JPS63246604A - Method for measuring posture angle of polygonal object - Google Patents
Method for measuring posture angle of polygonal objectInfo
- Publication number
- JPS63246604A JPS63246604A JP8067387A JP8067387A JPS63246604A JP S63246604 A JPS63246604 A JP S63246604A JP 8067387 A JP8067387 A JP 8067387A JP 8067387 A JP8067387 A JP 8067387A JP S63246604 A JPS63246604 A JP S63246604A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- attitude angle
- polygonal object
- posture angle
- reference axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000011159 matrix material Substances 0.000 claims abstract description 8
- 238000010586 diagram Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 description 9
- 238000000691 measurement method Methods 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、多角形物体の姿勢角を精度よく自動測定する
方法に関するものであり、さらに詳しくは、ICチップ
などの電子部品のポンディング。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for automatically measuring the attitude angle of a polygonal object with high precision, and more specifically to bonding of electronic components such as IC chips.
機械部品の組み立て等に際し、多角形状をなす部品等の
姿勢角を精度よく自動測定する方法に関するものである
。The present invention relates to a method for accurately and automatically measuring the attitude angle of polygonal parts when assembling mechanical parts.
[従来の技術]
ICチップなどの電子部品のポンディング、機械部品の
組立て等を行う生産ラインにおいて、物体の形状、位置
、姿勢などを自動晶に認識する必要が多々存在するが、
通常、認識対象の形状は長方形を主体とする単純な多角
形であることが多い、従来から知られている姿勢角の検
出技術は。[Prior Art] In production lines where electronic components such as IC chips are bonded, mechanical components are assembled, etc., it is often necessary to recognize the shape, position, orientation, etc. of objects using automatic crystals.
Usually, the shape of the recognition target is often a simple polygon, mainly a rectangle, and conventional posture angle detection techniques are known.
認識対象物体の形状にかかわらずその姿勢を認識できる
ようにするのが通例であるが、その弛めに装置が非常に
複雑化すると同時に認識に長時間を要し、結果的に実用
性を損なっている。It is customary to be able to recognize the pose of an object regardless of its shape, but this makes the device extremely complex and requires a long time for recognition, which ultimately impairs its practicality. ing.
しかしながら、対象物体を上記のような多角形に限定す
ると、その姿勢を簡単な装置によって正確に、しかも実
時間で計測することが可能になるものと期待できる。However, if the target object is limited to a polygon as described above, it is expected that the posture of the object can be measured accurately and in real time using a simple device.
[発明が解決しようとする問題点〕
本発明は、このような要求をみたす多角形物体の姿勢角
測定法を提供しようとするものであり、特に、認識対象
を多角形に特定することにより、極めて簡単な手段で正
確に、しかも実時間で正確な測定が可能な姿勢角測定法
を提供するものである。[Problems to be Solved by the Invention] The present invention seeks to provide a method for measuring the attitude angle of a polygonal object that satisfies such requirements, and in particular, by specifying the recognition target as a polygon, The purpose of the present invention is to provide an attitude angle measurement method that allows accurate measurement using extremely simple means and in real time.
[問題点を解決するための手段]
上記目的を達成するための本発明の姿勢角測定法は、パ
ターン入力装置によって認識対象である多角形物体の2
次元的な図形パターンを取り込んで、それを2値化した
マトリックス・パターンとし、画像処理装置において、
上記図形パターンを垂直または水平の基準軸に対する射
影図に変換した後、さらにその射影図を上記基準軸に直
交する第2の基準軸に対する第2の射影図に変換し、こ
の第2の射影図における斜辺の勾配を計測して、その勾
配から上記多角形物体の姿勢角を測定することを特徴と
するものである。[Means for Solving the Problems] The attitude angle measuring method of the present invention to achieve the above object is to
A dimensional graphic pattern is taken in, converted into a binary matrix pattern, and then processed by an image processing device.
After converting the above figure pattern into a projection diagram with respect to a vertical or horizontal reference axis, the projection diagram is further converted into a second projection diagram with respect to a second reference axis orthogonal to the above reference axis, and this second projection diagram The method is characterized in that the slope of the hypotenuse is measured, and the attitude angle of the polygonal object is determined from the slope.
[実施例]
本発明においては、姿勢角を測定しようとする認識対象
物体が多角形であることを前提としている。[Example] The present invention is based on the premise that the recognition target object whose attitude angle is to be measured is a polygon.
第1図は、本発明における画像処理過程の流れ図を示す
ものである。ここで、−例として長方形について、同図
を参照して説明すると、姿勢角を測定するに際しては、
まず、その認識対象の画像データをITVカメラ等のパ
ターン入力装置により2次元的な図形パターンとして取
込み、その走査線上の各サンプル点についての出力をA
D変換によりサンプル点の明暗に応じた2値化性号とし
、これによって上記図形パターンを2値化したマトリッ
クス・パターンとする。FIG. 1 shows a flowchart of the image processing process in the present invention. Here, to explain a rectangle as an example with reference to the same figure, when measuring the attitude angle,
First, the image data to be recognized is captured as a two-dimensional graphic pattern using a pattern input device such as an ITV camera, and the output for each sample point on the scanning line is A.
The D conversion converts the sample points into binary codes corresponding to the brightness and darkness of the sample points, thereby converting the graphic pattern into a binary matrix pattern.
上記マトリックスΦパターンが入力される画像処理装置
においては、まず、そのデータをもとに、第2図A、B
、Cに示すような2回射影、あるいは同図A、D、Hに
示すような2回射影を取る。即ち、上記図形パターンは
、第2図Bまたは同図りに示すように、垂直または水平
の基準軸。In the image processing device to which the above matrix Φ pattern is input, first, based on the data,
, C, or two-time projections as shown in A, D, and H of the same figure. That is, the graphic pattern has a vertical or horizontal reference axis as shown in FIG. 2B or the same figure.
例えばY軸に対する射影図に変換し、その後、同図Cま
たはEに示すように、さらにその射影図を上記基準軸に
直交する第2の基準軸に対する第2の射影図に変換する
。For example, it is converted into a projection view with respect to the Y axis, and then, as shown in C or E in the figure, the projection view is further converted into a second projection view with respect to a second reference axis orthogonal to the reference axis.
このようにして2回射影を行うと、その第2の射影図に
おける斜辺、即ち、
Y = a lX + b l
によって表わされる直線の勾配a1を計測することによ
り、姿勢角θを精度よく求めることができる。When the projection is performed twice in this way, the attitude angle θ can be accurately determined by measuring the slope a1 of the hypotenuse in the second projection, that is, the straight line represented by Y = a lX + b l Can be done.
さらに具体的には、いま、第2図Cの第2の射影図にお
ける斜辺の勾配、alを。More specifically, now, the slope of the hypotenuse in the second projection view of FIG. 2C, al.
al=jan(α)
とすると、幾何学的な計算により、姿勢角θは、によっ
て与えられる。When al=jan(α), the attitude angle θ is given by geometric calculation.
従って、第2図Cにおける斜辺の勾配a1を何らかの手
段で求めれば、長方形の姿勢角θを知ることができる。Therefore, if the gradient a1 of the hypotenuse in FIG. 2C is determined by some means, the attitude angle θ of the rectangle can be determined.
なお、上記斜辺の勾配a1は、公知の技術により極めて
容易に測定できるものである。Note that the slope a1 of the oblique side can be measured extremely easily using a known technique.
一方、第2図Eの第2の射影図における斜辺の勾配a2
を、
a2=jan(β)
とすると、同様にして、姿勢角θは。On the other hand, the slope a2 of the hypotenuse in the second projection view of Fig. 2E
Similarly, if a2=jan(β), then the attitude angle θ is.
によって与えられる。given by.
従って、上記斜辺の勾配a2を何らかの手段で求めるこ
とによっても、長方形の姿勢角θを知ることができる。Therefore, the posture angle θ of the rectangle can also be determined by determining the gradient a2 of the hypotenuse by some means.
このような方法によって物体の姿勢角の計測を行うと、
第2図A−Eかられかるように、長方形物体の姿勢角θ
を、実質的にそれを2倍にしたαまたはβによって計測
するため、同一分解能の計測手段によってそれらの計測
を行うものと仮定すると、直接的に姿勢角θの計測を行
う場合よりも精度を高めることができる。When measuring the attitude angle of an object using this method,
As can be seen from Figure 2 A-E, the attitude angle θ of a rectangular object is
is measured by α or β, which is essentially twice that value. Therefore, assuming that these measurements are performed using measurement means with the same resolution, the accuracy will be lower than when directly measuring the attitude angle θ. can be increased.
次に、上記方法での測定精度について検討するに、第2
図Aと第2図Cとの関係から同図Cにおける斜辺の勾配
αと第2図Aに示す長方形の姿勢角θとの関係は、次式
で表現される。Next, to consider the measurement accuracy of the above method, the second
From the relationship between Figure A and Figure 2C, the relationship between the slope α of the hypotenuse in Figure 2C and the attitude angle θ of the rectangle shown in Figure 2A is expressed by the following equation.
5in2θ= tanα 上式を偏微分してまとめると、 Δθ=□・Δα 2 a cos20# C0fi2(Xとなり、 1+tan2α=□ co!12α の関係があるため、上式は、 となる。5in2θ= tanα Partially differentiating the above equation and summarizing it, we get Δθ=□・Δα 2 a cos20# C0fi2 (X, 1+tan2α=□ co! 12α Because of the relationship, the above formula is becomes.
即ち、第2図Cにおける斜辺の勾配αを計測するときの
誤差Δαと、もとの図形の姿勢角測定誤差Δθとの関係
は、上式で表わされることとなり、この関係を図示した
第3図かられかるように、かなり精度が改善されること
がわかる。なお、第3図において、Δθ/Δαの値が1
より小さいことは、αの計測によってそれだけ計測誤差
が小ざくなることを意味している。That is, the relationship between the error Δα when measuring the slope α of the hypotenuse in FIG. As can be seen from the figure, the accuracy is considerably improved. In addition, in Fig. 3, the value of Δθ/Δα is 1
A smaller value means that the measurement error becomes smaller by measuring α.
また、第4図は、長方形物体が種々の姿勢角をとった状
態での姿勢角計測誤差量を示すもので。Moreover, FIG. 4 shows the attitude angle measurement error amount when a rectangular object assumes various attitude angles.
W = 25.hm 、 H= 20.0!11の
長方形を対象とし、40X 40のマトリックス・パタ
ーンにより計測した結果の最大誤差、平均誤差、最小誤
差を示している。W = 25. hm, H=20.0!11 rectangle, and shows the maximum error, average error, and minimum error of the results measured using a 40×40 matrix pattern.
なお、同図に示す実験結果は、図形パターンが実質的に
30X 30のマトリックス・パターン内に収まるとい
、う非常に劣悪な条件で計測しているために誤差量が比
較的大きくなっているが、マトリックス骨パターンの分
割数を大きくすることにより情報量を増加することによ
り、誤差量が著しく低下できることが期待できる。Note that the experimental results shown in the same figure show that the figure pattern essentially falls within a 30x30 matrix pattern, and the amount of error is relatively large because the measurements were taken under extremely poor conditions. , it can be expected that the amount of error can be significantly reduced by increasing the amount of information by increasing the number of divisions of the matrix bone pattern.
[発明の効果]
以上に詳述したように、本発明の姿勢角測定法によれば
、長方形を主体とする単純な多角形物体の姿勢角計測を
前提とすることにより、極めて簡単な手段で正確に、し
かも実時間で測定を行うことができる。[Effects of the Invention] As detailed above, according to the attitude angle measurement method of the present invention, the attitude angle measurement method of the present invention is based on the premise of measuring the attitude angle of a simple polygonal object mainly consisting of a rectangle, so that the attitude angle measurement method of the present invention can be achieved using extremely simple means. Measurements can be made accurately and in real time.
