JPS63245484A - Adhesive composition - Google Patents

Adhesive composition

Info

Publication number
JPS63245484A
JPS63245484A JP8001187A JP8001187A JPS63245484A JP S63245484 A JPS63245484 A JP S63245484A JP 8001187 A JP8001187 A JP 8001187A JP 8001187 A JP8001187 A JP 8001187A JP S63245484 A JPS63245484 A JP S63245484A
Authority
JP
Japan
Prior art keywords
adhesive
particles
connection
plated
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8001187A
Other languages
Japanese (ja)
Other versions
JPH075868B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Yutaka Yamaguchi
豊 山口
Atsuo Nakajima
中島 敦夫
Kuniteru Muto
武藤 州輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP8001187A priority Critical patent/JPH075868B2/en
Publication of JPS63245484A publication Critical patent/JPS63245484A/en
Publication of JPH075868B2 publication Critical patent/JPH075868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To prepare the title compsn. which is free from the occurrence of air bubbles at the connections, excellent in connection reliability, and suitable for use in the connection of circuits, by mixing an insulating adhesive component, a plated particle having a particular particle diameter, a finely divided dry-process silica, and a metal deactivator in a predetermined volume ratio. CONSTITUTION:99.8-75vol.% insulating adhesive component (A) (e.g., styrene- vinyl copolymer or rosin) is mixed with 0.1-15vol.% plated particle (B) having a particle diameter of 0.5-50mum (e.g., nickel-plated styrene particle), 0.05-5vol.% dry-process silica (C) having a particle diameter of 0.1mum or less, and 0.05-5vol.% metal deactivator (D) (e.g., 3-amino-1,2,4-triazole) to prepare an intended adhesive compsn. It is pref.. that component (C) be a dry-process silica having a BET specific surface area of at least 40m<2>/g. Circuits connected with the aforesaid adhesive compsn. is advantagenous in that not only it is free from the occurrence of air bubbles but also the deterioration of the adhesive can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接着剤組成物に関し、さらに詳しくは接続信頼
性に優れた回路接続用の接着剤組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adhesive composition, and more particularly to an adhesive composition for circuit connection with excellent connection reliability.

〔従来の技術〕[Conventional technology]

従来より集積回路類の配線基板への接続、表示素子類の
配線基板への接続、電気回路とリードとの接続などのよ
うに、接続端子が相対峙して細かいピッチで並んでいる
回路の接続法として、絶縁性接着剤中に導電性充填剤を
所定量含有し、接続すべき回路間に介在して、加熱加圧
もしくは加圧により、回路の厚み方向に導電性を得るこ
とができると同時に隣接回路間に絶縁性を得ることので
きる、微細回路の接続用の膜状物や接着剤(以下接続部
材と総称する)を用いる方法が知られている。
Connecting circuits where connection terminals are arranged facing each other at a fine pitch, such as connecting integrated circuits to wiring boards, connecting display elements to wiring boards, and connecting electrical circuits to leads. As a method, a predetermined amount of conductive filler is contained in an insulating adhesive, which is interposed between circuits to be connected, and conductivity can be obtained in the thickness direction of the circuit by applying heat or pressure. At the same time, a method is known in which a film-like material or adhesive (hereinafter collectively referred to as a connecting member) for connecting fine circuits is used, which can provide insulation between adjacent circuits.

例えば、特開昭51−20941号公報によれば、非導
電性接着剤中にカーボンや金属粒子よりなる導電性粒子
を混合し、さらに面方向の絶縁性を向上させるために導
電性粒子よりも小さな粒径の絶縁性粒子を混合する試み
が開示されているが、接続材料にとって重要な特性であ
る接続信頼性についての考慮はなされていなかった。
For example, according to Japanese Patent Application Laid-Open No. 51-20941, conductive particles such as carbon or metal particles are mixed into a non-conductive adhesive, and in order to further improve the insulating properties in the plane direction, Although attempts have been made to mix insulating particles with small particle sizes, no consideration has been given to connection reliability, which is an important property for connection materials.

接続部材は多数点回路の一括接続材料であるところから
、接続部の信頼性が最重要視される特性である。
Since the connecting member is a bulk connecting material for a multi-point circuit, the reliability of the connecting part is the most important characteristic.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは接続信頼性の向上について種々の検討を重
ねた結果、導電性粒子として高分子核体」二に金属薄層
の被覆層を形成した粒子(例えばめっき粒子)を用いる
ことにより、従来の金属粒子を用いた場合に比べて著し
く接続信頼性の向上することを提案(特願昭61−31
088号)した。
As a result of various studies on improving connection reliability, the present inventors found that by using particles (for example, plated particles) in which a thin metal layer is formed on a polymer core as conductive particles, We proposed that the connection reliability would be significantly improved compared to the case of using conventional metal particles (patent application 1986-31).
No. 088).

この提案によれば信頼性の向上は、導電性粒子と接着剤
との熱膨張率の近似や回路面への導電性粒子の接触面積
の増大などにより得られるものであった。
According to this proposal, reliability could be improved by approximating the thermal expansion coefficients of the conductive particles and the adhesive and by increasing the contact area of the conductive particles with the circuit surface.

めっき粒子を導電性粒子とした接続部材を用いた微細回
路の接続体の信頼性について種々検討したところ、高温
処理時に接続部に気泡の発生する場合が見られ、この気
泡発生部において信頼性が低下するという問題点が発生
した。すなわち、回路接続部に気泡が発生することによ
り、有効接着面積が減少することから接続信頼性の低下
を招くものと考えられる。ここで、対象となる微細回路
は、例えば5本/龍〜20本/關程度の配線密度のもの
であり、この場合の回路幅は通常100μm以下と、−
電極の接続面積は極めて小さいものである。
When we conducted various studies on the reliability of microcircuit connectors using connecting members made of conductive plating particles, we found that air bubbles were sometimes generated at the connections during high-temperature processing, and the reliability of these air bubbles was poor. A problem arose in that it decreased. That is, it is considered that the generation of air bubbles in the circuit connection portion reduces the effective bonding area, leading to a decrease in connection reliability. Here, the target microcircuit has a wiring density of, for example, 5 wires/double to 20 wires/double, and the circuit width in this case is usually 100 μm or less.
The connection area of the electrodes is extremely small.

上記した回路接続部の気泡発生現象については、めっき
粒子を用いた接続部材に特に顕著に発生することから、
その発生要因は、めっき粒子にあるものと思われる。そ
こで、めっき粒子の製造工程について考えてみると、以
下に述べるようにそのほとんどが湿式1程であることが
わかる。すなわち、微小粒子の一般的なめっき方法は、
まず核体に界面活性剤などの親水化や酸やアルカリによ
る表面粗化などの表面処理を湿式下で必要に応じて行っ
た後に、核体表面に塩化パラジウムに代表されるめっき
触媒を付与し、次いで、無電解めっき液中に浸漬してめ
っき層を形成し、洗浄および乾燥を行う工程を経て製造
されている。
Regarding the above-mentioned bubble generation phenomenon at the circuit connection part, since it occurs particularly prominently in connection members using plating particles,
The cause of this appears to be the plating particles. Therefore, when we consider the manufacturing process of plated particles, we find that most of them are wet process 1, as described below. In other words, the general plating method for microparticles is
First, the nuclei are subjected to surface treatments such as hydrophilization with surfactants and surface roughening with acids or alkalis as necessary under wet conditions, and then a plating catalyst such as palladium chloride is applied to the nuclei surfaces. Next, it is manufactured through a process of immersing it in an electroless plating solution to form a plating layer, followed by washing and drying.

ここで、めっき粒子についてみると、微細回路の接続を
可能とするためには隣接回路との絶縁性を保持する必要
性から、その粒径は最大径でおよそ50μm以下にする
必要がある。このようにめっき粒子は小粒径であること
から、その表面積が大きいために各種物質を吸着し易い
性質をもつ。
Here, regarding the plating particles, in order to enable connection of fine circuits, it is necessary to maintain insulation from adjacent circuits, so the particle size needs to be approximately 50 μm or less in maximum diameter. As described above, since the plated particles have a small particle size and a large surface area, they have the property of easily adsorbing various substances.

その上、前述したようにめっき粒子の製造工程がほとん
ど湿式下であることから、めっき粒子からめっき液残留
物や水分および気泡などの発泡要素を完全に除去するこ
とは困難なことであり、そのために、めっき粒子を低沸
点溶剤により洗浄したり、あるいは真空乾燥するなどの
方法で対処しても万全ではなかった。
Furthermore, as mentioned above, most of the plating particle manufacturing process is wet, so it is difficult to completely remove plating solution residue, moisture, and foaming elements such as air bubbles from the plating particles. However, methods such as washing the plated particles with a low boiling point solvent or drying them in vacuum have not been completely effective.

すなわち、めっき粒子に吸着された発泡要素を含む接続
部材による回路の接続部は、冷熱衝撃試験や高温高温試
験および高温昇温試験などの信頼性評価試験において、
めっき粒子に吸着された発泡要素が高温時に膨張したり
あるいは集合するなどして大きな気泡に成長すること、
あるいはこれらの発泡要素が接着剤の劣化を促進するこ
となどにより、信頼性が不満足であった。
In other words, circuit connections using connection members containing foamed elements adsorbed to plating particles fail in reliability evaluation tests such as thermal shock tests, high-temperature high-temperature tests, and high-temperature heating tests.
The foaming elements adsorbed to the plating particles expand or aggregate at high temperatures and grow into large bubbles.
Alternatively, reliability was unsatisfactory because these foam elements accelerated deterioration of the adhesive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記問題点に鑑みてなされたものである。す
なわち、本発明は、前記問題点を解消し、接続体の回路
の接続部に気泡を発生させることがなく、また劣化が抑
制された接着剤組成物を堤供することを口約とするもの
である。
The present invention has been made in view of the above problems. That is, the present invention aims to solve the above-mentioned problems and to provide an adhesive composition that does not generate bubbles at the connection part of the circuit of the connection body and is suppressed from deterioration. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の接着剤組成物は下記の(イ)〜(ニ)よりなる
ことを特徴とする。
The adhesive composition of the present invention is characterized by comprising the following (a) to (d).

(イ)絶縁性接着剤成分 99.8〜75体積%(ロ)
粒径0.5〜50μmのめっき粒子 0.1〜15体積
% (ハ)粒径0.1μm以下の乾式法シリカ 0605〜
5体積% (ニ)金属不活性化剤 0.05〜5体積%以下に、本
発明の詳細な説明する。
(a) Insulating adhesive component 99.8 to 75% by volume (b)
Plated particles with a particle size of 0.5-50 μm 0.1-15% by volume (c) Dry process silica with a particle size of 0.1 μm or less 0605-
5% by volume (iv) Metal deactivator 0.05-5% by volume Below, the present invention will be described in detail.

本発明で用いられる前記接着剤成分(イ)としては、基
本的には絶縁性を示す熱可塑性、および熱、光、電子線
、湿気、嫌気性などによる硬化型の接着剤について適用
可能であるが、特に熱可塑性や熱硬化性、光硬化性のも
のが取扱い易く好適である。また、これら接着剤中には
、各種調整剤としての、粘着付与剤、架橋剤、老化防止
剤、分散剤等が用いられてよい。
The adhesive component (a) used in the present invention can basically be applied to thermoplastic adhesives exhibiting insulating properties, and adhesives that can be cured by heat, light, electron beams, moisture, anaerobic conditions, etc. However, thermoplastic, thermosetting, and photocurable materials are particularly suitable because they are easy to handle. In addition, various adjusting agents such as tackifiers, crosslinking agents, anti-aging agents, and dispersants may be used in these adhesives.

これら接着剤に用いられる基材を、限定ではなく単に例
示の目的で示すと、例えば、エチレン−酢酸ビニル共重
合体、エチレン−酢酸ビニル共重合体変性物、ポリエチ
レン、エチレン−プロピレン共重合体、エチレン−アク
リル酸共重合体、エチレン−アクリル酸エステル共重合
体、エチレン−アクリル酸塩共重合体、アクリル酸エス
テル系ゴム、ポリイソブチレン、アダクチツクポリプロ
ピレン、ポリビニルブチラール、アクリロニトリル−ブ
タジェン共重合体1.スチレン−ブタジェンブロック共
重合体、スチレン−イソプレンブロック共重合体、スチ
レン−エチレン−ブチレンブロック共重合体、ポリブタ
ジェン、エチルセルロース、フェノキシ樹脂、ポリエス
テル、エポキシ樹脂、ポリアミド、ポリビニルエーテル
、ポリウレタン、ポリイソプレン、シリコーン系ゴム、
ポリクロロプレン等の合成高分子化合物、合成ゴム類、
天然ゴムなどの天然高分子化合物などを挙げることがで
きる。これらは単独あるいは2種以上併用して用いるこ
とができる。
The base materials used in these adhesives are shown by way of example only and not limitation, such as ethylene-vinyl acetate copolymer, modified ethylene-vinyl acetate copolymer, polyethylene, ethylene-propylene copolymer, Ethylene-acrylic acid copolymer, ethylene-acrylic ester copolymer, ethylene-acrylate copolymer, acrylic ester rubber, polyisobutylene, adduct polypropylene, polyvinyl butyral, acrylonitrile-butadiene copolymer 1 .. Styrene-butadiene block copolymer, styrene-isoprene block copolymer, styrene-ethylene-butylene block copolymer, polybutadiene, ethyl cellulose, phenoxy resin, polyester, epoxy resin, polyamide, polyvinyl ether, polyurethane, polyisoprene, silicone rubber,
Synthetic polymer compounds such as polychloroprene, synthetic rubbers,
Examples include natural polymer compounds such as natural rubber. These can be used alone or in combination of two or more.

前記粘着付与剤としては、たとえばジシクロペンタジェ
ン樹脂、ロジン、変性ロジン、テルペン樹脂、キシレン
樹脂、テルペン−フェノール樹脂、アルキルフェノール
樹脂、クマロン−インデン樹脂等があり、これらを必要
に応じて、単独あるいは2種以上併用して用いる。
Examples of the tackifier include dicyclopentadiene resin, rosin, modified rosin, terpene resin, xylene resin, terpene-phenol resin, alkylphenol resin, coumaron-indene resin, etc., and these may be used alone or in combination as necessary. Two or more types are used in combination.

前記粘着性調整剤としては、たとえばジオクチルフタレ
ートをはじめとする各種可塑剤類等が代表的である。
Typical examples of the tackiness modifier include various plasticizers such as dioctyl phthalate.

前記架橋剤は、ポリマーの凝集力を高めることが必要な
場合に用いられ、その例としてはポリマーの官能基と反
応する多官能性物質などがあり、具体的には例えばポリ
イソシアネート、メラミン樹脂、尿素樹脂、フェノール
樹脂、アミン類、酸無水物、過酸化物等が挙げられ、さ
らに光硬化性の場合の増感剤としてベンゾフェノン、ベ
ンゾキノン等でも良い。
The crosslinking agent is used when it is necessary to increase the cohesive force of the polymer, and examples thereof include polyfunctional substances that react with functional groups of the polymer, such as polyisocyanates, melamine resins, Examples include urea resins, phenol resins, amines, acid anhydrides, peroxides, etc. Furthermore, benzophenone, benzoquinone, etc. may be used as a sensitizer in the case of photocuring.

これらは、必要に応じて単独あるいは2種以上併用して
用いられる。
These may be used alone or in combination of two or more, if necessary.

前記老化防止剤は、接着剤の熱、酸素、光等に対する安
定性を高めることが必要な場合に用いるもので、たとえ
ば金属石ケン類を代表とする安定剤や、アルキルフェノ
ール類などの酸化防止剤、ベンゾフェノン系、ベンゾト
リアゾール系などの紫外線吸収剤等があり、やはり必要
に応じて単独あるいは2種以上併用して用いられる。
The anti-aging agent is used when it is necessary to increase the stability of the adhesive against heat, oxygen, light, etc., and includes, for example, stabilizers such as metal soaps, and antioxidants such as alkylphenols. , benzophenone-based, benzotriazole-based, and other ultraviolet absorbers, which may be used alone or in combination of two or more, if necessary.

前記分散剤は、導電性粒子の分散性向上のために用いる
場合がある。この例としては、たとえば界面活性剤があ
り、ノニオン系、カチオン系、アニオン系、両性のうち
1種あるいは2種以上併用して用いることが出来る。
The dispersant may be used to improve the dispersibility of conductive particles. Examples of this include surfactants, which can be used singly or in combination of nonionic, cationic, anionic, and amphoteric agents.

その他、各種のカップリング剤やキレート剤も接着剤成
分に添加して使用することができる。
In addition, various coupling agents and chelating agents can also be used by adding them to the adhesive component.

本発明における前記めっき粒子(ロ)としては粒径が0
.5〜50μmのものが用いられる。粒径が0.5μm
未満では粒子の表面積が大きく発泡要素の吸着量が多く
なることから好ましくなく、50μmを超えると回路が
微細な場合に隣接回路間に粒子が存在する確率が高くな
り面方向の絶縁性が不十分となることから好ましくない
The plated particles (b) in the present invention have a particle size of 0.
.. A material having a diameter of 5 to 50 μm is used. Particle size is 0.5μm
If it is less than 50 μm, the surface area of the particles will be large and the amount of adsorption of the foaming element will increase, which is undesirable. If it exceeds 50 μm, the probability that particles will exist between adjacent circuits will increase when the circuits are minute, resulting in insufficient insulating properties in the plane direction. This is not desirable because

このような理由から、粒径の好ましい範囲は1〜30μ
mである。
For these reasons, the preferred range of particle size is 1 to 30μ.
It is m.

ここでいう粒径とは、次式による平均粒径りを示すもの
とする。
The particle size here refers to the average particle size according to the following formula.

D−Σnd/Σn nはdなる粒径の粒子の数を示す これらの粒径の測定方法としては、一般的に用いられる
電子顕微鏡や光学顕微鏡、コールタカウンター、光散乱
法などがある。
D-Σnd/Σnn n indicates the number of particles having a particle size of d. Methods for measuring these particle sizes include commonly used electron microscopes, optical microscopes, Coulter counters, and light scattering methods.

めっき粒子の形状は平均粒径が上記範囲内にあれば特に
限定されないが、接続部の信頼性を向上させるためには
アスペクト比のなるべく小さな例えば球状、円錐状など
が好ましい。
The shape of the plating particles is not particularly limited as long as the average particle size is within the above range, but in order to improve the reliability of the connection part, it is preferable to have a shape with as small an aspect ratio as possible, such as a spherical shape or a conical shape.

めっき粒子の構成は、核材の表面にめっき法により導電
性被覆層が形成されたものが好ましい。
The plating particles preferably have a conductive coating layer formed on the surface of the core material by plating.

核材としては、ゴム、プラスチック等よりなる高分子物
質、Ni、Cusカーボン等よりなる導電性物質、雲母
、ガラス等よりなる非導電性物質等が適用可能であり、
これら核材は完全な充実体、中空体、発泡体、凝集体な
どでもよく、これらは単独もしくは複合して使用できる
As the core material, polymeric substances such as rubber and plastic, conductive substances such as Ni and Cu carbon, and non-conductive substances such as mica and glass can be used.
These core materials may be completely solid bodies, hollow bodies, foam bodies, aggregates, etc., and these can be used alone or in combination.

被覆層に用いられる金属としては、導電性を存する各種
材質が適用可能であるが、導電性と耐食−性の観点から
好ましく適用できるのはNis Ags^u1Sns 
Cus Pbであり、これらは単独もしくは複合して使
用可能である。
Various electrically conductive materials can be used as the metal for the coating layer, but Nis Ags^u1Sns is preferably used from the viewpoint of electrical conductivity and corrosion resistance.
Cus Pb, and these can be used alone or in combination.

被覆層の厚みは特に規定しないが、0.01〜5μm程
度が好ましい。被覆方法としては、前述した無電解めっ
き方法が好適であるが、スパッタ法や蒸着法であっても
よい。
Although the thickness of the coating layer is not particularly limited, it is preferably about 0.01 to 5 μm. As the coating method, the above-mentioned electroless plating method is suitable, but sputtering method or vapor deposition method may also be used.

本発明における前記めっき粒子の接着剤中に占める量は
0.1〜15体積%である。0.1体積%未満では、満
足する導電性が得られにくく、10体積%を超えると面
方向において粒子が連結する機会が増加することから隣
接回路との絶縁性が低下する。
In the present invention, the amount of the plated particles in the adhesive is 0.1 to 15% by volume. If it is less than 0.1% by volume, it is difficult to obtain satisfactory conductivity, and if it exceeds 10% by volume, the chances of particles connecting in the plane direction increase, resulting in a decrease in insulation with adjacent circuits.

このような理由から好ましい添加量は0.5〜IO体積
%である。
For these reasons, the preferable addition amount is 0.5 to IO volume %.

本発明に用いられる乾式法シリカ(ハ)について説明す
る。シリカは二酸化ケイ素(Sin2)をその主成分と
するものであり、ゴム等へあ充填剤としてホワイトカー
ボンと総称されて一般的によく用いられている材料であ
り、その製法は乾式法と湿式法とに大別される。このよ
うなシリカは従来、液体を増粘しチキソトロピー効果を
与えたり、ゴム状弾性体を補強したり、粉末状物質の流
動性を保つ等の目的で使用されていた。本発明に適用可
能なシリカは、ハロゲン化ケイ素の熱分解、ケイ酸含有
物の熱分解、および有機ケイ素化合物の熱分解などによ
る乾式法により得られたものである。乾式法によると、
高純度品(一般的に純度99%以上)が得られ、また融
点以下の加熱に対して内部構造を変えないものが得られ
る。従って不純物を極度に嫌い、安定した接続特性が要
求されるエレクトロニクス用接続部材としての接着剤の
原料として、乾式法シリカを使用することが必要である
The dry process silica (c) used in the present invention will be explained. Silica has silicon dioxide (Sin2) as its main component, and is a material commonly used as a filler for rubber etc. It is generally referred to as white carbon, and its manufacturing methods include dry method and wet method. It is broadly divided into. Such silica has conventionally been used for purposes such as thickening liquids to impart a thixotropic effect, reinforcing rubber-like elastic bodies, and maintaining the fluidity of powdered substances. Silica applicable to the present invention is obtained by a dry process such as thermal decomposition of silicon halide, thermal decomposition of silicic acid-containing substances, and thermal decomposition of organosilicon compounds. According to the dry method,
High purity products (generally 99% or higher purity) can be obtained, and products whose internal structure does not change when heated below the melting point can be obtained. Therefore, it is necessary to use dry process silica as a raw material for adhesives used as connection members for electronics, which are extremely sensitive to impurities and require stable connection characteristics.

乾式法シリカの添加量は接着剤組成物に対して0.05
〜5体積%とする。0.05体積%未満では発泡要素を
吸着する能力が不足し、5体積%を超えると回路に対す
る接着性が不足することから好ましくない。
The amount of dry process silica added is 0.05 to the adhesive composition.
~5% by volume. If it is less than 0.05% by volume, the ability to adsorb the foam element will be insufficient, and if it exceeds 5% by volume, the adhesion to the circuit will be insufficient, which is not preferable.

本発明に用いる乾式法シリカは、粒径が0.1μm以下
でありBET法比法面表面積0rrf/g以上のものが
好適であり、さらにその粒子表面にシラノール基(−3
tOH)を含有した親水性を示すものが特に好ましく用
いられる。
The dry process silica used in the present invention preferably has a particle size of 0.1 μm or less and a BET method slope surface area of 0rrf/g or more, and further has a silanol group (-3
Hydrophilic materials containing tOH) are particularly preferably used.

粒径は小なる方が粒子の表面積が大きくなることから好
ましく、BET法比法面表面積On(’g以上であると
発泡要素をよく吸着するので、乾式法シリカの添加量は
少量でよいため接続部材の回路に対する接着性の低下な
どの悪影響がない。また親水性が好ましい理由は発泡要
素の多(が水分もしくは親水性物質であることによる。
It is preferable that the particle size is smaller because the surface area of the particles becomes larger, and if the BET method slope surface area is On ('g or more), the foaming element will be well adsorbed, so the amount of dry process silica added may be small. There is no adverse effect such as a decrease in the adhesion of the connecting member to the circuit.The reason why hydrophilicity is preferable is that the majority of the foamed element is water or a hydrophilic substance.

このような乾式法シリカについて例示すると、Degu
ssa社および日本アエロジル社の商品名アエロジルや
、Cabot社の商品名 Cab−O−3i I、Do
w  Corning社商品名DCFine  5il
ica  およびFranso1社の商品名Frans
 i lなどが市販されている。本発明に用いる前記金
属不活性化剤(ニ)は、金属と反応して錯体を形成する
などにより金属を不活性化し、金属あるいは金属と接す
る接着剤の劣化促進を防止するものであれば原則的には
適用可能である。
An example of such dry process silica is Degu
Aerosil, a product name of SSA and Nippon Aerosil, and Cab-O-3i I, Do, a product of Cabot.
w Corning product name DCFine 5il
ica and Franso1 company's product name Frans
il etc. are commercially available. In principle, the metal deactivator (d) used in the present invention is one that deactivates the metal by reacting with the metal to form a complex and prevents the acceleration of deterioration of the metal or the adhesive in contact with the metal. Generally applicable.

このような金属不活性化剤としては、芳香族アミン、酸
アミド、ヒドラジド、アゾール類などを挙げることがで
きる。
Examples of such metal deactivators include aromatic amines, acid amides, hydrazides, and azoles.

これらのうち、本発明の目的である接続信頼性の向上に
、より好適に用いることができる金属不活性化剤として
は、アミン基、ニトロ基、アゾ基等の窒素含有基をもつ
トリアゾール系化合物もしくはベンゾトリアゾール系化
合物を挙げることができる。
Among these, triazole compounds having nitrogen-containing groups such as amine groups, nitro groups, and azo groups are more preferably used as metal deactivators for improving connection reliability, which is the objective of the present invention. Alternatively, benzotriazole compounds can be mentioned.

その具体例を、限定ではなく単に例示の目的で示すと、
たとえば、3−アミノ−1,2,4−)リアゾール、4
−アミノ−1,2,4−)リアゾール、3−ベンジル−
5−アミノ−1,2,4−トリアゾール、l−ベンジル
−3−アミノ−5−フェニル−1,2,4−1−リアゾ
ール、1,4−ジフェニルエンドアニリノジヒドロトリ
アゾール、3.5−ジアミノ−1,2,4−)リアゾー
ル、3.5−ビス(4−アミノフェニル)−1,2゜4
−トリアゾール、4−サリチリデンイミノ−3゜5−ジ
フェニル−1,2,4−トリアゾール、3− (N−サ
リチロイル)アミノ−1,2,4−トリアゾール、3−
〔N−β−(3,5−ジ−t−ブチル−4−ヒドロキシ
フェニル)プロピオニルコアミノ−1,2,4−1−リ
アゾール、5−アミノ−3−(p−ニトロヘンシル)−
1,2,4−トリアゾール、12.4−1−リアゾール
−5−アゾ−4−(N、N−ジエチル)アニリン、1゜
2.4−トリアゾール−5−アヅー4’−(N−メチル
−N−ベンジル)アニリン、3−(,4−N−エチル−
N−ペンジルアミノフェニルアゾ)−2,3−ジメチル
トリアゾリウム、1,4−ジメチル−2−アミノ−5−
+4− (ベンジル−エチルアミノ)フェニルアゾl−
1,2,4−トリアゾリウム、3.5−ビス(4−(N
、N−ジエチルアミノ)フェニルアゾ)−1,2,4−
トリアゾール、1.4−ジメチル−3,5−ビス〔(4
−(ジエチルアミノ)フェニル)アゾ)  1. 2゜
4−トリアゾリウム、1.4−ジメチル−3,5−ビス
(4−(N−メチル−N−β−メトキシエチルアミノ)
フェニルアゾ)−1,2,、l−)リアゾリウム、1.
 2. 4−)リアゾール−5−アゾ−3’−(2’−
フェニル)インドール、3−((1−エチル−2−フェ
ニルインドール−3−イン)アゾl −1,2,4−ト
リアゾール、などを例示することが出来る。
Specific examples thereof are given for purposes of illustration only and not by way of limitation:
For example, 3-amino-1,2,4-)lyazole, 4
-amino-1,2,4-)riazole, 3-benzyl-
5-amino-1,2,4-triazole, l-benzyl-3-amino-5-phenyl-1,2,4-1-riazole, 1,4-diphenylendoanilinodihydrotriazole, 3,5-diamino -1,2,4-) riazole, 3,5-bis(4-aminophenyl)-1,2゜4
-triazole, 4-salicylideneimino-3゜5-diphenyl-1,2,4-triazole, 3- (N-salicyloyl)amino-1,2,4-triazole, 3-
[N-β-(3,5-di-t-butyl-4-hydroxyphenyl)propionylcoamino-1,2,4-1-riazole, 5-amino-3-(p-nitrohensyl)-
1,2,4-triazole, 12.4-1-riazole-5-azo-4-(N,N-diethyl)aniline, 1゜2.4-triazole-5-azu-4'-(N-methyl- N-benzyl)aniline, 3-(,4-N-ethyl-
N-pendylaminophenylazo)-2,3-dimethyltriazolium, 1,4-dimethyl-2-amino-5-
+4- (benzyl-ethylamino)phenylazo l-
1,2,4-triazolium, 3,5-bis(4-(N
, N-diethylamino)phenylazo)-1,2,4-
Triazole, 1,4-dimethyl-3,5-bis[(4
-(diethylamino)phenyl)azo) 1. 2゜4-triazolium, 1,4-dimethyl-3,5-bis(4-(N-methyl-N-β-methoxyethylamino)
phenylazo)-1,2,,l-)riazolium, 1.
2. 4-) Riazole-5-azo-3'-(2'-
Examples include phenyl)indole, 3-((1-ethyl-2-phenylindol-3-yne)azo-1,2,4-triazole, and the like.

本発明における前記金属不活性化剤は、接着剤組成物中
に0.05〜5゛体積%使用される。このときこの金属
不活性化剤は単独もしくは2種以上複合して用いること
が可能であり、この値が0.05体積%未満では接着剤
の金属による劣化防止作用が少なく、5体積%を超える
と接着剤との相溶性が低下するのでブリード現象が発生
し易くなり、いずれも接続回路の信頼性が低下する。
In the present invention, the metal deactivator is used in an adhesive composition in an amount of 0.05 to 5% by volume. At this time, this metal deactivator can be used alone or in combination of two or more types, and if this value is less than 0.05 volume %, the effect of preventing metal deterioration of the adhesive will be small, and if it exceeds 5 volume %. Since the compatibility between the adhesive and the adhesive decreases, a bleed phenomenon becomes more likely to occur, and in both cases, the reliability of the connected circuit decreases.

以上の組成物からなる接着剤の製法としては、接着剤成
分(イ)の中に(ロ)〜(ニ)と順次混合分散すればよ
く、その混合順序や方法は特に限定されない。
As a method for producing an adhesive made of the above composition, components (B) to (D) may be mixed and dispersed in the adhesive component (A) in sequence, and the order and method of mixing are not particularly limited.

この組成物の使用方法としては、例えば液状接着剤の場
合においては、接続すべき一方もしくは相方の回路上に
塗布するなどして接続部材層を形成し、必要に応じて溶
剤を除去し、他の回路と加熱加圧等の方法により接続す
れば良い。
For example, in the case of a liquid adhesive, this composition is used by coating it on one or the other circuit to be connected to form a connecting member layer, removing the solvent as necessary, and then applying the adhesive to the other circuit. It may be connected to the circuit using methods such as heating and pressurizing.

また、剥離可能なフィルム基材上に塗布乾燥するなどし
て接続部材層を形成し、接着剤組成物を膜状物となした
後に、この膜状物を接続すべき回路間に挿入して前記と
同様にして回路を接続する方法が好適に使用できる。
Alternatively, a connecting member layer is formed by coating and drying on a peelable film base material, and the adhesive composition is formed into a film-like material, and then this film-like material is inserted between circuits to be connected. A method of connecting circuits in the same manner as described above can be suitably used.

〔作用〕[Effect]

本発明になる接着剤組成物の組成成分の作用関係につい
ては必ずしも明らかでないが、次のように考えることが
できる。
Although the functional relationship of the components of the adhesive composition according to the present invention is not necessarily clear, it can be considered as follows.

まず(イ)の絶縁性接着剤成分は接続すべき回路の接合
材として作用し、(ロ)のめっき粒子は粒径および添加
量の選択により、接続回路間に電気的接続および隣接回
路間(面方向)に絶縁性を付与する。
First, the insulating adhesive component (a) acts as a bonding material for the circuits to be connected, and the plating particles (b) can be used to create electrical connections between connected circuits and between adjacent circuits (by selecting the particle size and amount added). Provides insulation in the surface direction).

(ハ)の乾式法シリカはその粒径がめつき粒子に比べて
小さく、すなわち、表面積がめつき粒子ニ比べて著しく
大きいために、めっき粒子に吸着された通常手段で除去
することの困難な水分等の発泡要素を吸着する。発泡要
素を吸着したシリカは、その粒径がめつき粒子に比べて
充分に小さいことから、発泡要素はめっき粒子に吸着さ
れた状態と較べるとより細分化されて、接続部材中に細
かく分散されて存在するので回路接続部の気泡の発生が
低減する。さらに、発泡要素はシリカ表面のシラノール
基と化学結合し易(、そのために発泡要素は解離し難い
ので、より発泡し難い形態で存在していることが考えら
れる。
The particle size of dry process silica (c) is smaller than that of plated particles, that is, the surface area is significantly larger than that of plated particles, so moisture adsorbed to the plated particles is difficult to remove by normal means. adsorbs foam elements. The particle size of the silica that has adsorbed the foamed elements is sufficiently smaller than that of the plated particles, so the foamed elements are more finely divided and dispersed in the connecting member than when they are adsorbed to the plated particles. The presence of this material reduces the occurrence of bubbles at circuit connections. Furthermore, the foaming elements are likely to chemically bond with the silanol groups on the silica surface (for this reason, the foaming elements are difficult to dissociate), so it is thought that the foaming elements exist in a form that is more difficult to foam.

(ニ)の金属不活性化剤は、発泡要素中に含有される接
着剤の劣化促進物質(例えばめっき液の残留金属)や、
めっき粒子の被覆金属および接続回路などの金属とキレ
ート結合するなどして不活性化することで接着剤の劣化
を防止する。
The metal deactivator (d) is a substance that accelerates the deterioration of the adhesive contained in the foaming element (for example, residual metal from the plating solution),
Deterioration of the adhesive is prevented by inactivating the plating particles by chelate bonding with metals such as coating metals and connection circuits.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

実施例1 (1)めっき粒子の作製 平均粒径10μmのポリスチレン粒子を水中に分散し、
塩化パラジウムによる活性化処理を室温で行った後、無
電解ニッケルめっき液(ブルーシューマ、日本カニゼン
社製商品名)中に分散し、攪拌しながら90℃で1時間
のめっき形成を行った。このときのニッケルめっきの厚
みは0.2μmであることを電子顕微鏡による断面観察
で確認した。また比重は2.0であった。
Example 1 (1) Preparation of plated particles Polystyrene particles with an average particle diameter of 10 μm were dispersed in water,
After activation treatment with palladium chloride was performed at room temperature, it was dispersed in an electroless nickel plating solution (Blue Schumer, trade name manufactured by Nippon Kanigen Co., Ltd.), and plated at 90° C. for 1 hour with stirring. It was confirmed by cross-sectional observation using an electron microscope that the thickness of the nickel plating at this time was 0.2 μm. Further, the specific gravity was 2.0.

(2)接着剤組成物の作製 絶縁性接着剤成分(イ)としてツルブレンT−406(
スチレンーブタジエンースチレンブロソクボリマー、旭
化成工業株式会社製商品名)およびYsボリスタS−1
45(テルペンフェノール、安原油脂株式会社製商品名
)を固形分の重量比で70対30となるようにして20
%トルエン)容ン夜を作製した。(イ)の接着剤溶液中
に、(ハ)の乾式法シリカとしてアエロジル200 (
日本アエロジル社製商品名、BET法比法面表面積00
m/g、粒径0.012μm、比重2.2、純度99.
8%)を1体積%添加し、さらに金属不活゛性化剤(ニ
)としてマークCDA−1(3−(N−サリチロイル)
アミノ−1,2,4−トリアゾール、アデカアーガス社
製商品名、比重1.0〕を0.5体積%添加した。以上
の混合物を充分に攪拌した後、(1)で作製しためっき
粒子(ロ)を2体積%となるように添加した。
(2) Preparation of adhesive composition Trublen T-406 (
Styrene-butadiene-styrene broth polymer (trade name manufactured by Asahi Kasei Corporation) and Ys Volista S-1
45 (terpene phenol, trade name manufactured by Yasushi Oil Co., Ltd.) at a solid content weight ratio of 70:30.
% toluene) was prepared. In the adhesive solution of (a), Aerosil 200 (
Product name manufactured by Nippon Aerosil Co., Ltd., BET method surface area 00
m/g, particle size 0.012 μm, specific gravity 2.2, purity 99.
8%) was added in an amount of 1% by volume, and mark CDA-1 (3-(N-salicyloyl)) was added as a metal deactivating agent (d).
Amino-1,2,4-triazole, trade name manufactured by Adeka Argus, specific gravity 1.0] was added in an amount of 0.5% by volume. After the above mixture was thoroughly stirred, the plated particles (b) prepared in (1) were added to the mixture at a concentration of 2% by volume.

以上の(ロ)(ハ)(ニ)の添加量は、接着剤(イ)の
固形分に対しての添加量を示し、(イ)〜(ニ)よりな
る組成物をさらに攪拌して、本発明の接着剤組成物を得
た。
The amounts added in (b), (c), and (d) above indicate the amounts added to the solid content of the adhesive (a), and the composition consisting of (a) to (d) is further stirred, An adhesive composition of the present invention was obtained.

上記接着剤組成物を、乾燥後の厚みが15μmとなるよ
うにロールコータでセパレータ(シリコーンの剥離処理
を施した熱可塑性ポリエステルフィルム)上に塗布し、
100℃−10分の乾燥により溶剤であるトルエンを除
去して、膜状の接続部材を得た。
Applying the above adhesive composition onto a separator (thermoplastic polyester film subjected to silicone release treatment) using a roll coater so that the thickness after drying is 15 μm,
The solvent toluene was removed by drying at 100° C. for 10 minutes to obtain a membrane-like connection member.

(3)回路の接続 ライン巾Q、 l mm、ピッチ0.2龍、厚み18μ
mの銅回路を有する全回路中100龍のフレキシブル回
路板CF P C)に、接着中3鶴、長さ1100aに
切断した接続部材を載置して150℃−2kg/ ca
! −5秒の加熱加圧を行い接続部材付のFPCを得た
(3) Circuit connection line width Q, lmm, pitch 0.2mm, thickness 18μ
A connecting member cut to a length of 1100 mm while being glued was placed on a flexible circuit board CF P C) with 100 mm of copper circuits, and was heated at 150℃ - 2 kg/ca.
! -5 seconds of heating and pressurization was performed to obtain an FPC with a connecting member.

その後、セパレータを剥離して、FPCと同一ピッチの
回路を有する透明導電ガラス(酸化インジウム回路、ガ
ラス厚み0.5mm)と顕微鏡下で回路の位置合わせを
行い、150℃−20kg/cut−20秒間の加熱加
圧を行い回路の接続構造体を得た。
After that, the separator was peeled off, and the circuit was aligned with a transparent conductive glass (indium oxide circuit, glass thickness 0.5 mm) having a circuit with the same pitch as the FPC under a microscope. A circuit connection structure was obtained by heating and pressurizing.

(4)評価 上記により得た接続構造体を2分割して、接続状態の観
察と高温高温放置試験を行った。
(4) Evaluation The connected structure obtained above was divided into two parts, and the connection state was observed and a high temperature storage test was performed.

接続状態の観察は、接続部を昇温しながら透明導電ガラ
ス側から顕微鏡で観察し回路接続部に気泡の発生する温
度を調べるものであり、高温高温試験は回路接続部を8
5℃−85%RHの雰囲気に長期保存し、接続部の気泡
や腐食を顕微鏡で経時観察し、併せて接続抵抗の変化を
追跡するものであり、目標は1500時間以上異常の無
いことである。
Observation of the connection state involves observing the connection part under a microscope from the transparent conductive glass side while raising the temperature to check the temperature at which air bubbles are generated at the circuit connection part.
It is stored for a long time in an atmosphere of 5℃-85%RH, and the bubbles and corrosion in the connection parts are observed over time using a microscope, and changes in connection resistance are also tracked.The goal is to have no abnormalities for more than 1500 hours. .

本実施例の場合、接続状態の観察では150℃まで気泡
の発生が見られず、高温高温試験においても処理150
0時間において気泡および腐食の発生がなく、接続抵抗
の変化が少なく回路オーブンの発生が無かった。これら
の組成物の内容と評価結果を第1表に示したが、優れた
接続信頼性の得られることがわかった。また、本実施例
においては熱可塑性の接着剤であるために、回路の接続
操作が簡単であった。
In the case of this example, no bubbles were observed in the connection state up to 150°C, and even in the high-temperature test,
At 0 hours, no bubbles or corrosion were generated, there was little change in connection resistance, and no circuit oven occurred. The contents and evaluation results of these compositions are shown in Table 1, and it was found that excellent connection reliability could be obtained. Furthermore, in this example, since the adhesive was thermoplastic, the circuit connection operation was easy.

実施例2〜5および比較例1〜2 組成物の配合量を第1表のように変化させ、他は実施例
1と同様に行い、結果を第1表に示した。
Examples 2 to 5 and Comparative Examples 1 to 2 The blending amounts of the compositions were changed as shown in Table 1, and the other operations were carried out in the same manner as in Example 1, and the results are shown in Table 1.

この結果は、実施例2〜5においては昇温試験における
気泡発生は150℃においても観察されず、高温高温試
験においても目標の1500時間で異常は見られず良好
な接続信頼性を有していることがわかった。
This result shows that in Examples 2 to 5, no bubbles were observed in the temperature increase test even at 150°C, and no abnormality was observed in the high temperature test for the target 1500 hours, indicating that the connection reliability was good. I found out that there is.

一方、比較例1は組成物中に乾式法シリカ(ハ)を添加
しない場合であるが、昇温試験において120 ’Cで
気泡が発生し、高温高温試験においても750℃で気泡
の発生があり、回路オープンが発生した。また、比較例
2は金属不活性化剤(ニ)を添加しない場合であるが、
昇温試験における気泡発生温度は150℃以上と良好で
あったが、高温高温試験では750時間において回路端
部に腐食の発生が見られた。そのため回路接続部は処理
1000時間でオープンが発生した。
On the other hand, in Comparative Example 1, no dry process silica (c) was added to the composition, but bubbles were generated at 120'C in the temperature rise test, and bubbles were also generated at 750'C in the high temperature test. , a circuit open has occurred. In addition, Comparative Example 2 is a case where metal deactivator (d) is not added, but
Although the bubble generation temperature in the temperature increase test was good at 150° C. or higher, corrosion was observed at the end of the circuit after 750 hours in the high temperature test. Therefore, an open circuit occurred at the circuit connection after 1000 hours of processing.

実施例6〜8 実施例1の乾式法シリカのグレードを第1表のように変
化させ、他は実施例1と同様に行い、結果を第1表に示
した。
Examples 6 to 8 The same procedure as in Example 1 was carried out except that the grade of the dry process silica of Example 1 was changed as shown in Table 1, and the results are shown in Table 1.

用いたシリカは実施例6においてはアエロジル0X50
(日本アエロジル社製商品名、BET法比表面積 50
n?/g、粒径0.05μm)、実施例7においてはア
エロジル380 (日本アエロジル社製商品名、BET
法比表面積 380m/g、粒径0.008μm)、実
施例8においてはCab−O−3il  (Cabot
社商品名、BET法比表面積 200rd/g、粒径0
.02μm)であった。これらのシリカの比重は2.2
である。
The silica used was Aerosil 0X50 in Example 6.
(Product name manufactured by Nippon Aerosil Co., Ltd., BET method specific surface area 50
n? /g, particle size 0.05 μm), and in Example 7, Aerosil 380 (trade name, manufactured by Nippon Aerosil Co., Ltd., BET
In Example 8, Cab-O-3il (Cabot
company product name, BET method specific surface area 200rd/g, particle size 0
.. 02 μm). The specific gravity of these silicas is 2.2
It is.

結果は第1表に示したように、いずれも良好な信頼性が
得られ、乾式法シリカの各種性状のものが適用可能であ
ることがわかる。
The results are shown in Table 1, and it can be seen that good reliability was obtained in all cases, and that dry process silica with various properties was applicable.

実施例9〜10 実施例8の金属不活性化剤の種類を第1表のように変化
させ、他は実施例8と同様に行い、結果を第1表に示し
た。
Examples 9 to 10 The same procedure as in Example 8 was carried out except that the type of metal deactivator used in Example 8 was changed as shown in Table 1, and the results are shown in Table 1.

実施例9においては試薬1級のベンゾトリアゾール、実
施例10においてはマーク0DA−6(デカメチレンジ
カルボン酸ジサリチロイルヒドラジド、アデカアーガス
社製商品名)を各々メチルエチルケトンに溶解して使用
した。これらの結果も第1表に示したように優れた接続
信軌性を示した。
In Example 9, benzotriazole, a first class reagent, and in Example 10, Mark 0DA-6 (decamethylene dicarboxylic acid disalicyloyl hydrazide, trade name, manufactured by Adeka Argus) were used after being dissolved in methyl ethyl ketone. These results also showed excellent connection reliability as shown in Table 1.

実施例11〜12 実施例1の接着剤を熱硬化タイプのものに変え、めっき
粒子を実施例1で用いた粒子の表面に膜厚0.01μm
のAuめっきを行ったものを使用した以外は実施例1と
同様にして接着剤組成物を得た。
Examples 11-12 The adhesive used in Example 1 was changed to a thermosetting type, and the plated particles were coated with a film thickness of 0.01 μm on the surface of the particles used in Example 1.
An adhesive composition was obtained in the same manner as in Example 1, except that an adhesive composition plated with Au was used.

接着剤に用いた材料はニボール1032 にトリルゴム
、日本ゼオン社製商品名)、ヒタノール2400  (
アルキルフェノール、日立化成工業社製商品名)、エピ
コート1001  (ビスフェノール型エポキシ樹脂、
油化シェルエポキシ社製商品名)、キュアゾール2E4
MZ (2−エチル−4−メチルイミダゾール、四国化
成工業社商品名)である。 実施例1と同様に加熱加圧
により回路を接続した後で、130℃−30分の後硬化
を行った。このものの評価結果は第1表に示したように
、優れた接続信頼性を示した。
The materials used for the adhesive were Niball 1032, Trill rubber (product name manufactured by Nippon Zeon Co., Ltd.), and Hytanol 2400 (
Alkylphenol, Hitachi Chemical Co., Ltd. product name), Epicoat 1001 (bisphenol type epoxy resin,
(Product name manufactured by Yuka Shell Epoxy Co., Ltd.), Curesol 2E4
MZ (2-ethyl-4-methylimidazole, trade name of Shikoku Kasei Kogyo Co., Ltd.). After connecting the circuit by heating and pressurizing as in Example 1, post-curing was performed at 130° C. for 30 minutes. As shown in Table 1, the evaluation results of this product showed excellent connection reliability.

また、実施例11〜12における回路接続体は、接着剤
が熱硬化タイプのために回路との接着性が特に優れてい
た。
In addition, the circuit connectors in Examples 11 and 12 had particularly excellent adhesiveness to the circuit because the adhesive was a thermosetting type.

〔発明の効果〕 本発明の接着剤組成物を用いた回路の接続体は、接続部
に気泡の発生が無く、また接着剤の劣化が抑制されるの
で、接続信転性が著しく向上し、その工業的価値は極め
て大である。
[Effects of the Invention] The circuit connection body using the adhesive composition of the present invention has no air bubbles in the connection part, and deterioration of the adhesive is suppressed, so connection reliability is significantly improved. Its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1、下記の(イ)〜(ニ)よりなる接着剤組成物。 (イ)絶縁性接着剤成分99.8〜75体積% (ロ)粒径0.5〜50μmのめっき粒子0.1〜15
体積% (ハ)粒径0.1μm以下の乾式法シリカ0.05〜5
体積% (ニ)金属不活性化剤0.05〜5体積% 2、乾式法シリカのBET法比表面積が40m^2/g
以上である特許請求の範囲第1項記載の接着剤組成物。
[Claims] 1. An adhesive composition comprising the following (a) to (d). (a) Insulating adhesive component: 99.8-75% by volume (b) Plating particles with a particle size of 0.5-50 μm: 0.1-15
Volume % (c) Dry method silica with particle size of 0.1 μm or less 0.05 to 5
Volume % (d) Metal deactivator 0.05 to 5 volume % 2. BET method specific surface area of dry method silica is 40 m^2/g
The adhesive composition according to claim 1, which is the above.
JP8001187A 1987-04-01 1987-04-01 Adhesive composition Expired - Lifetime JPH075868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001187A JPH075868B2 (en) 1987-04-01 1987-04-01 Adhesive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001187A JPH075868B2 (en) 1987-04-01 1987-04-01 Adhesive composition

Publications (2)

Publication Number Publication Date
JPS63245484A true JPS63245484A (en) 1988-10-12
JPH075868B2 JPH075868B2 (en) 1995-01-25

Family

ID=13706379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001187A Expired - Lifetime JPH075868B2 (en) 1987-04-01 1987-04-01 Adhesive composition

Country Status (1)

Country Link
JP (1) JPH075868B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167569A (en) * 2000-11-29 2002-06-11 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2007056167A (en) * 2005-08-25 2007-03-08 Hitachi Chem Co Ltd Adhesive film and semiconductor apparatus using the same
JP2007176061A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Method for manufacturing article made of paper
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
JP2014141628A (en) * 2012-12-28 2014-08-07 Toyo Ink Sc Holdings Co Ltd Conductive resin composition
JP2015164104A (en) * 2014-02-28 2015-09-10 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167569A (en) * 2000-11-29 2002-06-11 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit, connected unit and semiconductor device
JP2007056167A (en) * 2005-08-25 2007-03-08 Hitachi Chem Co Ltd Adhesive film and semiconductor apparatus using the same
JP2007176061A (en) * 2005-12-28 2007-07-12 Dainippon Printing Co Ltd Method for manufacturing article made of paper
WO2012086588A1 (en) * 2010-12-20 2012-06-28 セメダイン株式会社 Electroconductive adhesive
JPWO2012086588A1 (en) * 2010-12-20 2014-05-22 セメダイン株式会社 Conductive adhesive
JP5915541B2 (en) * 2010-12-20 2016-05-11 セメダイン株式会社 Conductive adhesive
JP2014141628A (en) * 2012-12-28 2014-08-07 Toyo Ink Sc Holdings Co Ltd Conductive resin composition
JP2015164104A (en) * 2014-02-28 2015-09-10 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPH075868B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US5686703A (en) Anisotropic, electrically conductive adhesive film
WO2008023565A1 (en) Circuit connecting material, connection structure for circuit member using the same and production method thereof
TWI425072B (en) Semi thermosetting anisotropic conductive film composition
EP0734576B1 (en) Anisotropic, electrically conductive adhesive film
TW200936728A (en) Circuit connecting adhesive film and circuit connecting structure
JP2008094908A (en) Adhesive for electrode connection
JP2007112949A (en) Anisotropic conductive adhesive
JP2001081438A (en) Connecting material
TW201840767A (en) Adhesive film
JPH01309206A (en) Adhesive composite for circuit connection
TW201933964A (en) Connection structure and method for producing same
JPH02206670A (en) Heat conductive adhesive composition for connecting circuit and heat conductive bonding film having anisotropic electric conductivity
JPS63245484A (en) Adhesive composition
JPH06260533A (en) Mounting of ic chip
JP2002327162A (en) Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
US20060261315A1 (en) Insulation-coated electroconductive particles
JP2007204673A (en) Epoxy resin composition, electroconductive adhesive by using the same and anisotropic electroconductive film
JP2001164232A (en) Thermosetting adhesive material
JP4816827B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
JP2680412B2 (en) Anisotropic conductive film
JP2008308519A (en) Adhesive for connecting electrode
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JPH0349105A (en) Conducting grain for anisotropic conducting adhesive and anisotropic conducting adhesive
JP6228732B2 (en) Resin sheet
JPS63178181A (en) Adhesive composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 13