JPH076960B2 - Ion chromatograph - Google Patents
Ion chromatographInfo
- Publication number
- JPH076960B2 JPH076960B2 JP62040336A JP4033687A JPH076960B2 JP H076960 B2 JPH076960 B2 JP H076960B2 JP 62040336 A JP62040336 A JP 62040336A JP 4033687 A JP4033687 A JP 4033687A JP H076960 B2 JPH076960 B2 JP H076960B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- flow rate
- liquid
- eluent
- peak
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イオンクロマトグラフ装置に係り、特に陽イ
オンと陰イオンの両イオン種を液体クロマトグラフイー
分析するに好適なイオンクロマトグラフ装置に関する。TECHNICAL FIELD The present invention relates to an ion chromatograph, and more particularly to an ion chromatograph suitable for liquid chromatographic analysis of both cation and anion ion species. .
液体混合物試料中に含まれる陽イオンおよび陰イオンの
両方を分析するために、イオンクロマトグラフイーを適
用することが行われている。例えば、「アナリテイカル
・ケミストリー,第54巻(1982年)第462〜469頁(Ana
l.Chem.,col54(1982)pp462〜469)」には、陽イオン
交換カラムと陽イオン交換カラムを直列に接続し、単一
の溶離液を両方のカラムに流し、両カラムを通つた陽イ
オンおよび陰イオンを検出器で検出することが示されて
いる。Application of ion chromatography has been performed to analyze both cations and anions contained in liquid mixture samples. For example, “Analytical Chemistry, Volume 54 (1982) pp. 462-469 (Ana
L. Chem., col54 (1982) pp462-469) ", a cation exchange column and a cation exchange column were connected in series, a single eluent was passed through both columns, and the cation exchange column was passed through both columns. It has been shown to detect ions and anions with a detector.
上述した従来技術では。両方のカラムに単一の溶離液を
一定流量で流している。ところが、このような方法によ
つては、陰イオンの成分と陽イオンの成分が相互に検出
の妨害となり高精度の分離分析が困難であつた。In the above-mentioned conventional technology. Both columns have a constant flow rate of a single eluent. However, according to such a method, the anion component and the cation component interfere with each other in detection, which makes it difficult to perform highly accurate separation analysis.
本発明の目的は、陽イオンと陰イオンの両イオン種を同
じ分析装置で分析するときに、陽イオン成分のピークと
陰イオン成分のピークの重なりをなくし、両イオン成分
を高精度分析し得るイオンクロマトグラフ装置を提供す
ることにある。An object of the present invention is to eliminate the overlap between the peak of the cation component and the peak of the anion component when analyzing both cation and anion ion species with the same analyzer, and to analyze both ion components with high precision. An object is to provide an ion chromatograph device.
本発明では、異種イオン種を成分分離し得る第1と第2
のイオン交換カラムを直列に配列し、両カラムを通つた
陽イオンおよび陰イオンを検出するイオンクロマトグラ
フ装置において、上記第1カラムと上記第2カラムの間
に、上記第1カラムから流出する溶離液の組成または流
量を変更せしめる変更液を流入せしめるように構成した
ことを特徴とする。In the present invention, the first and second components capable of separating different ionic species are separated.
In an ion chromatograph for detecting cations and anions passing through both columns by arranging the ion exchange columns in series, and eluting outflow from the first column between the first column and the second column. It is characterized in that a change liquid for changing the composition or flow rate of the liquid is introduced.
本発明では、第1カラムと第2カラムの組合せが例えば
陰イオン交換カラムと陽イオン交換カラムの組合せであ
る。いずれのカラムが上流側であつてもよい。In the present invention, the combination of the first column and the second column is, for example, the combination of the anion exchange column and the cation exchange column. Either column may be on the upstream side.
従来の陰イオンピークと陽イオンピークの重なりは、第
1カラムを流れる液と第2カラムを流れる液の組成およ
び流量が同じであつたことに起因する。本発明では第1
カラムを流れる液と第2カラムを流れる液の組成又は流
量を変更させるように、下流側に配置された第2カラム
に変更液を供給する。これにより第2カラム内を通る特
定イオン種の溶離条件が変わるので、イオン成分の溶出
時間(リテンシヨンタイム)を変更し得る。The conventional overlap between the anion peak and the cation peak is due to the fact that the liquid flowing through the first column and the liquid flowing through the second column have the same composition and flow rate. In the present invention, the first
The changing liquid is supplied to the second column arranged on the downstream side so as to change the composition or the flow rate of the liquid flowing through the column and the liquid flowing through the second column. As a result, the elution condition of the specific ion species passing through the second column is changed, so that the elution time (retention time) of the ion component can be changed.
