JP2567923B2 - Distance measurement method - Google Patents

Distance measurement method

Info

Publication number
JP2567923B2
JP2567923B2 JP63235458A JP23545888A JP2567923B2 JP 2567923 B2 JP2567923 B2 JP 2567923B2 JP 63235458 A JP63235458 A JP 63235458A JP 23545888 A JP23545888 A JP 23545888A JP 2567923 B2 JP2567923 B2 JP 2567923B2
Authority
JP
Japan
Prior art keywords
plane
slit light
imaging
camera
target surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63235458A
Other languages
Japanese (ja)
Other versions
JPH0282106A (en
Inventor
剛平 飯島
澄広 上田
真明 平山
康夫 中野
秀明 水野
健 小池
保修 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP63235458A priority Critical patent/JP2567923B2/en
Publication of JPH0282106A publication Critical patent/JPH0282106A/en
Application granted granted Critical
Publication of JP2567923B2 publication Critical patent/JP2567923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、レーザなどのスリツト光を被計測物体に照
射して、被計測物体の対象面とテレビカメラの撮像面上
の定点との間の距離を求める計測方法に関する。
The present invention relates to a measuring method for irradiating an object to be measured with slit light such as a laser to obtain a distance between a target surface of the object to be measured and a fixed point on an image pickup surface of a television camera. .

従来の技術 典型的な先行技術は、接触式のプローブを用いて差動
トランスによつてメカニカルな変位置を電気的な信号に
変換して、ずれ量を読取る構成を有する。
2. Description of the Related Art A typical prior art has a configuration in which a mechanical displacement position is converted into an electrical signal by a differential transformer using a contact type probe, and a shift amount is read.

このような先行技術では、プローブを被計測物に接触
する構成を有しているので、自動化が困難であり、また
計測作業に時間がかかる。
In such a prior art, since the probe has a configuration of contacting the object to be measured, automation is difficult and the measurement work takes time.

他の先行技術は、たとえば特開昭60−93424および特
公昭62−26403にそれぞれ開示されている。これらの先
行技術では、固定位置からスリツト光を被計測物体の表
面に照射し、その被計測物体上にあるスリツト光をカメ
ラで撮像する構成を有する。
Other prior arts are disclosed, for example, in JP-A-60-93424 and JP-B-62-26403, respectively. In these prior arts, the surface of the object to be measured is irradiated with slit light from a fixed position, and the slit light on the object to be measured is imaged by a camera.

発明が解決しようとする課題 このような先行技術では、単一のスリツト光を用いて
おり、また距離を計測するための構成を開示していな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention Such a prior art uses a single slit light and does not disclose a configuration for measuring a distance.

本発明の目的は、被計測物体の対象面とテレビカメラ
の撮像面との間の距離を非接触で計測することができる
ようにした距離計測方法を提供することである。
An object of the present invention is to provide a distance measuring method capable of measuring a distance between a target surface of a measured object and an image pickup surface of a television camera in a non-contact manner.

課題を解決するための手段 本発明は、互いに交差する2つのスリツト光5,6を被
測定物表面1である対象面P13に照射し、対象面P13上に
ある各スリツト光5,6の切断線をテレビカメラ7の撮像
面8に撮像し、撮像面8上の定点と対象面P13との距離
を計測する方法において、 テレビカメラ7のレンズ9の主点を通り撮像面8に垂
直な線をZ軸とし、撮像面8をXY平面とするXYZ直交座
標系を設定し、 撮像面8上の一方のスリツト光6の光切断線の像30と
レンズ9の主点を通る平面P14と、一方のスリツト光6
の平面P15との法線ベクトルから、前記平面P14,P15の交
線の方向ベクトルを求め、 撮像面8上の他方のスリツト光5の光切断線32とレン
ズ9の主点を通る平面P16と、他方のスリツト光5の平
面P17との法線ベクトルから前記平面P16,P17の交線の方
向ベクトルを求め、 前記方向ベクトル4,から対象面P13の法線ベク
トル(s0,t0,1)を求め、対象面P13上の点を平面P1
4,P15,P17の交点または平面P15,P16,P17の交点(x0,y0,
z0)として求め、 撮像面8上の定点と対象面P13との間の距離d0を次式 d0=s0x0+t0y0+z0 によつて求めることを特徴とする距離計測方法である。
Means for Solving the Problem The present invention irradiates a target surface P13, which is the surface 1 of an object to be measured, with two slit light beams 5 and 6 that intersect with each other, and cuts the slit light beams 5 and 6 on the target surface P13. In the method of capturing an image of a line on the imaging surface 8 of the television camera 7 and measuring the distance between the fixed point on the imaging surface 8 and the target surface P13, a line that passes through the principal point of the lens 9 of the television camera 7 and is perpendicular to the imaging surface 8. Is set as the Z axis, and the XYZ orthogonal coordinate system in which the image pickup surface 8 is the XY plane is set, and the image 30 of the light cutting line of one slit light 6 on the image pickup surface 8 and the plane P14 passing through the principal point of the lens 9, One slit light 6
From the normal vector with respect to the plane P15, the direction vector 4 of the intersection of the planes P14 and P15 is obtained, and the plane P16 passing through the light cutting line 32 of the other slit light 5 on the imaging plane 8 and the principal point of the lens 9 is obtained. From the normal vector to the plane P17 of the other slit light 5, the direction vector 8 of the line of intersection of the planes P16 and P17 is obtained, and from the direction vectors 4 and 8 the normal vector 0 (s 0 , t 0 , 1) and find the point on the target plane P13 on the plane P1
4, P15, P17 intersections or planes P15, P16, P17 intersections (x 0 , y 0 ,
z 0 ), and the distance d 0 between the fixed point on the imaging surface 8 and the target surface P 13 is calculated by the following equation d 0 = s 0 x 0 + t 0 y 0 + z 0 Is the way.

