eluent generation system
Majors Practical considerations in the use of high performance liquid chromatographic columns
US5132018A (en) Isoconductive gradient ion chromatography
US4556538A (en) Chromatographic apparatus
Révész et al. Mixed-mode liquid chromatography of carboxylic acids and inorganic anions on a latex-based pellicular stationary phase
Edholm et al. Automated analysis of terbutaline (Bricanyl R) in human plasma with liquid chromatography and electrochemical detection using column-switching (multidimensional chromatography)
Muntean Food Analysis: Using Ion Chromatography
Galante et al. Universal detection of ions by replacement-ion chromatography employing an anion-replacement method and an ultraviolet-visible spectrophotometric detector
JPH076960B2 (en) Ion chromatograph
JPS60190859A (en) Method and apparatus for analyzing ion seed
JP3348537B2 (en) Simultaneous analysis of anions and cations
JP3729738B2 (en) Column for concentration of components in sample
JPH03130660A (en) Liquid chromatograph
Pesek et al. Adsorption as a mechanism for separation of nonionic solutes by pellicular ion exchange chromatography
JPH01212355A (en) Analysis of anion hard to elute