第2カラムを通る液の流量を変更する一例としては、第
2カラムへ溶離液を送るポンプの他に、第2カラムへ変
更液を送るポンプを設ければよい。これらのポンプは、
好ましくは時間経過に伴つて流量を変化させるように制
御装置で制御され、これにより被検試料の分析時間を短
縮できる。また、第2カラムを通る液の組成を変更する
場合には、第1カラムへ供給する溶離液の組成とは異な
つた組成の変更液を第2カラムへ供給する。組成変化は
濃度変化を含み、目的イオン成分を早く溶出させたい場
合には溶離液濃度より高濃度の変更液を第1カラムと第
2カラムの間で溶離液に合流させ、目的成分を遅く溶出
させたい場合には溶離液濃度より低濃度の変更液を溶離
液に合流させる。As an example of changing the flow rate of the liquid passing through the second column, a pump for sending the changing liquid to the second column may be provided in addition to the pump for sending the eluting liquid to the second column. These pumps
Preferably, it is controlled by the controller so as to change the flow rate with the lapse of time, whereby the analysis time of the test sample can be shortened. When changing the composition of the liquid passing through the second column, a changing liquid having a different composition from the composition of the eluent supplied to the first column is supplied to the second column. The composition change includes the concentration change. When you want to elute the target ion component quickly, combine the change solution with a higher concentration than the eluent concentration into the eluent between the first and second columns to elute the target component later. If desired, a change solution having a concentration lower than the eluent concentration is combined with the eluent.
第1図に本発明の一実施例の概略構成図を示す。この実
施例では、上流側の第1カラム4aには陰イオン交換樹脂
を充填したカラムを用い、下流側の第2カラム4bには陽
イオン交換樹脂を充填したカラムを用いている。逆の配
列をしても本発明を適用できるが、成分間の分離精度は
本実施例の方が優れている。FIG. 1 shows a schematic configuration diagram of an embodiment of the present invention. In this embodiment, a column filled with an anion exchange resin is used as the first column 4a on the upstream side, and a column filled with a cation exchange resin is used as the second column 4b on the downstream side. The present invention can be applied even if the arrangement is reversed, but the separation accuracy between components is superior in this embodiment.
この実施例における溶離液1aと第2溶離液としての変更
液1bとは、同じ組成であり、2mM安息香酸溶液を用い
た。第1カラム4aの溶離液流量は送液ポンプ2aの吐出量
で決定され、第2カラム4bを流れる液の流量は送液ポン
プ2aと送液ポンプ2bの両方の吐出量の合量で決定され
る。合流部5は、例えばY字形管で形成されており、両
方の液は合流によつて混合される。In this example, the eluent 1a and the modification liquid 1b as the second eluent had the same composition, and a 2 mM benzoic acid solution was used. The flow rate of the eluent in the first column 4a is determined by the discharge amount of the liquid feed pump 2a, and the flow rate of the liquid flowing in the second column 4b is determined by the total amount of the discharge amounts of both the liquid feed pump 2a and the liquid feed pump 2b. It The merging portion 5 is formed of, for example, a Y-shaped tube, and both liquids are mixed by merging.
溶離液1aは、ポンプ2aにより一定の流量で試料導入器3
に送られる。試料導入器3により所定量の混合物試料が
溶離液中に注入され、陰イオン交換カラム4aで試料中の
陰イオンは分離される。一方、ポンプ2bより送られてき
た変更液1bは混合部5で溶離液1aと合流し、陽イオン交
換カラム4bに送られる。試料中の陽イオンにはカラム4a
をイオン排除されて通過し、カラム4bで分離後、検出器
6で検出される。又、カラム4aで分離された陰イオン
は、カラム4bではイオン排除され通過し検出器6で検出
され、検出された両イオン種の応答信号は記録計8で記
録される。流量制御機7はポンプ2a,2bの流量をコント
ロールする。検出器6は電気伝導度検出器であるが、必
要に応じ吸光光度計を適用できる。The eluent 1a is supplied by the pump 2a at a constant flow rate to the sample introduction device
Sent to. A predetermined amount of the mixture sample is injected into the eluent by the sample introduction device 3, and the anions in the sample are separated by the anion exchange column 4a. On the other hand, the changing liquid 1b sent from the pump 2b merges with the eluent 1a in the mixing section 5 and is sent to the cation exchange column 4b. Column 4a for cations in the sample
Are eliminated by passing through the column, separated by the column 4b, and then detected by the detector 6. Further, the anions separated in the column 4a are eliminated by the column 4b, pass through, and are detected by the detector 6, and the response signals of both detected ion species are recorded by the recorder 8. The flow rate controller 7 controls the flow rates of the pumps 2a and 2b. The detector 6 is an electric conductivity detector, but an absorptiometer can be applied if necessary.
次に本発明を適用した実験結果について説明する。第2
図Aは、本発明を適用しない場合のクロマトグラムを示
し、第2図Bは本発明を適用した場合のクロマトグラム
を示す。いずれも第1図の装置を用い、溶離液1aおよび
変更液1bとして2mM安息香酸を用いた。Next, the results of experiments to which the present invention is applied will be described. Second
FIG. A shows a chromatogram when the present invention is not applied, and FIG. 2B shows a chromatogram when the present invention is applied. In each case, the apparatus shown in FIG. 1 was used, and 2 mM benzoic acid was used as the eluent 1a and the change solution 1b.
第2図Aでは、ポンプ2bを停止し、ポンプ2aだけを動作
させ、ポンプ2aにより両方のカラムに溶離液を1.0ml/mi
nの流量で流した。試料としては、塩化リチウム(LiC
l),臭化ナトリウム(NaBr),塩化アンモニウム(NH4
Cl),硝酸カリウム(KNO3)を含んだ溶液を用いた。検
出器が電気伝導度検出器の場合、陽イオンはベースライ
ンよりマイナスピーク(デツプ)となり、陰イオンはプ
ラスピークとして検出される。In Fig. 2A, the pump 2b is stopped and only the pump 2a is operated, and the eluent of 1.0 ml / mi is applied to both columns by the pump 2a.
Flowed at a flow rate of n. As a sample, lithium chloride (LiC
l), sodium bromide (NaBr), ammonium chloride (NH 4
A solution containing Cl) and potassium nitrate (KNO 3 ) was used. When the detector is an electric conductivity detector, cations are detected as minus peaks (deps) from the baseline and anions are detected as plus peaks.
第2図Aにおいて、ピーク13はベイカントデツプと称さ
れるものであり試料の注入に起因して生ずるものであ
る。Li+ピーク9とNa+ピーク10はベイカントデツプ13と
重なり、NH4+ピーク11とK+ピーク12はCl-ピーク14と重
なるため、これらのイオン成分は正確に定量することが
困難である。Br-ピーク15およびNO3 -ピーク16は妨害さ
れない。In FIG. 2A, peak 13 is called a bacant dep and is caused by the injection of the sample. Since the Li + peak 9 and the Na + peak 10 overlap with the Vacant dep 13 and the NH 4 + peak 11 and the K + peak 12 overlap with the Cl − peak 14, it is difficult to accurately quantify these ionic components. Br − peak 15 and NO 3 − peak 16 are undisturbed.
第2図Bのクロマトグラムは、ポンプ2aの流量を0.5ml/
minの一定に保ち、ポンプ2bの流量を1.0ml/minに保つて
溶離液1aと変更液1bを合流部5で合流せしめて得たもの
である。試料は第2図Aの場合と同じである。この場
合、第1カラム4aを通る溶離液の流量が第2図Aの場合
より小さいので、Cl-14,Br-15,NO3 -16などの陰イオンは
いずれもリテンシヨンタイムが大きくなる。一方、Li
+9,Na+10,NH4+11,K+12などの陽イオンは、第2カラム4b
を通る溶離液と変更液の合流量が第2図Aの場合より大
きくなるので、リテンシヨンタイムが小さくなる傾向に
ある。第2図Bでは、陽イオンデツプが総てベイカント
デツプ13より前記に溶出され、ベイカントデツプ13より
後に溶出される陰イオンピークから分離された。The chromatogram in Figure 2B shows that the flow rate of pump 2a is 0.5 ml /
It was obtained by merging the eluent 1a and the change liquid 1b at the merging portion 5 while keeping the min constant and the flow rate of the pump 2b at 1.0 ml / min. The sample is the same as in FIG. 2A. In this case, the flow rate of the eluent through the first column 4a is because smaller than in the case of Figure 2 A, Cl - 14, Br - 15, NO 3 - Any anions such as 16 retentivity Chillon time increases. On the other hand, Li
Cations such as + 9, Na + 10, NH 4+ 11, K + 12 are detected in the second column 4b.
Since the combined flow rate of the eluent and the change liquid passing through is larger than that in the case of FIG. 2A, the retention time tends to be small. In FIG. 2B, all the cation depletions were previously eluted from the Baikant dep 13 and separated from the anion peak eluting after the Baicand dep 13.
第2図Bに適用した流量関係では最後のNO3 -ピーク16の
溶出に約44分かかり、遅くて実用的でない。陰イオン種
の溶出を早めるために、第2カラム4bを通る液の合流量
は一定であるが、第1カラム4aを通る溶離液1aの流量は
経時的に大きくするように、ポンプ1aおよび1bの流量を
マイクロコンピュータを備えた流量制御器7で制御し
た。The applied flow rate relationship in Figure 2 B last NO 3 - takes about 44 minutes to elute the peak 16, not slow practical. In order to accelerate the elution of the anionic species, the combined flow rate of the liquids passing through the second column 4b is constant, but the flow rates of the eluent 1a passing through the first column 4a are increased so that the flow rates of the eluents 1a increase with time. Was controlled by a flow controller 7 equipped with a microcomputer.
すなわち、全体としての時間が30分の間に、ポンプ2bの
流量を1.0ml/minから0ml/minまで直線的に減らすととも
に、ポンプ2aの流量を0.5ml/minから1.5ml/minまで直線
的に増大せしめた。このようにして同じ試料について得
られたのが第3図のクロマトグラフである。ベースライ
ンは幾分変動するが、最後のNO3 -ピーク16の溶出時間を
25分まで早めることができ、分析時間を第2図Bに比べ
て19分短縮できた。That is, while the total time is 30 minutes, the flow rate of the pump 2b is linearly reduced from 1.0 ml / min to 0 ml / min, and the flow rate of the pump 2a is linearly reduced from 0.5 ml / min to 1.5 ml / min. I increased it to. The chromatograph of FIG. 3 was obtained in this way for the same sample. Baseline varies somewhat, but the last NO 3 - elution time of the peak 16
The analysis time can be shortened to 25 minutes and the analysis time can be shortened by 19 minutes as compared with FIG. 2B.
第3図では流量を直線的に変化させたが、第2カラム4b
を通る合流量を一定に保ちながら第1カラム4aを通る溶
離液流量を段階的に上昇しても分析時間を短縮できる。Although the flow rate was changed linearly in FIG. 3, the second column 4b
The analysis time can be shortened even if the eluent flow rate through the first column 4a is increased stepwise while keeping the total flow rate through the column constant.
上記分析例では溶離液1aと1bは同じ2.0mM安息香酸溶液
としたが、違う組成液の組み合せも可能である。しか
し、電導度検出器を用いる場合は両溶離液の電気伝導度
が合流点5で等しくなるようにする事が望ましい。さも
ないとポンプの脈流ノイズが現われ検出感度の低下を招
く。また、吸光光度計を検出器とする場合も、両溶離液
の吸光度が等しくなるように濃度又は検出波長を選ぶ事
がポンプ脈流ノイズを小さくする為に必要である。In the above analysis example, the eluents 1a and 1b were the same 2.0 mM benzoic acid solution, but different composition liquids can be combined. However, when using a conductivity detector, it is desirable that the electric conductivity of both eluents be equal at the confluence 5. Otherwise, pulsating flow noise of the pump appears and the detection sensitivity is lowered. Also, when an absorptiometer is used as a detector, it is necessary to reduce the pump pulsating flow noise by selecting the concentration or the detection wavelength so that the absorbances of both eluates are equal.
上記分析例では、4aを陰イオン交換カラム、4bを陽イオ
ン交換カラムとしたが、逆の組み合せで、溶出してくる
陰イオン及び陽イオンの順序を逆転させる事も可能であ
る。In the above analysis example, 4a was used as an anion exchange column and 4b was used as a cation exchange column, but it is also possible to reverse the order of the anions and cations to be eluted by the reverse combination.
本発明によれば、陰イオンピークと陽イオンピークの重
なりを防止するように測定することができるので、両イ
オン種の定量精度を著しく向上できる。According to the present invention, since the measurement can be performed so as to prevent the overlap between the anion peak and the cation peak, the quantification accuracy of both ion species can be significantly improved.
第1図は本発明の一実施例の概略構成を示す図、第2図
Aは本発明を適用しない場合のクロマトグラムを示す
図、第2図Bおよび第3図は本発明を適用した場合クロ
マトグラムを示す図である。 1a……溶離液、1b……変更液、2a,2b……ポンプ、4a…
…第1カラム、4b……第2カラム、5……合流部、6…
…検出器。FIG. 1 is a diagram showing a schematic configuration of an embodiment of the present invention, FIG. 2A is a diagram showing a chromatogram when the present invention is not applied, and FIGS. 2B and 3 are cases where the present invention is applied. It is a figure which shows a chromatogram. 1a ... Eluent, 1b ... Change solution, 2a, 2b ... Pump, 4a ...