第1図は本発明の測定法における画像処理過程の流れ図
、第2図は図形データの2回射影に関する説明図、第3
図及び第4図は本発明の方法を用いた場合の測定誤差に
ついて説明するためのグラフである。
第 2 匡
脩Fig. 1 is a flowchart of the image processing process in the measurement method of the present invention, Fig. 2 is an explanatory diagram regarding two-time projection of graphic data, and Fig. 3 is a flowchart of the image processing process in the measurement method of the present invention.
4 and 4 are graphs for explaining measurement errors when using the method of the present invention. 2nd success
Claims (1)
体の2次元的な図形パターンを取り込んで、それを2値
化したマトリックス・パターンとし、画像処理装置にお
いて、上記図形パターンを垂直または水平の基準軸に対
する射影図に変換した後、さらにその射影図を上記基準
軸に直交する第2の基準軸に対する第2の射影図に変換
し、この第2の射影図における斜辺の勾配を計測して、
その勾配から上記多角形物体の姿勢角を測定することを
特徴とする多角形物体の姿勢角測定法。1. A two-dimensional graphic pattern of a polygonal object to be recognized is captured by a pattern input device, converted into a binary matrix pattern, and an image processing device converts the graphic pattern into a vertical or horizontal reference axis. After converting into a projection diagram for
A method for measuring an attitude angle of a polygonal object, characterized in that the attitude angle of the polygonal object is measured from the gradient thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8067387A JPS63246604A (en) | 1987-03-31 | 1987-03-31 | Method for measuring posture angle of polygonal object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8067387A JPS63246604A (en) | 1987-03-31 | 1987-03-31 | Method for measuring posture angle of polygonal object |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63246604A true JPS63246604A (en) | 1988-10-13 |
JPH0457206B2 JPH0457206B2 (en) | 1992-09-10 |
Family
ID=13724874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8067387A Granted JPS63246604A (en) | 1987-03-31 | 1987-03-31 | Method for measuring posture angle of polygonal object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63246604A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224484A (en) * | 2007-03-14 | 2008-09-25 | Casio Comput Co Ltd | Imaging device, dimension measurement method, dimension measurement program |
-
1987
- 1987-03-31 JP JP8067387A patent/JPS63246604A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008224484A (en) * | 2007-03-14 | 2008-09-25 | Casio Comput Co Ltd | Imaging device, dimension measurement method, dimension measurement program |
Also Published As
Publication number | Publication date |
---|---|
JPH0457206B2 (en) | 1992-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4450579A (en) | Recognition method and apparatus | |
JP2720391B2 (en) | Object structure recognition device | |
TW201915443A (en) | Positioning and measuring system based on image scale | |
JP7419846B2 (en) | Liquid level detection method and liquid level detection device | |
JPS63246604A (en) | Method for measuring posture angle of polygonal object | |
Lynch et al. | Backpropagation neural network for stereoscopic vision calibration | |
JPH06288732A (en) | Position detection of electronic part | |
JP2775924B2 (en) | Image data creation device | |
JP2850807B2 (en) | Inspection data creation device | |
JP2912070B2 (en) | Object position recognition method | |
JP3111434B2 (en) | Image processing device | |
JP2708621B2 (en) | Substrate position detection method and component mounting device on substrate | |
JPS55164823A (en) | Orthogonal projection image forming method of three-dimensional object | |
JP3071414B2 (en) | Image resolution setting method | |
JP2661118B2 (en) | Conversion method of object coordinates and visual coordinates using image processing device | |
JPH05113315A (en) | Detecting method for center position of circular image data | |
Chang et al. | Part positioning with feature marks for computer vision systems | |
JPH0652167B2 (en) | Image processing method | |
JPH0934552A (en) | Mobile object controller, position detection device, mobile object device and their control method | |
JPS58129888A (en) | Position detector | |
JPH04361104A (en) | Detecting system of position of substrate mark | |
JPS63241405A (en) | Method and device for rectangular image processing | |
JP2797703B2 (en) | How to set the inspection frame for electronic components | |
JPS59108907A (en) | Position detecting device for three dimensional body | |
JP2798013B2 (en) | Two-dimensional code reading method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |