JPH0652167B2 - Image processing method - Google Patents

Image processing method

Info

Publication number
JPH0652167B2
JPH0652167B2 JP59021356A JP2135684A JPH0652167B2 JP H0652167 B2 JPH0652167 B2 JP H0652167B2 JP 59021356 A JP59021356 A JP 59021356A JP 2135684 A JP2135684 A JP 2135684A JP H0652167 B2 JPH0652167 B2 JP H0652167B2
Authority
JP
Japan
Prior art keywords
gravity
center
image processing
processing method
figures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021356A
Other languages
Japanese (ja)
Other versions
JPS60165503A (en
Inventor
嘉明 田中
聡 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP59021356A priority Critical patent/JPH0652167B2/en
Publication of JPS60165503A publication Critical patent/JPS60165503A/en
Publication of JPH0652167B2 publication Critical patent/JPH0652167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)
  • Character Discrimination (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、画像処理装置の較正方法に関し、特に、画像
処理装置で寸法を測定し、或いは基準面からの絶対位置
を測定するための較正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating an image processing apparatus, and more particularly to a calibration method for measuring dimensions or absolute position from a reference plane with the image processing apparatus. Regarding the method.

〔発明の背景〕[Background of the Invention]

画像処理装置は、無接触であり、且つ形状を拡大して処
理出来るので、微小部品の検出や位置決めに多用される
ようになって来た。特に接触不能の部品の所定位置の検
出には多大の効果を発揮している。
Since the image processing apparatus is non-contact and can enlarge and process the shape, it has been widely used for detection and positioning of minute parts. In particular, it has a great effect in detecting a predetermined position of a non-contactable component.

〔従来技術と問題点〕[Conventional technology and problems]

しかし、温度の変化によるカメラの移動による焦点位置
の変動、正確な倍率のレンズの作成が困難なこと、2値
化する際の境界線を含む画素のバラツキなどによって、
正確な寸法測定や絶対位置の測定には、随時較正して誤
差を補正しなければならない。しかし、2値化する際に
境界線を含む画素は、スレッシュホルドの値によって白
となったり黒となったりするので、画素の最小単位以上
の精度は得られなかった。
However, due to changes in the focus position due to movement of the camera due to changes in temperature, difficulty in creating a lens with accurate magnification, and variations in pixels including the boundary line when binarizing,
For accurate dimensional measurement and absolute position measurement, calibration must be performed from time to time to correct errors. However, when binarizing, a pixel including a boundary line becomes white or black depending on the value of the threshold, so that accuracy higher than the minimum unit of pixel cannot be obtained.

第1図及び第2図は、このことを説明する図で、縦横の
細線にかこまれた小さな正方形が、それぞれの画素の最
小単位を示す。
FIG. 1 and FIG. 2 are diagrams for explaining this, and a small square surrounded by vertical and horizontal fine lines indicates the minimum unit of each pixel.

第1図において、第1図(a)に示す頂点Pを求めると
きには、頂点Pは線分APとBPの交点として求めるの
が一般である。しかし、スレッシュホルドレベルを変更
するによって画像が第1図(b)、(c)、(d)に示
すように頂点Pの位置がP′、P″、Pと順次変化し
て行く。
In FIG. 1, when the apex P shown in FIG. 1 (a) is obtained, the apex P is generally obtained as the intersection of the line segments AP and BP. However, by changing the threshold level, the position of the apex P of the image sequentially changes to P ′, P ″, P as shown in FIGS. 1 (b), (c) and (d).

線分AP、BPが傾いたときは、もっと複雑になり、第
2図(a)、(b)、(c)、(d)に示すように頂点
Pの位置がP′、P″、Pと変化するとともに、場合
によっては頂点としてP′とQ′のいずれを採用すべき
か、判定に苦しむようなことも生じる。
When the line segments AP and BP are inclined, it becomes more complicated, and the positions of the vertices P are P ′, P ″, and P as shown in FIGS. 2 (a), (b), (c), and (d). In some cases, it may be difficult to judge which of P ′ and Q ′ should be used as the apex.

〔発明の目的〕[Object of the Invention]

本発明は、以上の欠点をなくし、極めて高い精度で較正
することを可能にした画像処理装置の較正方法を提供し
ようとするものである。
The present invention is intended to provide a method of calibrating an image processing apparatus which eliminates the above drawbacks and enables calibration with extremely high accuracy.

〔発明の構成〕[Structure of Invention]

本発明は、所定の形状の図形の重心の位置を計算によっ
て求め、この重心位置を基準点にして較正することによ
って、画素の最小単位より充分に高い精度で較正するよ
うにした画像処理方法であり、特に、間隔を置いて描か
れた2個の図形を採用することによって基準点の移動の
みならず、傾きも較正可能にした画像処理方法である。
The present invention provides an image processing method in which the position of the center of gravity of a figure having a predetermined shape is calculated, and the position of the center of gravity is used as a reference point for calibration to calibrate with a sufficiently higher accuracy than the minimum unit of pixels. In particular, this is an image processing method in which not only the movement of the reference point but also the inclination can be calibrated by employing two figures drawn at intervals.

〔発明の実施例〕Example of Invention

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.

第3図は、本発明の較正方法に使用される形状パターン
の1実施例で、2個の円1a、1bが描かれている。こ
の2個の円1a、1bは、実際は黒色の円であるが、説
明のため塗り潰しはされていない。2個の円と重ねて描
かれている縦横の線は、第1図、第2図と同様に個々の
点の色を黒又は白に2値化して表示する画素を示してい
る。
FIG. 3 shows an example of the shape pattern used in the calibration method of the present invention, in which two circles 1a and 1b are drawn. The two circles 1a and 1b are actually black circles, but they are not filled for the sake of explanation. Vertical and horizontal lines drawn so as to overlap two circles indicate pixels for binarizing the color of each dot into black or white as in FIGS. 1 and 2.

図において、2個の円の重心の位置を点Pとし、想像線
で描かれた図形の位置を基準とするとき、実際に得られ
た画像が実線で示されるようなものであるならば、図形
の重心の位置PはP′に移動していることがわかる。実
際の測定においては2個の円のそれぞれの重心の位置を
算定し、これらの重心をP′とすることになるので、こ
れについて検討する。
In the figure, when the position of the center of gravity of the two circles is the point P and the position of the figure drawn by the imaginary line is the reference, if the actually obtained image is as shown by the solid line, It can be seen that the position P of the center of gravity of the figure has moved to P '. In the actual measurement, the positions of the centers of gravity of the two circles are calculated, and these centers of gravity are designated as P ′, which will be examined.

第4図は、第3図の右側の円について、スレッシュホル
ドレベルを変えた時の2値化された図形とその重心の位
置を示したもので、細い実線で描かれた中心点Oが基準
の円の中心位置であり、太く短かい実線で描かれた中心
点が、2値化された図形の重心位置O′、O″、Oで
ある。図から明らかなようにどのようなスレッシュホル
ドレベルにしても、円の中心位置と2値化された図形の
重心位置はほとんど移動しない。
FIG. 4 shows the binarized figure and the position of the center of gravity of the circle on the right side of FIG. 3 when the threshold level is changed. The center point O drawn by a thin solid line is the reference. The center point of the circle is a center point drawn by a thick short solid line is the barycentric position O ′, O ″, O of the binarized figure. Even at the level, the center position of the circle and the center of gravity of the binarized figure hardly move.

実際の図形の重心の位置と、2値化された図形の重心の
位置の誤差は図形が大きくなる程小さくなることは当然
であり、2値化される画素より充分大きな図形であれ
ば、実際の図形の重心位置と2値化された図形の重心の
位置の差は無視出来る程小さなものとなる。
It is natural that the error between the actual position of the center of gravity of the figure and the position of the center of gravity of the binarized figure becomes smaller as the figure gets larger. The difference between the position of the center of gravity of the figure and the position of the center of gravity of the binarized figure is so small that it can be ignored.

従って、この2つの円から算出された重心位置P′は極
めて正確なものになり、充分な精度を有するものとな
る。
Therefore, the barycentric position P'calculated from these two circles becomes extremely accurate and has sufficient accuracy.

更に、この方法によれば、温度変化等によって生じるカ
メラの傾きや基準点からのカメラの移動量、倍率の誤差
についても、2個の図形(円)の重心を結ぶ線の傾きθ
や中心間距離LがL′に変化するのを算出することによ
って求められる。
Further, according to this method, the inclination θ of the line connecting the centers of gravity of the two figures (circles) is also detected with respect to the inclination of the camera caused by the temperature change, the movement amount of the camera from the reference point, and the error of the magnification.
And the distance L between centers changes to L '.

レンズの視野に入らないような大きな物体に対しては、
TVカメラを2台以上使用することが一般的に行なわれ
ているが、このような場合にも、同様に適用することが
出来、2個以上のTVカメラで中心間距離や傾きの角度
のあらかじめわかっている図形を同時に検出することに
より、それぞれのTVカメラによって得られる図形の位
置及び傾きによって、カメラ間の距離、角度の較正も同
様にしてすることが出来る。
For large objects that do not fit in the field of view of the lens,
It is generally practiced to use two or more TV cameras, but the same can be applied to such a case, and it is possible to use two or more TV cameras in advance to adjust the center distance and the inclination angle. By detecting the known figures at the same time, the distance and angle between the cameras can be similarly calibrated according to the position and inclination of the figures obtained by each TV camera.

以上の説明では、間隔をおいて描かれた2個の円につい
て述べてきたが、複数個の任意の形状の図形についても
全く同様に実施することが出来ることは言うまでもな
い。しかし、図形が複雑になれば、あらかじめ求める重
心位置の算定が繁雑となり、多数個の図形或いは異った
図形の対とすれば、重心位置、傾きの角度の算定が繁雑
となるので、2個の同径の円を用いるのが最適である。
In the above description, two circles drawn at intervals have been described, but it goes without saying that a plurality of figures of arbitrary shapes can be implemented in exactly the same manner. However, if the figure becomes complicated, the calculation of the position of the center of gravity, which is obtained in advance, becomes complicated, and if a large number of figures or pairs of different figures are calculated, the calculation of the position of the center of gravity and the angle of inclination becomes complicated. It is best to use circles of the same diameter.

〔発明の効果〕〔The invention's effect〕

本発明は、以上に詳述したように、図形の重心の位置に
よって位置を規定するので、それぞれの画素の大きさに
比較して極めて高い精度で位置を測定することが出来、
位置の較正を画素の大きさに関係なく充分高い精度で行
うことが可能となり、更に、距離や傾きの角度の誤差も
高い精度で較正可能となる効果を有するものである。
As described above in detail, the present invention defines the position by the position of the center of gravity of the figure, so that the position can be measured with extremely high accuracy compared to the size of each pixel,
The position can be calibrated with sufficiently high accuracy regardless of the size of the pixel, and further, the error of the distance or the angle of inclination can be calibrated with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図と第2図は従来方法の説明図、第3図は本発明の
方法を示す説明図、第4図はシュレッシュホルドレベル
を変えたときの重心の移動を示す説明図である。 1a、1b……円、 P、P′……重心の位置(基準点)、 L、L′……重心間の距離、θ……傾きの角度。
1 and 2 are explanatory views of the conventional method, FIG. 3 is an explanatory view showing the method of the present invention, and FIG. 4 is an explanatory view showing the movement of the center of gravity when the shreshhold level is changed. 1a, 1b ... Circle, P, P '... Position of center of gravity (reference point), L, L' ... Distance between centers of gravity, .theta .... Angle of inclination.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】画像処理装置によって絶対位置又は寸法を
測定する測定装置を較正する較正方法であって、較正す
る基準として画素に比較して充分大きな閉じた図形を用
い、該図形の2値化した画像の重心の位置を基準点とし
て測定装置の原点又は基準線を較正することを特徴とす
る画像処理方法。
1. A calibration method for calibrating a measuring device for measuring an absolute position or a dimension by an image processing device, wherein as a reference for calibration, a closed graphic sufficiently larger than a pixel is used, and the graphic is binarized. An image processing method characterized by calibrating an origin or a reference line of a measuring device with the position of the center of gravity of the image as a reference point.
【請求項2】図形が複数個の図形であって、該複数個の
図形の2値化した画像のそれぞれの重心の位置を求め、
これより全体の重心の位置を求めてこれを基準点とする
ことを特徴とする特許請求の範囲第1項記載の画像処理
方法。
2. A figure is a plurality of figures, and the position of the center of gravity of each binarized image of the plurality of figures is determined,
The image processing method according to claim 1, wherein the position of the center of gravity of the whole is obtained and used as a reference point.
【請求項3】図形が所定の距離を置いて描かれた2個の
円であることを特徴とする特許請求の範囲第1項記載の
画像処理方法。
3. The image processing method according to claim 1, wherein the figure is two circles drawn at a predetermined distance.
JP59021356A 1984-02-08 1984-02-08 Image processing method Expired - Lifetime JPH0652167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021356A JPH0652167B2 (en) 1984-02-08 1984-02-08 Image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021356A JPH0652167B2 (en) 1984-02-08 1984-02-08 Image processing method

Publications (2)

Publication Number Publication Date
JPS60165503A JPS60165503A (en) 1985-08-28
JPH0652167B2 true JPH0652167B2 (en) 1994-07-06

Family

ID=12052809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021356A Expired - Lifetime JPH0652167B2 (en) 1984-02-08 1984-02-08 Image processing method

Country Status (1)

Country Link
JP (1) JPH0652167B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140185A (en) * 1985-12-16 1987-06-23 Edetsuku:Kk Method and apparatus for deciding validity/invalidity of work
JPS62185103A (en) * 1986-02-10 1987-08-13 Agency Of Ind Science & Technol Automatic measurement for positional deviation and angle of attitude of object
JPH0810129B2 (en) * 1986-02-10 1996-01-31 工業技術院長 Automatic measurement method of posture and dimension of target object
JP3639328B2 (en) * 1994-10-14 2005-04-20 オリンパス株式会社 Information recording medium, two-dimensional code, information reproducing system, and information reproducing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017721A (en) * 1974-05-16 1977-04-12 The Bendix Corporation Method and apparatus for determining the position of a body
JPS51120754A (en) * 1975-04-16 1976-10-22 Hitachi Ltd Center of gravity position deteator
JPS5371850A (en) * 1976-12-08 1978-06-26 Toshiba Corp Position detector
JPS55164305A (en) * 1979-06-11 1980-12-22 Tokyo Sokuhan Kk Origin setting method and origin setting block of coordinate measuring machine
JPS5845505A (en) * 1981-09-12 1983-03-16 Anritsu Corp Shape discriminating device
JPS5880776A (en) * 1981-11-06 1983-05-14 Omron Tateisi Electronics Co Detecting method for shift angle between two patterns
US4523450A (en) * 1981-11-07 1985-06-18 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method of calibrating probe pins on multicoordinate measurement machines
JPS58190706A (en) * 1982-04-30 1983-11-07 Oki Electric Ind Co Ltd Inclination angle detector

Also Published As

Publication number Publication date
JPS60165503A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
EP1378790B1 (en) Method and device for correcting lens aberrations in a stereo camera system with zoom
US4288852A (en) Method and apparatus for automatically determining sheet metal strain
CN111263142B (en) Method, device, equipment and medium for testing optical anti-shake of camera module
CN111872544B (en) Calibration method and device for laser light-emitting indication point and galvanometer coaxial vision system
CN108716890A (en) A kind of high-precision size detecting method based on machine vision
JP2001524228A (en) Machine vision calibration target and method for determining position and orientation of target in image
US5075561A (en) Three dimensional imaging device comprising a lens system for simultaneous measurement of a range of points on a target surface
CN112614188B (en) Dot-matrix calibration board based on cross ratio invariance and identification method thereof
US11259000B2 (en) Spatiotemporal calibration of RGB-D and displacement sensors
CN109506629B (en) Method for calibrating rotation center of underwater nuclear fuel assembly detection device
CN112132891A (en) Method for enlarging calibration space
CN209820422U (en) Lens distortion calibration turntable device based on four-quadrant boundary
JPH0914965A (en) Target for surveying
JPH0652167B2 (en) Image processing method
CN116743973A (en) Automatic correction method for noninductive projection image
CN115289997B (en) Binocular camera three-dimensional contour scanner and application method thereof
JP3893191B2 (en) Calibration value measurement method for measurement imaging device
CN114062265B (en) Evaluation method for stability of support structure of vision system
JP2567923B2 (en) Distance measurement method
EP1676238B1 (en) A method for measuring dimensions by means of a digital camera
CN114549659A (en) Camera calibration method based on quasi-three-dimensional target
JP2003121301A (en) Method for finding viewpoint and focal length of camera
JP6864911B2 (en) Surface shape strain measuring device
CN115511718A (en) PCB image correction method and device, terminal equipment and storage medium
JP2609270B2 (en) Length measurement method using CCD camera

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term