… First column, 4b …… Second column, 5 …… Confluence section, 6 ・ ・ ・
…Detector.
Claims (2)
のイオン交換カラムを直列に配列し、両カラムを通つた
陽イオンおよび陰イオンを検出するイオンクロマトグラ
フ装置において、上記第1カラムと上記第2カラムの間
に、上記第1カラムから流出する溶離液の組成または流
量を変更せしめる変更液を流入せしめるように構成した
ことを特徴とするイオンクロマトグラフ装置。1. A first and second device capable of separating different ionic species into components.
In an ion chromatograph for detecting cations and anions passing through both columns by arranging the ion exchange columns in series, and eluting outflow from the first column between the first column and the second column. An ion chromatograph device, characterized in that a change liquid for changing the composition or flow rate of the liquid is introduced.
て、上記変更液は、電気伝導度または吸光度が上記第1
カラムから流出する溶離液と実質的に等しいものである
ことを特徴とするイオンクロマトグラフ装置。2. The apparatus according to claim 1, wherein the changing liquid has the first conductivity or the first absorption.
An ion chromatograph, which is substantially the same as the eluent flowing out from the column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040336A JPH076960B2 (en) | 1987-02-25 | 1987-02-25 | Ion chromatograph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62040336A JPH076960B2 (en) | 1987-02-25 | 1987-02-25 | Ion chromatograph |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63208758A JPS63208758A (en) | 1988-08-30 |
JPH076960B2 true JPH076960B2 (en) | 1995-01-30 |
Family
ID=12577786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62040336A Expired - Fee Related JPH076960B2 (en) | 1987-02-25 | 1987-02-25 | Ion chromatograph |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH076960B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4790435B2 (en) * | 2006-02-03 | 2011-10-12 | 株式会社日立ハイテクノロジーズ | 3D liquid chromatography |
CN108187766B (en) * | 2018-03-02 | 2023-11-03 | 中触媒新材料股份有限公司 | Multi-column serial connection self-control ion exchange device and method |
-
1987
- 1987-02-25 JP JP62040336A patent/JPH076960B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS63208758A (en) | 1988-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6344172B1 (en) | Protein chromatography system | |
US5567307A (en) | System and a method for using a small suppressor column in performing liquid chromatography | |
Saari-Nordhaus et al. | Simultaneous analysis of anions and cations by single-column ion chromatography | |
Tabatabai et al. | Liquid chromatography | |
EP0040798B1 (en) | Ion exchange chromatography with indirect photometric detection | |
JPH076960B2 (en) | Ion chromatograph | |
Cheam et al. | Automated simultaneous analysis of anions and monovalent and divalent cations | |
US5132018A (en) | Isoconductive gradient ion chromatography | |
Miyagi et al. | High-performance liquid chromatography for ultraviolet-absorbing constituents in human urine. | |
Jonker et al. | Adaption of the ninhydrin reactor to highly efficient columns for amino acid analysis by chromatography | |
JP2581568B2 (en) | Ion chromatography equipment | |
Blaszkewicz et al. | Identification of trimethyllead in urine by high-performance liquid chromatography with column switching and chemical reaction detection and by liquid chromatography—mass spectrometry | |
Jenke | Quantitation of oxalate and citrate by ion chromatography with a buffered, strong acid eluent | |
US4679428A (en) | Independent analysis of anions and cations using indirect photometric chromatography | |
Galceran et al. | Column-switching techniques in the analysis of phosphate by ion chromatography | |
JPH0769312B2 (en) | Simultaneous analysis method for nitrogen-containing ions and its equipment | |
JP2613237B2 (en) | Liquid chromatography and apparatus therefor | |
JP2844876B2 (en) | Ion chromatography | |
JPS63247654A (en) | Analysis of anion | |
JPS6224129A (en) | Concentration analysis method and apparatus | |
JPS60190859A (en) | Method and apparatus for analyzing ion seed | |
JP2000214146A (en) | Inorganic anion analyzing method | |
JPS6324154A (en) | Method and instrument for gradient analysis of ion chromatograph | |
JPS6066161A (en) | Method and device for simultaneous measurement of different species of ions | |
JPH0820428B2 (en) | Anion analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |