JPH01212355A - Analysis of anion hard to elute - Google Patents

Analysis of anion hard to elute

Info

Publication number
JPH01212355A
JPH01212355A JP63035495A JP3549588A JPH01212355A JP H01212355 A JPH01212355 A JP H01212355A JP 63035495 A JP63035495 A JP 63035495A JP 3549588 A JP3549588 A JP 3549588A JP H01212355 A JPH01212355 A JP H01212355A
Authority
JP
Japan
Prior art keywords
ion
resin
hydroxyl group
elute
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63035495A
Other languages
Japanese (ja)
Inventor
Yoshinori Inoue
嘉則 井上
Harumi Iizawa
飯沢 はるみ
Hiroki Kumagai
熊谷 浩樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP63035495A priority Critical patent/JPH01212355A/en
Publication of JPH01212355A publication Critical patent/JPH01212355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To analyze an anion hard to elute with a good peak, by using a resin, which is based on a resin having a glycol type hydroxyl group and prepared by introducing a quaternary ammonium group into the primary hydroxyl group of said base resin, as a column packing agent. CONSTITUTION:The packing agent (hydrophylic resin) used in both of a precolumn 6 and a separation column 7 is obtained, for example, by using glyceryl methacrylate as a base material and introducing a quaternary ammonium group into the primary hydroxyl group thereof. This hydroxyl group is used in the introduction of an ion exchange group but partially left as a glycol type. When a boric acid-containing elute flows through the columns 6, 7, boric acid forms a complex ion along with the glycol type hydroxyl group to form a glycol borate ion on the surface of the resin to show ion exclusive effect. In this case, when the quaternary ammonium group (anion exchange group) is present simultaneously, the separation mode of ion exchange and ion exclusion can be controlled by controlling the addition amount of boric acid to the elute and a highly hydrophobic ion or an ion slow in elution can be rapidly eluted after all.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、陰イオン交換樹脂を用いた高速液体クロマト
グラフィーによって被測定液中の難溶出性陰イオンを分
析する難溶出性陰イオンの分析方法に関する。 □ 〈従来の技術〉 イオンクロマトグラフィーや液体クロマトグラフィーに
おける通常の手法を用いて、被測定液中の雌溶出性陰イ
オン(疎水性イオンや溶出の遅いイオン)を迅速に分析
することは一般に困難なこととされていた。即ち、イオ
ンクロマトグラフィーや液体クロマトグラフィーは、被
測定液を一定旦採取してのち溶離液でもって分離カラム
に搬送し、その後、該分離カラムからの溶出液をサプレ
ッサを介して導電率バックグランドを低下させたりして
のち検出器に導いて導電率を測定することにより、被測
定液中の陰イオンを測定するようになっているが、上記
難溶出性陰イオンは分離カラムから溶出し難いため、分
析時間が長くなるうえ測定成分のピーク形状もブロード
となって極めて信号処理が行い難い状態となることが多
かった。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to analysis of poorly eluted anions in a sample liquid by high performance liquid chromatography using an anion exchange resin. Regarding the method. □ <Conventional technology> It is generally difficult to quickly analyze female eluting anions (hydrophobic ions and slow-eluting ions) in the sample solution using conventional techniques in ion chromatography and liquid chromatography. It was considered a thing. In other words, in ion chromatography and liquid chromatography, a sample liquid is sampled once and then transported to a separation column with an eluent, and then the eluate from the separation column is passed through a suppressor to remove the conductivity background. The anions in the sample solution are measured by lowering the conductivity and then guiding it to a detector to measure the conductivity.However, the difficult-to-elute anions are difficult to elute from the separation column In many cases, the analysis time becomes long and the peak shape of the measured component becomes broad, making it extremely difficult to perform signal processing.