作 用 本発明に従えば、対象面の法線ベクトル=(s0,t
0,1)が撮像面上の互いに垂直な方向の線(X,Y軸)とレ
ンズ主点とを通る2つの平面と、2つのスリツト光平面
との交線の方向ベクトルから非接触で求められ、またス
リツト光平面のいずれか1つと前記レンズ主点を通る2
つの平面との交点(x0,y0,z0)は対象面上にあるので、
s0,t0,x0,y0,z0を用いて撮像面上の定点(原点)と対象
面との間の距離が前記の式で迅速に計算できる。
Operation According to the present invention, the normal vector of the target surface 0 = (s 0 , t
0 , 1) is obtained in a non-contact manner from the direction vector of the line of intersection between the two planes passing through the lines (X, Y axes) perpendicular to each other on the imaging surface and the lens principal point and the two planes of slit light. 2 passing through any one of the slit light planes and the lens principal point.
Since the intersection (x 0 , y 0 , z 0 ) with two planes is on the target plane,
By using s 0 , t 0 , x 0 , y 0 , z 0 , the distance between the fixed point (origin) on the imaging surface and the target surface can be quickly calculated by the above formula.

実施例 第1図は、本発明の一実施例の簡略化した斜視図であ
る。ワークなどの被計測物体の対象面である表面1に臨
んで真円の孔2が形成されている。この孔2には、2つ
のスリツト光5,6が投光器3,4から照射される。なお、カ
メラ7とスリツト光を照射する2台の投光器3,4とは一
体化されている。スリツト光は参照符5,6でそれぞれ示
される平面である。被計測物体表面1にある光切断線は
孔2において欠落しており、これらの端点を参照符A,B,
C,Dでそれぞれ示す。被計測物体表面1は、工業用テレ
ビカメラ7によつて撮像される。このカメラ7は、電荷
蓄積素子(略称CCD)の撮像面8と、被計測物体表面1
上にある各スリツト光を撮像面8に結像するレンズ9と
を含む。撮像面8をXY平面とし、撮像面8に垂直でカメ
ラ7のレンズ9の主点を通る直線をZ軸とするXYZ直角
座標系を用い、被計測物体表面1上の点は(X,Y,Z)で
示され、撮像面8上の点は(Xc,Yc)で示される。カメ
ラ7からの出力は、処理回路10に与えられる。
Embodiment FIG. 1 is a simplified perspective view of an embodiment of the present invention. A perfect circular hole 2 is formed to face a surface 1 which is a target surface of an object to be measured such as a work. Two slit lights 5 and 6 are emitted from the projectors 3 and 4 to the hole 2. The camera 7 and the two projectors 3 and 4 for irradiating the slit light are integrated. The slit light is a plane indicated by reference numerals 5 and 6, respectively. The light cutting line on the surface 1 of the object to be measured is missing in the hole 2, and these end points are referred to by reference symbols A, B,
Shown by C and D respectively. The surface 1 of the measured object is imaged by the industrial television camera 7. The camera 7 includes an image pickup surface 8 of a charge storage device (abbreviated as CCD) and a surface 1 of an object to be measured.
And a lens 9 for forming an image of each slit light beam on the imaging surface 8. Using the XYZ Cartesian coordinate system in which the imaging plane 8 is the XY plane, and the Z axis is a straight line that is perpendicular to the imaging plane 8 and passes through the principal point of the lens 9 of the camera 7, the point on the measured object surface 1 is (X, Y , Z), and the points on the imaging surface 8 are indicated by (Xc, Yc). The output from the camera 7 is given to the processing circuit 10.

第2図は、第1図に示される実施例の電気的構成を示
すブロック図である。投光器3,4は駆動回路11,12によつ
て駆動される。処理回路10に備えられているテレビカメ
ラコントローラ13は、CCDの撮像面8にライン14を介し
た同期信号を与え、これによつて撮像面8に撮像された
映像信号はライン15を介して処理回路10のアナログ/デ
ジタル変換回路16に与えられてデジタル値に変換され
る。こうして得られるアナログ/デジタル変換回路16か
らの出力は、しきい値設定器17からの弁別レベルである
しきい値と、比較器18において比較されて、ライン19か
らは2値化信号が得られる。この2値化信号は、フレー
ムメモリ20にストアされる。メモリ20の内容は、バス21
を介して処理手段22に与えられ、また通信コントローラ
23を介して外部の処理手段とデータの転送を行うことが
できる。このような基本的な構成を有する本発明の一実
施例において、まずカメラパラメータを計算し、これを
用いて2つのスリツト光平面の方程式を求め、次に被計
測物体表面1の傾き、すなわち姿勢角を計算し、さらに
また、その被計測物体表面1とカメラ7との間の距離を
計測する。
FIG. 2 is a block diagram showing the electrical configuration of the embodiment shown in FIG. The projectors 3 and 4 are driven by drive circuits 11 and 12. The television camera controller 13 provided in the processing circuit 10 gives a synchronization signal to the image pickup surface 8 of the CCD via the line 14, and thereby processes the video signal imaged on the image pickup surface 8 via the line 15. It is given to the analog / digital conversion circuit 16 of the circuit 10 and converted into a digital value. The output from the analog / digital conversion circuit 16 thus obtained is compared with the threshold value which is the discrimination level from the threshold value setting device 17 in the comparator 18, and a binary signal is obtained from the line 19. . The binarized signal is stored in the frame memory 20. The contents of memory 20 are bus 21
Is provided to the processing means 22 via a communication controller
Data can be transferred to and from an external processing means via 23. In one embodiment of the present invention having such a basic configuration, first, the camera parameters are calculated, the equations of the two slit light planes are obtained, and then the inclination of the measured object surface 1, that is, the posture. The angle is calculated, and the distance between the measured object surface 1 and the camera 7 is measured.

I.カメラパラメータの計算 第3図に示されるようにスリツト光の投光器3と、カ
メラ7とを配置し、スリツト光平面5上の1点Pの座標
を(X,Y,Z)、点Pの撮像面8上の像Qの座標を(Xc,Y
c)とする。カメラ7の透視変換を第1式に示す。
I. Calculation of camera parameters As shown in FIG. 3, the slit light projector 3 and the camera 7 are arranged, and the coordinates of one point P on the slit light plane 5 are (X, Y, Z) and P. The coordinates of the image Q on the image plane 8 of (Xc, Y
c) The perspective transformation of the camera 7 is shown in the first equation.

またスリツト光平面5の方程式を第2式に示す。 The equation of the slit light plane 5 is shown in the second equation.

a*X+b*Y+Z=d …(2) したがつて、Pの座標(X,Y,Z)は第1式および第2
式を連立させて解くことによつて求まる。基本的には、
スリツト光平面5上にある全ての点の3次元座標を求め
ることができる。同様にして、スリツト光平面6上にあ
る全ての点の3次元座標を求めることができる。
a * X + b * Y + Z = d (2) Therefore, the coordinates (X, Y, Z) of P are the first equation and the second equation.
It can be obtained by solving simultaneous equations. Basically,
The three-dimensional coordinates of all the points on the slit light plane 5 can be obtained. Similarly, the three-dimensional coordinates of all the points on the slit light plane 6 can be obtained.

第1式のC11〜C34をカメラパラメータと称する。カメ
ラパラメータとは、レンズ9の焦点距離、レンズ9の主
点の位置、レンズ9と受光面すなわち撮像面8との距離
などに依存して決定される値である。これらの値を実測
することは困難であるので、次の手法で求める。
C 11 to C 34 in the first equation are called camera parameters. The camera parameter is a value determined depending on the focal length of the lens 9, the position of the principal point of the lens 9, the distance between the lens 9 and the light receiving surface, that is, the image pickup surface 8. Since it is difficult to measure these values, the following method is used.

第1式を展開し、係数hを消去すると、 C11*X+C12*Y+C13*Z+C14−C31*Xc*X−C32*Xc*Y−C33*Xc*Z−C
34*Xc=0 …(3−1) C21*X+C22*Y+C23*Z+C24−C31*Xc*X−C32*Xc*Y−C33*Xc*Z−C
34*Xc=0 …(3−2) となる。したがつて、同一平面上にない6点の既知の3
次元座標と、それぞれに対応するカメラ座標を第(3−
1)式および第(3−2)式に代入し、12元連立方程式
を解くことによつて12個の未知数(C11〜C34)が求ま
る。ここではカメラパラメータの算出の精度を向上する
ために、3次元座標を既知のn点(n>6)について計
測を行い、最小2乗法によつて求める。
Expanding the first equation and deleting the coefficient h, C 11 * X + C 12 * Y + C 13 * Z + C 14 −C 31 * Xc * X−C 32 * Xc * Y−C 33 * Xc * Z−C
34 * Xc = 0 (3-1) C 21 * X + C 22 * Y + C 23 * Z + C 24- C 31 * Xc * X-C 32 * Xc * Y-C 33 * Xc * Z-C
34 * Xc = 0 (3-2). Therefore, 6 known points that are not on the same plane
The three-dimensional coordinates and the camera coordinates corresponding to the three-dimensional coordinates
By substituting the equations (1) and (3-2) and solving the 12-element simultaneous equations, 12 unknowns (C 11 to C 34 ) can be obtained. Here, in order to improve the calculation accuracy of the camera parameters, three-dimensional coordinates are measured at known n points (n> 6) and are obtained by the least square method.

第3式から、係数C11〜C34に関する次の12元2n連立方
程式が得られる。
From the third equation, the following 12-element 2n simultaneous equations concerning the coefficients C 11 to C 34 are obtained.

E*G=F …(4) F=[Xc1 Yc1………………Xcn Ycn …(6) G=[C11C12C13C14C21C22C23C24C31C32C33 …(7
−1) ただし、 C34=1 …(7−2) 最小2乗法により G=(Et*E)-1*Et*F …(8) を計算すると、Gが求まる。
E * G = F (4) F = [Xc 1 Yc 1 ……………… Xc n Yc n ] t … (6) G = [C 11 C 12 C 13 C 14 C 21 C 22 C 23 C 24 C 31 C 32 C 33 ] t … (7
-1) However, C34 = 1 ... (7-2) G = ( Et * E) -1 * Et * F ... (8) is calculated by the least squares method, G is calculated | required.

II.スリツト光の平面の方程式の係数の算出。II. Calculation of the coefficients of the plane of slit light equation.

スリツト光の平面上の既知の3点の3次元位置を第2
式に代入すれば、a,b,dに関する3元連立方程式が得ら
れるので、これを解けばa,b,dを算出できる。ここでは
精度を上げるために、既知のn点(n>3)の3次元座
標を第2式に代入し、次の3元n連立方程式を最小2乗
法で解く。
The second three-dimensional position of three known points on the plane of the slit light
By substituting in the equation, a three-dimensional simultaneous equation concerning a, b, d can be obtained, and by solving this, a, b, d can be calculated. Here, in order to improve accuracy, the known three-dimensional coordinates of n points (n> 3) are substituted into the second equation, and the following three-dimensional n simultaneous simultaneous equations are solved by the least squares method.

これを J*K=L …(10) とおけば、 K=(Jt*J)-1*Jt*L …(11) より求まる。同様にして、スリツト光面6の係数を算出
できる。
If this is written as J * K = L ... (10), it can be obtained from K = ( Jt * J) -1 * Jt * L ... (11). Similarly, the coefficient of the slit light surface 6 can be calculated.

III.被計測物体表面、すなわち対象面P13のX軸まわり
の姿勢角αおよびY軸まわりの姿勢角βの計測。
III. Measurement of the posture angle α around the X axis and the posture angle β around the Y axis of the measured object surface, that is, the target surface P13.

第4図(1)において、対象面P13aがX軸まわりに+
Δαだけ角変位して平面P13bの姿勢となつたとき、スリ
ツト光5の対象面P13a上の光切断線26は、平面P13b上で
は光切断線27のとおりとなる。カメラ7の撮像面8にお
いて、α=0の光切断線26の像は参照符26aで示され、
その回転後の光切断線27の像は参照符27aで示される。
また第5図(1)で示されるように、対象面P13cがY軸
まわりに角度Δβだけ角変位して平面P13dとなつたとき
には、対象面P13c上の光切断線28は平面P13d上で光切断
線29となる。したがつてカメラ7の撮像面8において、
光切断線28の像28aは光切断線29の像29aとなる。こうし
て撮像面8上の像27a,29aによつて、対象面P13aと平面P
13bとの相互の角度Δαと、対象面P13cと平面P13dとの
角度+Δβとを演算して求めることができる。第4図お
よび第5図にΔα,Δβの定義を示し、さらに第6図〜
第8図を参照して平面の傾きを求める手法について具体
的に述べる。
In FIG. 4 (1), the target surface P13a is + around the X axis.
When it is angularly displaced by Δα to take the posture of the plane P13b, the light cutting line 26 on the target surface P13a of the slit light 5 is as the light cutting line 27 on the plane P13b. On the image plane 8 of the camera 7, the image of the light cutting line 26 at α = 0 is indicated by reference numeral 26a,
The image of the light section line 27 after its rotation is indicated by reference numeral 27a.
Further, as shown in FIG. 5 (1), when the target surface P13c is angularly displaced about the Y axis by an angle Δβ and becomes a plane P13d, the light cutting line 28 on the target surface P13c is illuminated on the plane P13d. It becomes the cutting line 29. Therefore, on the imaging surface 8 of the camera 7,
The image 28a of the light section line 28 becomes an image 29a of the light section line 29. In this way, the images 27a and 29a on the imaging surface 8 allow the target surface P13a and the plane P
The mutual angle Δα with 13b and the angle + Δβ between the target surface P13c and the plane P13d can be calculated and obtained. The definitions of Δα and Δβ are shown in FIGS. 4 and 5, and further in FIGS.
A method for obtaining the inclination of the plane will be specifically described with reference to FIG.

(1)第7図に示される対象面P13のX軸まわりの姿勢
角αと、その対象面P13のY軸まわりの姿勢角βとを求
めるにあたり、まずカメラ7の撮像面8上のH方向の
水平スリツト光の光切断線30の方程式を予め求めてお
き、この光切断線30の方程式と、予め求めておいた前
述のカメラパラメータC11〜C34とから、光切断線30と
レンズ9の主点を通る平面P14の方程式を求める(第6
図のステツプm1,m2)。またスリツト光6の平面P15の
方程式をIIによつて求めておく(第6図のステツプm
3)。
(1) In obtaining the posture angle α of the target surface P13 around the X axis and the posture angle β of the target surface P13 around the Y axis shown in FIG. 7, first, the H direction on the imaging surface 8 of the camera 7 is determined. The equation of the light cutting line 30 of the horizontal slit light is obtained in advance, and from the equation of the light cutting line 30 and the previously obtained camera parameters C 11 to C 34 , the light cutting line 30 and the lens 9 are obtained. Find the equation of plane P14 passing through the principal points of (6th
(Steps m1, m2 in the figure). Also, the equation of the plane P15 of the slit light 6 is obtained by II (step m in FIG. 6).
3).

(2)前のパラグラフ(1)で示した方程式,,
と、カメラパラメータとによつて、平面P14,P15の各
平面の法線ベクトルを求め、その法線ベクトルを2,
とし、平面P14,P15の交線31の方向ベクトルを、 (1,t4,u4) …(12) とすると、2,とは直交するので、=0 …(13)=0 …(14) これにより、が求められる(第6図のステツプm
4)。
(2) The equation shown in the previous paragraph (1),
When the camera parameters and Niyotsute obtains the vector of each plane of the planes P14, P15, the normal vector 2,
3 and the direction vector of the intersection 31 of the planes P14 and P15 is 4 (1, t 4 , u 4 ) ... (12), 4 and 2 and 3 are orthogonal, so 2 · 4 = 0. Thus (13) 3 - 4 = 0 ... (14), 4 are obtained (in FIG. 6 step m
Four).

(3)同様にして第8図から、撮像面8上で光切断線30
と垂直方向、すなわちV方向の垂直スリツト光の光切断
線32とカメラパラメータより平面P16の方程式を求め、
スリツト光5の平面P17の方程式をIIによつて求め、平
面P16,P17の法線ベクトルをそれぞれ6,、平面P1
6,P17の交線33の方向ベクトルを、 =(s8,1,u8) …(15) として、6,とは直交するので、=0 …(16)=0 …(17) これにより、が求められる(第6図のステツプm
7)。
(3) Similarly, from FIG.
And the vertical direction, that is, the optical cutting line 32 of the vertical slit light in the V direction and the equation of the plane P16 from the camera parameters,
The equation of the plane P17 of the slit light 5 is obtained by II, and the normal vectors of the planes P16 and P17 are 6 and 7 , respectively, and the plane P1.
6, a direction vector of the P17 lines of intersection 33, 8 = (s 8, 1, u 8) as (15), so orthogonal to the 8 and 6, 7, 6 & 8 = 0 ... (16) 78 = 0 (17) As a result, 8 is obtained (step m in FIG. 6).
7).

(4)対象面P13の法線ベクトル =(s0,t0,1) …(18) は4,に直交するから、=0 …(19)=0 …(20) これにより、が求められる(第6図のステツプm
8)。
(4) the normal vector 0 = the target surface P13 (s 0, t 0, 1) ... (18) is because orthogonal to 4, 8, 0, 4 = 0 ... (19) 0 · 8 = 0 ... ( 20) From this, 0 is obtained (step m in FIG. 6)
8).

撮像面8の対象面P13に対する姿勢角α(水平方向の
軸線、X軸まわりの回転角)、β(Y軸まわりの回転
角)は次式で求められる(第6図のステツプm9)。
The attitude angles α (horizontal axis, rotation angle around the X axis) and β (rotation angle around the Y axis) of the imaging surface 8 with respect to the target surface P13 are determined by the following equations (step m9 in FIG. 6).

α=tan-1(t0) …(21) β=tan-1(s0) …(22) IV.距離の計測方法。α = tan -1 (t 0 ) ... (21) β = tan -1 (s 0 ) ... (22) IV. Distance measurement method.

第9図に示されるように、平面P13eとカメラ7の撮像
面8との間の距離を計測する際、この平面P13eをP13fお
よびP13gで示すように検出可能な範囲で変位すると、第
9図(2)で示されるように撮像面8上では、投光器3
のスリツト光5の光切断線34,35,36は像34a,35a,36aと
なつて検出される。このようにして撮像面8上の像34a,
35a,36aを検出することによつて、平面P13e,P13f,P13g
の距離を計測することができる。この手法を第10図およ
び第11図を参照してさらに具体的に説明する。
As shown in FIG. 9, when measuring the distance between the plane P13e and the imaging surface 8 of the camera 7, if the plane P13e is displaced within a detectable range as shown by P13f and P13g, FIG. As shown in (2), the projector 3 is placed on the imaging surface 8.
The light cutting lines 34, 35, 36 of the slit light 5 are detected as images 34a, 35a, 36a. In this way, the image 34a on the imaging surface 8
By detecting 35a, 36a, the plane P13e, P13f, P13g
The distance of can be measured. This method will be described more specifically with reference to FIGS. 10 and 11.

(1)カメラ7の光軸の方程式は、 x=y=0 …(23) であつて、その撮像面8上の定点(原点)と対象面P13
との距離dは、カメラ7のレンズ9の光軸と対象面P13
の交点のZ座標と定義する。
(1) The equation of the optical axis of the camera 7 is x = y = 0 (23), and the fixed point (origin) on the imaging surface 8 and the target surface P13
The distance d between the optical axis of the lens 9 of the camera 7 and the target surface P13
It is defined as the Z coordinate of the intersection point of.

対象面P13上の1点の座標を求めれば、これと対象面P
13の法線ベクトルとから対象面P13の平面の方程式が決
定できる。その点は、平面P14,P15,P17または平面P15,P
16,P17の交点として得られ、その点を、(x0,y0,z0)と
すると、対象面P13の方程式は、 s0(x−x0)+t0(y−y0) +1・(z−z0)=0 …(24) となる(第10図のステツプr1,r2)。
If the coordinates of one point on the target surface P13 are calculated, this and the target surface P
The equation of the plane of the target plane P13 can be determined from the 13 normal vectors. That point is plane P14, P15, P17 or plane P15, P
It is obtained as the intersection of 16, P17, and if that point is (x 0 , y 0 , z 0 ), the equation of the target surface P13 is s 0 (x−x 0 ) + t 0 (y−y 0 ) +1 • (z−z 0 ) = 0 (24) (steps r1 and r2 in FIG. 10).

(2)距離d0は、 d0=s0x0+t0y0+z0 …(25) として求めれられる(第10図のステツプr3,r4)。(2) The distance d 0 is obtained as d 0 = s 0 x 0 + t 0 y 0 + z 0 (25) (steps r3, r4 in FIG. 10).

発明の効果 以上のように本発明によれば、被計測物体に接触する
ことなしに、テレビカメラの撮像面上の定点と被測定物
表面である対象面との間の距離d0を迅速に求めることが
可能になる。
EFFECTS OF THE INVENTION As described above, according to the present invention, the distance d 0 between the fixed point on the image pickup surface of the television camera and the target surface, which is the surface of the object to be measured, can be quickly measured without touching the object to be measured. It becomes possible to ask.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の簡略化した斜視図、第2図
は電気的構成を示すブロツク図、第3図はカメラパラメ
ータを算出する手法を示す斜視図、第4図は対象面P13a
の姿勢角αの定義を示す図、第5図は対象面P13cの姿勢
角βの定義を示す簡略化した図、第6図は姿勢角α,β
を計測する手順を示すフローチャート、第7図および第
8図は対象面P13のX軸まわりの姿勢角αとY軸まわり
の姿勢角βを計測するための手法を示す簡略化した図、
第9図は平面P13e,P13f,P13gの距離の計測原理を示す簡
略化した図、第10図は平面の距離d0の算出手順を示すフ
ローチヤート、第11図は距離d0の計測を行うための構成
を簡略化して示す図である。 1……被測定物体表面、2……孔、3,4……スリツト光
の投光器、7……カメラ、8……撮像面、9……レン
ズ、10……処理回路
FIG. 1 is a simplified perspective view of an embodiment of the present invention, FIG. 2 is a block diagram showing an electrical configuration, FIG. 3 is a perspective view showing a method for calculating camera parameters, and FIG. 4 is a target surface. P13a
Showing the definition of the posture angle α of FIG. 5, FIG. 5 is a simplified diagram showing the definition of the posture angle β of the target surface P13c, and FIG. 6 is the posture angles α and β.
FIG. 7 and FIG. 8 are simplified flowcharts showing a method for measuring the posture angle α around the X axis and the posture angle β around the Y axis of the target surface P13.
FIG. 9 is a simplified diagram showing the principle of measuring the distance of the planes P13e, P13f, P13g, FIG. 10 is a flow chart showing the procedure for calculating the distance d 0 of the plane, and FIG. 11 is measuring the distance d 0 . It is a figure which simplifies and shows the structure for. 1 ... Surface of object to be measured, 2 ... Hole, 3,4 ... Projector of slit light, 7 ... Camera, 8 ... Imaging surface, 9 ... Lens, 10 ... Processing circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平山 真明 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (72)発明者 中野 康夫 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (72)発明者 水野 秀明 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (72)発明者 小池 健 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (72)発明者 磯部 保修 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (56)参考文献 特開 昭62−272106(JP,A) 特開 昭60−200111(JP,A) 特開 昭60−183509(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaaki Hirayama 1-1 Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries Ltd. Akashi Plant (72) Inventor Yasuo Nakano 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Akashi Plant (72) Inventor Hideaki Mizuno 1-1 Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries Ltd. Akashi Plant (72) Inventor Ken Koike 1-1, Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries, Ltd., Akashi Plant (72) Inventor, Hobu Isobe 1-1, Kawasaki-cho, Akashi-shi, Hyogo Prefecture Kawasaki Heavy Industries, Ltd., Akashi Plant (56) Reference JP 62-272106 (JP, A) Kai 60-200111 (JP, A) JP 60-183509 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】互いに交差する2つのスリツト光5,6を被
測定物表面1である対象面P13に照射し、対象面P13上に
ある各スリツト光5,6の切断線をテレビカメラ7の撮像
面8に撮像し、撮像面8上の定点と対象面P13との距離
を計測する方法において、 テレビカメラ7のレンズ9の主点の通り撮像面8に垂直
な線をZ軸とし、撮像面8をXY平面とするXYZ直交座標
系を設定し、 撮像面8上の一方のスリツト光6の光切断線の像30とレ
ンズ9の主点を通る平面P14と、一方のスリツト光6の
平面P15との法線ベクトルから、前記平面P14,P15の交線
の方向ベクトルを求め、 撮像面8上の他方のスリツト光5の光切断線32とレンズ
9の主点を通る平面P16と、他方のスリツト光5の平面P
17との法線ベクトルから前記平面P16,P17の交線の方向
ベクトルを求め、 前記方向ベクトル4,から対象面P13の法線ベクト
(s0,t0,1)を求め、対象面P13上の点を平面P14,
P15,P17の交点または平面P15,P16,P17の交点(x0,y0,
z0)として求め、 撮像面8上の定点と対象面P13との間の距離d0を次式 d0=s0x0+t0y0+z0 によつて求めることを特徴とする距離計測方法。
1. A target surface P13, which is the surface 1 of an object to be measured, is irradiated with two slit lights 5 and 6 intersecting each other, and a cutting line of each slit light 5 and 6 on the target surface P13 is taken by a television camera 7. In the method of measuring the distance between a fixed point on the imaging surface 8 and the target surface P13 by imaging on the imaging surface 8, a line perpendicular to the imaging surface 8 as the principal point of the lens 9 of the TV camera 7 is set as the Z axis, and the imaging is performed. An XYZ orthogonal coordinate system with the surface 8 as the XY plane is set, and the image 30 of the light cutting line of one slit light 6 on the imaging surface 8 and the plane P14 passing through the principal point of the lens 9 and one slit light 6 are set. From the normal vector to the plane P15, the direction vector 4 of the line of intersection of the planes P14 and P15 is obtained, and the light cutting line 32 of the other slit light 5 on the imaging plane 8 and the plane P16 passing through the principal point of the lens 9 are obtained. , The plane P of the other slit light 5
The direction vector 8 of the line of intersection of the planes P16 and P17 is obtained from the normal vector with respect to 17, and the normal vector 0 (s 0 , t 0 , 1) of the target plane P13 is obtained from the direction vectors 4 and 8 A point on the plane P13 is a plane P14,
The intersection of P15, P17 or the intersection of planes P15, P16, P17 (x 0 , y 0 ,
z 0 ), and the distance d 0 between the fixed point on the imaging surface 8 and the target surface P 13 is calculated by the following equation d 0 = s 0 x 0 + t 0 y 0 + z 0 Method.
JP63235458A 1988-09-19 1988-09-19 Distance measurement method Expired - Lifetime JP2567923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235458A JP2567923B2 (en) 1988-09-19 1988-09-19 Distance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235458A JP2567923B2 (en) 1988-09-19 1988-09-19 Distance measurement method

Publications (2)

Publication Number Publication Date
JPH0282106A JPH0282106A (en) 1990-03-22
JP2567923B2 true JP2567923B2 (en) 1996-12-25

Family

ID=16986400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235458A Expired - Lifetime JP2567923B2 (en) 1988-09-19 1988-09-19 Distance measurement method

Country Status (1)

Country Link
JP (1) JP2567923B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992005892A1 (en) * 1990-10-05 1992-04-16 Komatsu Ltd. Metal sheet bending machine
US5531087A (en) * 1990-10-05 1996-07-02 Kabushiki Kaisha Komatsu Seisakusho Metal sheet bending machine
DE4493589T1 (en) * 1993-05-24 1996-05-09 Komatsu Mfg Co Ltd Bending angle detection device and device for detecting a straight line and device for setting a bending angle detection position
KR20010104458A (en) * 2000-04-28 2001-11-26 조명우 regenerative method of three-dimensional shape
JP5229013B2 (en) * 2009-03-09 2013-07-03 トヨタ自動車株式会社 Displacement measuring device and displacement measuring method
JP6685806B2 (en) * 2016-04-04 2020-04-22 三菱重工業株式会社 Laser processing method and laser processing apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061162B2 (en) * 1984-03-02 1994-01-05 株式会社日立製作所 Visual device

Also Published As

Publication number Publication date
JPH0282106A (en) 1990-03-22

Similar Documents

Publication Publication Date Title
CN111123242B (en) Combined calibration method based on laser radar and camera and computer readable storage medium
JP7353757B2 (en) Methods for measuring artifacts
JPS62206684A (en) Position and shape measuring method by pattern projection
JP2567923B2 (en) Distance measurement method
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
JPH03161223A (en) Fitting of work
CN112361982B (en) Method and system for extracting three-dimensional data of large-breadth workpiece
JPH09329440A (en) Coordinating method for measuring points on plural images
KR100379948B1 (en) Three-Dimensional Shape Measuring Method
JP3180091B2 (en) Non-contact dimension measurement method by laser autofocus
JPH0663733B2 (en) Method for detecting multiple holes
JP3340599B2 (en) Plane estimation method
JP3369235B2 (en) Calibration method for measuring distortion in three-dimensional measurement
JPH06323820A (en) Three-dimensional profile measuring method
JP3412139B2 (en) Calibration method of three-dimensional distance measuring device
JPH07139918A (en) Method for measuring central position/radius of cylinder
JPH06180216A (en) Parts position/attitude measuring instrument
JPS603502A (en) Non-contacting type distance measuring method
JPS6166108A (en) Method and apparatus for measuring position and shape of object
Kalová et al. Inspection of welding seams
JPS6180008A (en) Shape measuring apparatus
Jin et al. A Stereo Vision-Based Flexible Deflection Measurement System
Yang et al. A comparative study of two calibration methodologies for a laser stripe sensor
Dai et al. High-Accuracy Calibration for a Multiview Microscopic 3-D Measurement System
Lu et al. Monocular vision-based sensor for autonomous mobile robot localization by circular markers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term