このため、現実には、高速液体クロマトグラフの移動相
たる溶離液のイオン強度を上げる方法や、上記陰イオン
交換樹脂のイオン交換容量を下げる方法や、陰イオン交
換樹脂の疎水性を下げる方法や、有機溶媒を添加する方
法などを駆使して上記錐溶出性陰イオンの分析が行なわ
れていた。
For this reason, in reality, there are methods to increase the ionic strength of the eluent that is the mobile phase of high performance liquid chromatography, methods to lower the ion exchange capacity of the anion exchange resin, methods to lower the hydrophobicity of the anion exchange resin, and methods to reduce the hydrophobicity of the anion exchange resin. The above-mentioned cone-eluting anions have been analyzed using methods such as adding organic solvents.

〈発明が解決しようとする問題点〉 然しながら、上記溶漏?Tfのイオン強度を上げる方法
の場合、所謂バックグランド除去装置たるサプレッサを
使用するとバンクグランドの除去(ないしは減少)を十
分に行うことが出来ずまた該サプレッサの寿命低下など
を招来するため、溶離液のイオン強度を余り上げること
ができないという欠点があった。また、陰イオン交換樹
脂のイオン交換容量を下げる方法の場合、イオン交換容
量を下げすぎると試料負荷量が減少して分解能が低下し
たり選択性が低下したりするという欠点があった。更に
、陰イオン交換樹脂の疎水性を下げる方法の場合、イオ
ン交換樹脂の親水化を行うことによりかなりの改善効果
が得られるが上記B溶出性陰イオンを早く溶出させるに
は限界があるという欠点があった。また、有機溶媒を添
加する方法の場合には、陰イオン交換樹脂の充填状態が
変化したりサプレッサの耐溶媒性等の為に有機溶媒添加
旦に限界があるという欠点があった。
<Problems to be solved by the invention> However, the above-mentioned leakage? In the case of the method of increasing the ion strength of Tf, if a suppressor, which is a so-called background removal device, is used, bank ground cannot be removed (or reduced) sufficiently, and the life of the suppressor will be shortened. The disadvantage was that it was not possible to increase the ionic strength very much. Further, in the case of the method of lowering the ion exchange capacity of the anion exchange resin, there is a drawback that if the ion exchange capacity is lowered too much, the sample loading amount decreases, resulting in a decrease in resolution and selectivity. Furthermore, in the case of the method of lowering the hydrophobicity of the anion exchange resin, a considerable improvement effect can be obtained by making the ion exchange resin hydrophilic, but there is a drawback that there is a limit to how quickly the B-eluting anions can be eluted. was there. Furthermore, in the case of the method of adding an organic solvent, there is a drawback that there is a limit to the amount of organic solvent that can be added due to changes in the filling state of the anion exchange resin and the solvent resistance of the suppressor.

本発明は、かかる状況に鑑みてなされたものであり、そ
の目的は、陰イオン交換樹脂を用いた高速液体クロマト
グラフィーによって被測定液中の錐溶出性陰イオンを良
好なピークで迅速に分析する難溶出性陰イオンの分析方
法を提供することにある。
The present invention was made in view of this situation, and its purpose is to quickly analyze cone-eluting anions in a sample liquid with good peaks by high-performance liquid chromatography using an anion exchange resin. The object of the present invention is to provide a method for analyzing poorly eluted anions.

く問題点を解決するための手段〉 上述のような問題点を解決する本発明の特徴は、難溶出
性陰イオンの分析方法において、グリコール型の水酸基
を有する親水性の樹脂を基材としその一級の水酸基に四
級アンモニウム基が導入されている樹脂をカラム充填剤
として使用すると共に、ホウ酸が添加された中性若しく
はアルカリ性の溶離液で前記被測定液を前記カラムに搬
送して前記B溶出性陰イオンをクロマトグラフィツクに
分離することにある。
Means for Solving the Problems> A feature of the present invention that solves the above-mentioned problems is that it uses a hydrophilic resin having a glycol-type hydroxyl group as a base material in a method for analyzing difficult-to-elute anions. A resin in which a quaternary ammonium group has been introduced into a primary hydroxyl group is used as a column packing material, and the liquid to be measured is transported to the column using a neutral or alkaline eluent containing boric acid. The purpose is to chromatographically separate eluted anions.

〈実施例〉 以下、本発明について図を用いて詳細に説明する。第1
図は本発明実施例を説明するための高速液体クロマトグ
ラフ説明図である。この図において、移動相ポンプ2a
が駆動すると、移動相タンクla内の移動相(例えば6
.6mMNa2 C03/ 2 、4 JFIMN a
Hco:+ テなる溶離液)が、移動相ポンプ2a→ダ
ンパー3→圧カセンサー4→切換弁5の第1及び第2の
接続口5a、5b→プレ力ラム6→分離カラム7→サプ
レッサ8の内室8b→検出器9(例えば導電率検出器)
を経由し、廃液槽1cへと流れるようになっている。ま
た、除去液ポンプ2bが駆動すると、例えば3WLf/
min、の流量で、除去液タンクlb内の除去液(例え
ば15mMHz 304 )が、除去液ポンプ2b−サ
プレッサ8の外室8c→除去液廃液槽1dへと流れ、上
記内室8b内を流れる液体中の陽イオンと外室8c内を
流れる除去液中の陽イオンが、陽イオン交換膜8aを介
してイオン交換し、内室8bから流出する液体の導電率
バックグランドが低下するようになる。この状態で、例
えばシリンジを用いて一定量の試料を切換弁5の第4接
続口5dから注入すると、該試料は、切換弁5の第4及
び第3の接続口5d、5c→切換弁5の試料ループ(内
容積が例えば50μl> 5g→切換弁5の第6及び第
5の接続口5f、5eを経て流れ、試料ルーフ”5g内
を満たすようになる。
<Example> Hereinafter, the present invention will be described in detail using the drawings. 1st
The figure is an explanatory diagram of a high performance liquid chromatograph for explaining an example of the present invention. In this figure, mobile phase pump 2a
When the mobile phase tank la is activated, the mobile phase (e.g. 6
.. 6mMNa2C03/2, 4JFIMNa
Hco: + eluent) is transferred from the mobile phase pump 2a to the damper 3 to the pressure sensor 4 to the first and second connection ports 5a and 5b of the switching valve 5 to the pre-force ram 6 to the separation column 7 to the suppressor 8. Inner chamber 8b → detector 9 (e.g. conductivity detector)
It is designed to flow to the waste liquid tank 1c via the . Moreover, when the removal liquid pump 2b is driven, for example, 3WLf/
At a flow rate of min, the removal liquid in the removal liquid tank lb (for example, 15mMHz 304) flows from the removal liquid pump 2b to the outer chamber 8c of the suppressor 8 to the removal liquid waste tank 1d, and the liquid flowing in the inner chamber 8b flows. The cations inside and the cations in the removal liquid flowing in the outer chamber 8c undergo ion exchange via the cation exchange membrane 8a, and the conductivity background of the liquid flowing out from the inner chamber 8b is reduced. In this state, when a certain amount of sample is injected from the fourth connection port 5d of the switching valve 5 using, for example, a syringe, the sample is transferred from the fourth and third connection ports 5d and 5c of the switching valve 5 to the switching valve 5. Sample loop (with an internal volume of, for example, 50 μl>5g) flows through the sixth and fifth connection ports 5f and 5e of the switching valve 5, and fills the inside of the sample roof "5g."

その後、切換弁5がオンにされると、その内部流路が第
1図の実線接続状態から破線接続状態に切換えられ、計
量管5g内の試料が溶離液で搬送されて分離カラム7に
搬送され、ここでクロマトグラフィツクに分離され、そ
の後、サプレッサ8の内室8bを経て検出器9に至るよ
うになっている。
Thereafter, when the switching valve 5 is turned on, its internal flow path is switched from the solid line connection state in FIG. There, it is chromatographically separated, and then passes through the interior chamber 8b of the suppressor 8 to the detector 9.

尚、ブレカラム6、分離カラム7、サプレッサ8゜およ
び検出器(例えば導電率検出器)9は、恒温槽10内に
収納されて一定温度(例えば45°C)に保たれると共
に、検出器9の出力信号が図示しない表示装置(例えば
記録計)に導かれるようになっている。
The brake column 6, the separation column 7, the suppressor 8°, and the detector (e.g., conductivity detector) 9 are housed in a constant temperature bath 10 and kept at a constant temperature (e.g., 45°C). The output signal is led to a display device (for example, a recorder) not shown.

ところで、プレカラム6や分離カラム7の充填剤(樹脂
)は、グリコールを水酸基を持つ樹脂(たとえばグリセ
リルメタクリレート)を基材としその一級の水酸基に四
級アンモニウム基を導入したものである。この樹脂は親
水性を有するという特徴を有しているが、これは基材の
水酸基に起因するものである。この水酸基はイオン交換
基の導入に使用されるが、その一部はグリコール(GI
 yco + )型として残っている。一方、プレカラ
ム6や分離カラム7に充填されている上述のような充填
剤(樹脂)にホウ酸が入っている溶離液が流れると、該
ホウ酸がグリコール(Glyc。
Incidentally, the packing material (resin) for the precolumn 6 and the separation column 7 is a resin having a glycol hydroxyl group (for example, glyceryl methacrylate) as a base material, and a quaternary ammonium group is introduced into the primary hydroxyl group. This resin has a characteristic of being hydrophilic, which is due to the hydroxyl groups in the base material. This hydroxyl group is used to introduce an ion exchange group, but some of it is glycol (GI
It remains as the yco + ) type. On the other hand, when an eluent containing boric acid flows through the above-mentioned packing material (resin) packed in the precolumn 6 or the separation column 7, the boric acid is converted into glycol (Glyc).

1)型の水酸基と錯イオンを形成して樹脂の表面にホウ
酸グリコール(Gl yco 1−Borate)のイ
オンを生成し、イオン排除効果を示すようになる。この
場合、四級アンモニウム基(陰イオン交換基)が同時に
存在すると、溶離液中へのホウ酸添加量をコントロール
することにより、イオン交換とイオン排除の分離モード
をコントロールすることができ究極的に疎水性の強いイ
オンや溶出の遅いイオンを早く溶出させることができる
ようになる。
1) Forms a complex ion with the type hydroxyl group to generate glycol borate (Glyco 1-Borate) ions on the surface of the resin, exhibiting an ion exclusion effect. In this case, if a quaternary ammonium group (anion exchange group) is present at the same time, the separation mode of ion exchange and ion exclusion can be controlled by controlling the amount of boric acid added to the eluent. It becomes possible to quickly elute highly hydrophobic ions and ions that elute slowly.

このような構成からなる高速液体クロマトグラフにおい
て、6.6mMのNa2CO3と2.4mMのN a 
HCO、の混合液でなる移動相(即ち、ホウ酸を添加し
ない溶離液)を用い、30ppmのNO3−イオン、4
oppmの1−イオン、40ppmの820コーイオン
、及び60ppmのS CN−イオンを含む試料(以下
、「標準液」という)を上述のようにして分析したとこ
ろ、第2図に示すようなタロマドグラムが得られた。ま
た、6.6mMのNa2CO3,2,4mMのN a 
HCO3,及び0.5mMのNa2B4O7の混合液で
なる移動相(即ち、ホウ酸を添加した溶離液)を用い上
記標準液を分析したところ、第3図に示すようなりロマ
トグラムが得られた。
In a high performance liquid chromatograph with such a configuration, 6.6mM Na2CO3 and 2.4mM Na
Using a mobile phase consisting of a mixture of HCO, 30 ppm NO3- ions, 4
When a sample containing oppm 1- ions, 40 ppm 820 co-ions, and 60 ppm SCN- ions (hereinafter referred to as the "standard solution") was analyzed as described above, a talomadogram as shown in Figure 2 was obtained. It was done. Also, 6.6mM Na2CO3, 2,4mM Na
When the above standard solution was analyzed using a mobile phase consisting of a mixture of HCO3 and 0.5 mM Na2B4O7 (ie, an eluent containing boric acid), a chromatogram as shown in FIG. 3 was obtained.

第2図のクロマトグラムと第3図のクロマトグラムを比
較すれば明らかなように、ホウ酸を添加した溶離液を使
用して分析する方が短時間で難溶出性陰イオン(I−イ
オン、8203″″イオン、及びSCN″″イオン)を
分析できることが分かる。
As is clear from the comparison of the chromatograms in Figure 2 and 3, it is easier to analyze difficult-to-elute anions (I- ions, 8203″″ ion and SCN″″ ion) can be analyzed.

また、前述の如くイオン排除モードが加わった為、いわ
ゆるイオン選択性が変化した。このため、第2図のタロ
マドグラムにおいては、■−イオン。
In addition, as mentioned above, since the ion exclusion mode was added, the so-called ion selectivity changed. Therefore, in the taromadogram of Fig. 2, - ion.

5203−イオンの順に溶出するが、第3図のタロマド
グラムにおいては、■−イオン、 S203−イオン、
■−イオンの順に溶出する。従って、第2図のクロマト
グラムにおいては、殆ど分離されていないI−イオンと
8203″″イオンも、第3図のクロマトグラムにおい
ては分離が大きく改善されるという効果が得られている
The 5203-ion elutes in this order, but in the taromadogram in Figure 3, the ■-ion, S203-ion,
■-Elute in the order of ions. Therefore, in the chromatogram of FIG. 2, even the I- ion and 8203'' ion, which are hardly separated, have the effect of greatly improved separation in the chromatogram of FIG. 3.

〈発明の効果〉 以上詳しく説明したような本発明によれば、陰イオン交
換樹脂を用いた高速液体クロマトグラフィーによって被
測定液中の難溶出性陰イオンを良好なピークで迅速に分
析するできるようになる。
<Effects of the Invention> According to the present invention as described in detail above, difficult-to-elute anions in a sample liquid can be quickly analyzed with good peaks by high-performance liquid chromatography using an anion exchange resin. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を説明するための高速液体クロマ
トグラフ説明図、第2図及び第3図は高速液体クロマト
グラフを使用して試料を分析した結果を示すクロマトグ
ラムである。
FIG. 1 is an explanatory diagram of a high-performance liquid chromatograph for explaining an embodiment of the present invention, and FIGS. 2 and 3 are chromatograms showing the results of analyzing a sample using the high-performance liquid chromatograph.

Claims (2)

【特許請求の範囲】[Claims] (1)陰イオン交換樹脂を用いた高速液体クロマトグラ
フィーによって被測定液中の難溶出性陰イオンを分析す
る難溶出性陰イオンの分析方法において、グリコール型
の水酸基を有する親水性の樹脂を基材としその一級の水
酸基に四級アンモニウム基が導入されている樹脂をカラ
ム充填剤として使用すると共に、ホウ酸が添加された中
性若しくはアルカリ性の溶離液で前記被測定液を前記カ
ラムに搬送して前記難溶出性陰イオンをクロマトグラフ
イックに分離することを特徴とする微量陰イオンの分析
方法。
(1) In a method for analyzing poorly eluted anions in a sample liquid by high performance liquid chromatography using an anion exchange resin, a hydrophilic resin having a glycol type hydroxyl group is used. A resin having a quaternary ammonium group introduced into its primary hydroxyl group is used as a column packing material, and the liquid to be measured is transported to the column using a neutral or alkaline eluent containing boric acid. A method for analyzing trace anions, comprising chromatographically separating the hardly eluted anions.
(2)前記基材はグリセリルメタクリレートでなる特許
請求の範囲第(1)項記載の微量陰イオンの分析方法。
(2) The method for analyzing trace anions according to claim (1), wherein the base material is glyceryl methacrylate.
JP63035495A 1988-02-19 1988-02-19 Analysis of anion hard to elute Pending JPH01212355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035495A JPH01212355A (en) 1988-02-19 1988-02-19 Analysis of anion hard to elute

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035495A JPH01212355A (en) 1988-02-19 1988-02-19 Analysis of anion hard to elute

Publications (1)

Publication Number Publication Date
JPH01212355A true JPH01212355A (en) 1989-08-25

Family

ID=12443331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035495A Pending JPH01212355A (en) 1988-02-19 1988-02-19 Analysis of anion hard to elute

Country Status (1)

Country Link
JP (1) JPH01212355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053174A (en) * 2009-09-04 2011-03-17 Chube Univ Analysis method of cations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235057A (en) * 1984-05-08 1985-11-21 Toyo Soda Mfg Co Ltd Separative analysis of anion seed in metal ion-containing aqueous solution
JPS6279356A (en) * 1985-10-02 1987-04-11 Showa Denko Kk Carrier for anion exchange chromatography and manufacture thereof
JPS62176547A (en) * 1986-01-28 1987-08-03 Mitsubishi Chem Ind Ltd Surface functional type ion exchange resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235057A (en) * 1984-05-08 1985-11-21 Toyo Soda Mfg Co Ltd Separative analysis of anion seed in metal ion-containing aqueous solution
JPS6279356A (en) * 1985-10-02 1987-04-11 Showa Denko Kk Carrier for anion exchange chromatography and manufacture thereof
JPS62176547A (en) * 1986-01-28 1987-08-03 Mitsubishi Chem Ind Ltd Surface functional type ion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053174A (en) * 2009-09-04 2011-03-17 Chube Univ Analysis method of cations

Similar Documents

Publication Publication Date Title
Knox et al. Separation of catecholamines and their metabolites by adsorption, ion-pair and soap chromatography
Haddad et al. Developments in sample preparation and separation techniques for the determination of inorganic ions by ion chromatography and capillary electrophoresis
Flanagan et al. High performance liquid chromatographic analysis of basic drugs on silica columns using non-aqueous ionic eluents
US4314823A (en) Combination apparatus and method for chromatographic separation and quantitative analysis of multiple ionic species
US5597734A (en) Ion chromatography using frequent regeneration of batch-type suppressor
Wang et al. Overloading study of basic compounds with a positively charged C18 column in liquid chromatography
Chen et al. Chromatographic techniques for rare earth elements analysis
Karu et al. Use of suppressors for signal enhancement of weakly-acidic analytes in ion chromatography with universal detection methods
Sutton et al. Comparison of the retention behaviour of uranium and thorium on high-efficiency resin substrates impregnated or dynamically coated with metal chelating compounds
Hooijschuur et al. Potential of microcolumn liquid chromatography and capillary electrophoresis with flame photometric detection for determination of polar phosphorus-containing pesticides
Lancaster et al. Trace metal atomic absorption spectrometric analysis utilizing sorbent extraction on polymeric-based supports and renewable reagents
CA1166470A (en) Liquid chromatography apparatus and method employing ion concentration
JPH01212355A (en) Analysis of anion hard to elute
US5132018A (en) Isoconductive gradient ion chromatography
Edholm et al. Automated analysis of terbutaline (Bricanyl R) in human plasma with liquid chromatography and electrochemical detection using column-switching (multidimensional chromatography)
Schmuckler High-performance liquid ion-exchange chromatography
Shaw et al. High-performance chelation ion chromatography of transition and heavy metal ions on polystyrene–divinylbenzene resin dynamically modified with 4-chlorodipicolinic acid
Goewie et al. Liquid chromatographic determination of the fungicide iprodione in surface water, using on-line preconcentration
Jandera Gradient elution mode
JP2002098677A (en) Method and apparatus for introduction of sample to liquid chromatograph
Stegehuis et al. Bioanalysis of the peptide de-enkephalin-γ-endorphin: On-line sample pretreatment using membrane dialysis and solid-phase isolation
Meyer High-performance liquid chromatography (hplc)
Janeček et al. Sample-induced internal pH gradients in microcolumn liquid chromatography of proteins
Slais et al. Trace analysis by injection-generated gradient ion-pair chromatography with micro-bore column high-performance liquid chromatography
KR101990556B1 (en) Analyzing method for chemical polishing solution